Predicting ARM64 Serverless Functions Runtime:
Leveraging function profiling for
generalized performance models

Xinghan Chen, Ling-Hong Hung, Robert Cordingly, Wes Lloyd
kirito20@uw.edu

School of Engineering and Technology
University of Washington Tacoma

December 16, 2024

I Background and Motivation
Research Questions
Methodology

Results
Conclusions

Serverless function-as-a-service
(FaaS) platforms offer many

Serve rless desirable features:
. Rapid elastic scaling
ComPUtlng Scale to zero

No infrastructure management
Fine grained billing

Fault tolerance

No up front cost to deploy an
application

Function-as-a-Service

Switch to ARMé64:

Simplicity

Power efficiency
Customization and Flexibility
Open Ecosystem

X86 Vs. ARM 64 High Compute Density

Low cost
Computing architecture Stay on X86:

e No migration cost

e Widely supported

e Performance optimization

e Relyon platform specific abilities

e Background and Motivation
B Research Questions

e Methodology

e Results

e Conclusions

Research Questions

e RQ-1: (Function-Specific Performance Modeling): What is the
accuracy of ARM64 function runtime predictions for FaaS
functions based on profiling on x86 64 processors where
training data includes functions being predicted?

e RQ-2: (Generalized Function Performance Modeling): \What
is the accuracy of ARMG64 function runtime predictions for
unseen FaaS functions not included as training data for models,
where models are trained using carefully selected workloads
having a range of resource utilization characteristics?

Research Questions

e RQ-3: (ARM Performance Classification): How accurate are
ARM®64 serverless function runtime performance classifications
using classifiers trained with x86 64 profiling data?

e RQ-4: (ARM Performance Modeling without FaaS): Outside a
FaaS platform, what is the accuracy of ARM64 function runtime
predictions using models trained by running functions on x86 64
VMs?

e Background and Motivation
e Research Questions
- Methodology
e Results
e Conclusions

Function Name Source Description

chacha20* openssl Repeatedly perform openssl encryption of 8MB file n times
graph-bfs' sebs Breadth-first search (BFS) implementation with igraph.
graph-mst’ sebs Minimum spanning tree (MST) implementation with igraph.
Wo rk I O a d S A graph-pagerankt sebs PageRank implementation with igraph.
f primenumber*’ sysbench Prime number generator
'-'E: chameleon FunctionBench Create HTML table of n rows and M columns
7 csv Cordingly [9] Generates a large CSV file and performs calculates on columuns.
AWS Lambda Functions float FunctionBench Perform sin, cos, sqrt ops
Region: us-west-2 (Oregon)’ json_dumps FunctionBench JSON deserialization using a downloaded JSON-encoded string dataset
Memory size: 3008MB(3GB) with sqlite original Execute n random SELECT queries on a 10¥1000 SQLite database
5GB eir:/ecrseuracl:%rgi’ for I/O video-processing® sebs Convert PNG to GIF n times
related tests EJ filehandle’ original Open and close file handles
E socket| original Open and close socket n times
§ thread! sysbench Create thread, put locks and release thread
5 readmemory* " sysbench N sequential reads of 1GB memory block
g readwritememory! original Allowcate 1MByte of memory, write 0x42 into it and release
>
e readdisk* fio Test random read speed on a 1GB block
= compression sebs Create a .gz file for a file

cpuUser group: Runtime dominated by CPU user time (blue), cpuKernel group: Runtime with higher CPU kernel time
intensive (grey).

*: Function executes external binary program (non-Python)

t: Function used to train models

Obijective:
Develop and evaluate models to predict
ARMé4 serverless function runtime

PrediCting ARM64 using x86 profiling data.

Key Approaches:

FaaS Pe I‘fO rmance 4 Function-specific performance

modeling

Methodology for Predicting 4+ Generalized performance modeling for
ARMé64 Faa$S Performance unseen workloads

4 ARM64 runtime classification for
optimized predictions

Model
Development

Linear Regression and
Random Forest

Model
Development

Types of Generalized Models
for Unseen Workloads

Simple Linear Regression
(SLR, SLR-RF) - BASELINE

Runtime - > Runtime

Multi-Regression Analysis
(MLR, MLR-RF)
CPU User, CPU Kernel, - > Runtime

Linux CPU Time Accounting
(LTA, LTA-RF)

CPU User, CPU Kernel, -> CPU User
CPU User, CPU Kernel, -> CPU Kernel

=> Runtime

All-in-One: Single model for all
data

Resource-Bound: Separate
models for CPU-user and
CPU-kernel intensive tasks
ARM-Speed: Models grouped by
ARMG64 runtime relative to x86
(faster, slower, similar)

e Challenge: Identify the best ARM-speed model
(ARM-faster, ARM-slower, ARM-similar) for
unseen workloads.

