
GraphQL vs. REST:
A Performance and Cost Investigation
for Serverless Applications

School of Engineering and Technology
University of Washington Tacoma

December 2, 2024

25th ACM/IFIP International Middleware Conference
MIDDLEWARE 2024

Runjie Jin, Robert Cordingly, Dongfang Zhao, Wes Lloyd
rjjin@uw.edu

1

Outline
● Background and Motivation

● Research Questions

● Methodology

● Results

● Conclusions

2

Serverless
Computing

Serverless function-as-a-service (FaaS)
platforms offer various features:

● No infrastructure management
● Automatic scaling
● Event-driven architecture
● Pay-per-use billing model

A typical REST(Representational State
Transfer)-based architecture can be
represented by three layers:

Client application, API Gateway, and
the actual serverless function

3

Client Application

REST API Gateway

Serverless Function

Challenges Impact on Serverless:

● Performance: increased

execution time and latency

● Resources: Higher resource

usage

● Cost: additional compute time

and data transfer

4

Over-fetching

Retrieve unnecessary
data:

● Increased bandwidth
● Higher processing

overhead
● Increased cost

Under-fetching

Multiple API calls:

● Higher latency
● More round-trips
● Complex client logic

Why GraphQL?

Key benefits of GraphQL:

● Precise data retrieval
● Single request solution: aggregating

individual REST function calls
● Strong typing
● Real-time support and more

Companies are starting to use GraphQL

5

Outline
● Background and Motivation

● Research Questions

● Serverless Proxy System

● Methodology and Results

● Conclusions

6

Research Questions

7

● RQ-1 (GraphQL API performance): How well does GraphQL
perform in serverless environments?
○ Round-trip time, cost, performance vs. REST APIs

● RQ-2 (GraphQL managed vs. unmanaged): What are the tradeoffs
between managed vs. self hosting?
○ Managed AWS AppSync
○ Unmanaged Apollo server

Outline
● Background and Motivation

● Research Goals

● Methodology

● Results

● Conclusions

8

Image Processing Pipeline

9

Pipeline Characteristics

● 7 independent functions: rotate, flip, crop, brighten,

contrast, grayscale, resize

● 4.8 MB test image (AppSync 5MB limit on payload

size)

● Configurable filter ordering

Suitability for Evaluation

● Computationally intensive

● Heavy I/O

● Multi-stage workflow

● Extensible: supports addition of new functions

Implementation Comparison

GraphQL Implementation

● Single request
● GraphQL resolvers invoke

lambda functions
● Built-in pipeline orchestration

REST Implementation

● Client-side workflow orchestration
● Multiple client-to-cloud round-trips
● API Gateway Integration

Test Infrastructure

10

Serverless Backend (us-east-2)

AWS Lambda Configuration
● ARM64 Graviton2 Lambda functions
● No hyperthread to reduce variance
● Python functions

API Gateway Setup
● REST API configuration
● Direct Lambda integration
● Standard endpoints

GraphQL Servers

AWS AppSync
● Fully managed service
● Auto-scaling
● Direct AWS service integration

Apollo Server
● C7i.8xlarge EC2 instance
● 32 vCPUs, 64 GB RAM
● 3.2 GHz Intel Xeon Platinum

Test Clients

Local Desktop (WA)
● 32 GB RAM, Intel i5-13600K
● 350 Mbps Bandwidth

● Tests high-latency scenarios

AWS EC2
● C7i.8xlarge, us-west-2
● 64 GB RAM, 12.5 Gbps

● Tests same-cloud performance

Google Cloud
● C3.standard-8, us-west-2
● 32 GB RAM, 32 Gbps

● Tests cross-cloud performance

AWS Lamdba
● us-east-2
● Tests scalability performance

Outline
● Background and Motivation

● Research Goals

● Methodology

● Results

● Conclusions

11

Research
Question 1

How well does GraphQL perform

in the serverless environment

with respect to roundtrip-time?

What are the performance

implications in contrast to

providing the same functionality

using REST APIs to backend

serverless functions?

12

GraphQL vs. REST: Roundtrip-time Performance

13

Clients:
● Local Desktop (WA)
● Google Cloud VM
● AWS VM

Key findings:

● Apollo + API Gateway best
performance

● GraphQL shows significant
advantage in high latency
scenarios

● Performances are similar in cloud
environment

Performance Distribution Analysis

14

Distribution Patterns

● Low concurrency - more
outliers: Apollo server had 20%
variance due to cold starts

● High concurrency: 5%-8%
variance - log normal
distributions

● Near Bimodal at 70 threads for
Apollo + API Gateway

Research
Question 2

What are the performance and
cost differences for hosting

GraphQL APIs using an

unmanaged self-hosted

GraphQL server vs. a managed

GraphQL service?

15

Managed vs. Unmanaged GraphQL Scalability

16

Apollo Server
● Better performance up

to around 54 threads
● Scaling limitations

Appsync
● Better under high

concurrency
● Automatic scaling

Implications
● High-scale considerations
● Deployment choices

Cost-performance Analysis

17

Cost Comparison

● AppSync: $4 per million
● Apollo: $63.62 per million
● REST: $7 per million

Considerations:

● Managed service is estimated to
be cheaper

● Make deployment choices by
actual needs

Outline
● Background and Motivation

● Research Goals

● Methodology

● Results

● Conclusions

18

Conclusion Summary

19

RQ-1: GraphQL API Performance
How well does GraphQL perform in the
serverless environment with respect to
roundtrip-time and cost?

● GraphQL consistently outperformed
REST, especially in high-latency
environments

● Apollo + API Gateway showed best
performance among tested configurations

● Performance advantages diminish in
cloud-native setups with low latency

RQ-2: GraphQL Managed vs. Unmanaged
What are the performance and cost
differences for hosting GraphQL APIs using
unmanaged vs. managed solutions?

● AppSync showed better scalability
beyond 54 concurrent requests

● AppSync more cost-effective: $4 vs
Apollo's $63.62 per million requests

● Apollo offered better RTT when not
over-provisioned but showed scaling
limitations

Deployment Recommendations

20

High-Latency Scenarios
Recommended: GraphQL

Edge computing environments

Mobile applications

Global distributed systems

Benefits from reduced

round-trips

High-Scale Requirements
Recommended: AppSync

Large-scale applications

Variable workloads

Cost-sensitive deployments

Optimal cost-performance ratio

Specific Control Needs
Recommended: Apollo Server

Custom optimization needs

Lower request volumes

Specific infrastructure

requirements

Greater deployment flexibility

21

Thank You!

22

Q & A