Solution: Classification models using x86
profiling data to categorize ARM performance.

M et h o d o I O gy ARM-faster | ARM64 runtime = 15% faster than x86

ARM-slower ARM®64 runtime < 15% slower than x86

u
ove rV I eW ARM-similar ARMG64 and x86_64 runtime within +/-15%

Classification Models for s Ueed
. ° eatures Used:
ARM'Speed Selectlon e 21 features, including Linux CPU metrics,

memory utilization, and page faults.
e Classification Algorithms Tested:
e Random Forest
e AdaBoost, MLP(Multi-layer Perceptron),
Decision Tree, KNeighbors, Gaussian
Process, Quadratic Discriminant Analysis.

13

Using SAAF inaFul

ple importint

nction:

Supporting Tools - SAAF

We utilize the Serverless Application Analytics Framework to
collect metrics from serverless functions.

Metrics including CPU time accounting metrics (CPU User,
CPU Kernel, CPU Idle), runtime, latency, and more

SAAF Gathers data during function execution provides inputs
for training performance models.

SAAF and our other tools are is available here:
https://github.com/wlloyduw/SAAF

14

Outline

Research
Question 1

Function-Specific
Performance Modeling

ARMvs x86 performance change (%)

e Background and Motivation
e Research Questions
e Methodology

- Results

e Conclusions

What is the accuracy of ARMé64 function runtime
predictions for FaaS functions based on profiling on
x86 64 processors where training data includes
functions being predicted?

What is the accuracy of ARMé4 function runtime
R h predictions for unseen Faa$S functions not included as
es e a rc training data for models, where models are trained
using carefully selected workloads having a range of

Q u eSt i O n 2 resource utilization characteristics?

Generalized Function
Performance Modeling

MAPE(%)

TABLE III
TRAINING AND TESTING FUNCTION’S RUNTIME, COEFFICIENT OF VARIATION (CV), AND MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)

Function name Min runtime Min runtime Max runtime Max runtime CV(%) CV(%) MAPE MAPE MAPE
x86_64 (sec) ARM64 (sec) x86_64 (sec) ARMG64 (sec) x86_64 ARM64 fn-specific!? All-in-One! ARM-speed’

primenumber 6.00 5.27 120.92 108.73 0.72 0.58 0.83 28.55 0.18
readmemory 3.15 3.85 132.68 106.40 2.17 3.51 1.2 7.02 2.15
readdisk 6.77 7.46 135.01 114.11 2.05 1.79 2.17 16.47 1.76
chacha20 4.70 4.53 118.90 144.54 0.73 0.23 0.2 27.93 7.42
readwritememory | 5.08 3.89 123.16 134.82 1.28 2.32 1.44 8.93 5.41
filehandle 4.69 8.87 109.33 132.41 1.88 0.95 2.84 5.26 2.49
thread 4.46 5.38 128.17 135.75 0.63 0.56 0.96 18.82 1.75
graph-pagerank | 5.58 6.15 58.69 61.45 0.60 0.57 0.98 9.32 2.15
graph-mst 6.83 3.40 65.03 56.15 0.63 0.56 0.96 3.05 2.46
graph-bfs 4.25 8.77 64.10 67.49 0.94 0.84 0.39 4.02 3.94
socket 7.82 6.91 125.99 130.18 2.31 3.08 0.97 1.51 3.72
video-processing | 3.01 3.17 139.54 135.75 0.42 1.07 1.79 25.26 8.32
json dumps 5.30 8.71 128.80 134.02 1.59 1.45 0.64 5.23 7.83
sqlite 6.28 4.25 134.92 121.42 1.06 0.82 0.97 18.79 6.96
chameleon 5.12 8.29 112.96 101.62 1.09 0.74 1.13 13.07 10.60
compression 8.21 7.48 135.76 122.41 1.80 0.46 0.52 15.26 11.93
float 4.19 8.63 122.40 135.99 3.26 2.14 0.85 24.04 14.30
csV 8.87 8.90 136.81 124.68 122 0.94 2.17 29.72 12.10
Avg-training 5.39 5.86 107.45 108.37 1.27 1.36 1.17 11.90 3.04
Avg-unseen 5.85 7.06 130.17 125.13 1.49 1.09 1.15 18.77 10.29
Average 3.57 6.33 116.29 114.88 1535 1.26 1.16 14.57 5.86

*-random forest regression w/ multi-features, “-evaluated w/ 2nd indeiendent 4k samile/fn dataset

TABLE III
TRAINING AND TESTING FUNCTION’S RUNTIME, COEFFICIENT OF VARIATION (CV), AND MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)

Function name Min runtime Min runtime Max runtime Max runtime CV(%) CV(%) MAPE MAPE MAPE
x86_64 (sec) ARMG64 (sec) x86_64 (sec) ARMO64 (sec) x86 64 ARM64 fn-specific!? All-in-One! ARM-speed!

primenumber 6.00 527 120.92 108.73 0.72 0.58 0.83 28.55 0.18
readmemory 3.15 3.85 132.68 106.40 2.17 3.51 1.2 7.02 2.15
readdisk 6.77 7.46 135.01 114.11 2.05 1.79 2.17 16.47 1.76
chacha20 4.70 4.53 118.90 144.54 0.73 0.23 0.2 27.93 7.42
readwritememory 5.08 3.89 123.16 134.82 1.28 2.32 1.44 8.93 541
filehandle 4.69 8.87 109.33 132.41 1.88 0.95 2.84 5.26 2.49
thread 4.46 5.38 128.17 135.75 0.63 0.56 0.96 18.82 1.75
graph-pagerank 5.58 6.15 58.69 61.45 0.60 0.57 0.98 9.32 2.15
graph-mst 6.83 3.40 65.03 56.15 0.63 0.56 0.96 3.05 2.46
graph-bfs 4.25 8.77 64.10 67.49 0.94 0.84 0.39 4.02 3.94
socket 7.82 691 125.99 130.18 2.31 3.08 0.97 1.51 3.72
video-processing 3.01 3.17 139.54 135.75 042 1.07 1.79 25.26 8.32
json dumps 5.30 8.71 128.80 134.02 1.59 1.45 0.64 5.23 7.83
sqlite 6.28 4.25 134.92 121.42 1.06 0.82 0.97 18.79 6.96
chameleon 5.12 8.29 112.96 101.62 1.09 0.74 1.13 13.07 10.60
compression 8.21 748 135.76 122.41 1.80 0.46 0.52 15.26 11.93
float 4.19 8.63 122.40 135.99 3.26 2.14 0.85 24.04 14.30
csv 8.87 8.90 136.81 124.68 1122 0.94 2.7 29.72 12.10
Avg-training 5.39 5.86 107.45 108.37 1:27 1.36 1.17 11.90 3.04
Avg-unseen 5.85 7.06 130.17 125.13 149 1.09 1.15 18.77 10.29
Average 55 6.33 116.29 114.88 1.35 1.26 1.16 14.57 5.86

T _random forest regression w/ multi-features, 2 _evaluated w/ 2nd indeiendent 4k samile/fn dataset

TABLE III
TRAINING AND TESTING FUNCTION’S RUNTIME, COEFFICIENT OF VARIATION (CV), AND MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)

Function name Min runtime Min runtime Max runtime Max runtime CV(%) CV(%) MAPE MAPE MAPE
x86_64 (sec) ARMG64 (sec) x86_64 (sec) ARM64 (sec) x86_64 ARM64 fn-specific!? All-in-One! ARM-speed!
primenumber 6.00 5.27 120.92 108.73 0.72 0.58 0.83 28.55 0.18 [
readmemory 3.15 3.85 132.68 106.40 2.17 3.51 1.2 7.02 2.15
readdisk 6.77 7.46 135.01 114.11 2.05 1.79 2.17 16.47 1.76
chacha20 4.70 4.53 118.90 144.54 0.73 0.23 0.2 27.93 7.42
readwritememory 5.08 3.89 123.16 134.82 1.28 2.32 1.44 8.93 541
filehandle 4.69 8.87 109.33 132.41 1.88 0.95 2.84 5.26 2.49
thread 4.46 5.38 128.17 135.75 0.63 0.56 0.96 . 18.82 1.75
graph-pagerank 5.58 6.15 58.69 61.45 0.60 0.57 0.98 1 932 2.15
graph-mst 6.83 3.40 65.03 56.15 0.63 0.56 10.96 3.05 2.46
graph-bfs 4.25 8.77 64.10 67.49 0.94 0.84 0.39 4.02 3.94
socket 7.82 691 125.99 130.18 2.31 3.08 097 1.51 3.72
video-processing 3.01 3.17 139.54 135.75 0.42 1.07 1.79 25.26 8.32
json dumps 5.30 8.71 128.80 134.02 1.59 1.45 0.64 5.23 7.83
sqlite 6.28 425 134.92 121.42 1.06 0.82 0.97 18.79 6.96
chameleon 5.12 8.29 112.96 101.62 1.09 0.74 1.13 13.07 10.60
compression 8.21 748 135.76 122.41 1.80 0.46 0.52 15.26 11.93
float 4.19 8.63 122.40 135.99 3.26 2.14 0.85 24.04 14.30
csv 8.87 8.90 136.81 124.68 1529 0.94 2.17 29.72 12.10
Avg-training 5.39 5.86 107.45 108.37 1.27 1.36 1.17 11.90 3.04
Avg-unseen 5.85 7.06 130.17 125.13 1.49 1.09 1.15 18.77 10.29
Average .57 522 =116.20. ~114.88 1.35 1.26 1.16 14.57 5.86

}'ﬂ—random forest regression w/ multi—features,ﬁ 3‘—evaluawd w/ 2nd indeiendent 4k samile/?n dataset

e How accurate are ARM64 serverless function
runtime performance classifications using
classifiers trained with x86_64 profiling data?

ARM-faster ARM-similar ARM-slower

OUTPUT

Research
Question 3 -

ARM Performance
Classification

12000

99.77%
0.23%

ARM-similar

15200 16000

ARM-slower

21.11% 95.00%

5.00%

67202 / 71993

93.35%
6.65%

SUM

Best single sample prediction result

Classifier Accuracy

Random Forest ‘ 93.35% ‘
DecisionTree 91.65%

. Gaussian Process
Select Classifier |pr=

Classifier accuracy comparison il
Quadratic Discriminant _
Analysis 62.05%
ARM Faster: ARM64 runtime 15% Faster Training Set: 40 Steps x 100 runs/step x 11 functions
ARM Slower: ARMé4 runtime 15% Slower x 2 architectures = 88,000 Samples

Testing Set: 40 Steps x 100 runs/step x 7 functions =
28,000 Samples 22

Outside a FaaS platform,
ResearCh what is the accuracy of

QueStiOr\ 4 ARM64 function runtime

predictions using models
trained by running
functions on x86 64 VMs?

ARM Performance Modeling
without FaaS

Background and Motivation

OUt'.i ne Research Questions

Methodology
Results

- Conclusions

Conclusions - RQ-1

We executed experiments using 18 functions on AWS to compare X86 vs.
ARMé4 Faa$S and generate models to predict the performance.

RQ-1: (Function-Specific Performance Modeling):

Function-specific models = very high accuracy for ARMé4 runtime predictions.

Average MAPE with Random Forest achieving the best results (1.17 MAPE).

Models trained on x86 profiling data successfully predicted ARM64
performance with minimal error, validating their reliability for known
workloads.

Conclusions - RQ-2

RQ-2: (Generalized Function Performance Modeling):

Generalized models effectively predicted runtime for unseen workloads
using diverse training sets.

ARM-speed models achieved the best accuracy by grouping workloads
into ARM-faster, ARM-slower, and ARM-similar categories.

Generalized models had an average MAPE of 10.29 for unseen functions
and 5.86 for all functions, highlighting their potential for broader
applicability.

25

26

Conclusions - RQ-3
RQ-3: (ARM Performance Classification):

ARM runtime classification into ARM-faster, ARM-slower, and
ARM-similar was highly accurate.

Random Forest achieved 93.35% classification accuracy for a single
prediction, with 10 prediction we could accumulate 99.75% accuracy,
significantly reducing misclassification risks for unseen workloads.

Performance classification supports reliable pairing of workloads with the
appropriate ARM-speed model.

27

Conclusions - RQ-4

RQ-4: (ARM Performance Modeling without Faa$):

ARMé64 runtime predictions were successfully validated on AWS EC2
VMs, extending the approach beyond serverless platforms.

The models maintained strong accuracy, with an average MAPE of 1.41
for function-specific predictions.

This demonstrates that x86-to-ARM64 modeling is robust and adaptable
for non-serverless applications.

28

Thank You!

