
Function Memory Optimization for
Heterogeneous Serverless Platforms
with CPU Time Accounting

School of Engineering and Technology
University of Washington Tacoma
10th IEEE International Conference on Cloud Engineering
IC2E 2022

Robert Cordingly, Sonia Xu, Wes Lloyd

1

Outline

● Background and Motivation

● Research Questions

● CPU Time Accounting

Memory Selection (CPU-TAMS)
○ CPU-TAMS on AWS Lambda

○ IBM Cloud Functions

○ DigitalOcean Functions

○ Google Cloud Functions

● Experiments and Results

● Conclusions

2

Why Serverless?

Serverless function-as-a-service
(FaaS) platforms offer many
desirable features:

● Rapid elastic scaling
● Scale to zero
● No infrastructure management
● Fine grained billing
● Fault tolerance

But there are still challenges…

3

Serverless Function Memory Reservation Size?

AWS Lambda memory reserved for functions

UI provides textbox to set function’s
memory (previously a slider bar)

Resource capacity (CPU, disk, network)
scaled relative to memory

“every doubling of memory, doubles CPU…”

But how much memory do functions require?
4

5

 Memory Setting128 MB 10 GB

F
as

t

R

u
n

ti
m

e
(m

s)

 S

lo
w

C
h

ea
p

 C

o
st

 $

E
xp

en
si

ve

CHEAPEST

FASTESTMAX-VALUE

Cost

Runtime

Outline

● Background and Motivation

● Research Questions

● CPU Time Accounting

Memory Selection (CPU-TAMS)
○ CPU-TAMS on AWS Lambda

○ IBM Cloud Functions

○ DigitalOcean Functions

○ Google Cloud Functions

● Experiments and Results

● Conclusions

6

Research Questions
● RQ-1: (FaaS Resource Scaling) How are resources, such as CPU,

disk I/O, or network utilization, scaled with FaaS function

memory reservation size?

● RQ-2 (FaaS Memory Prediction) How accurately can we predict

FaaS function memory reservation size to achieve MAX-VALUE?

7

Outline

● Background and Motivation

● Research Questions

● CPU Time Accounting

Memory Selection (CPU-TAMS)
○ CPU-TAMS on AWS Lambda

○ IBM Cloud Functions

○ DigitalOcean Functions

○ Google Cloud Functions

● Experiments and Results

● Conclusions

8

Selection Goals

We investigated 3 selection goals. Each

selection technique focuses on finding

memory settings with a specific goal.

CPU-TAMS focusing on finding

MAX-VALUE memory settings.

9

Supporting Tools - SAAF

We utilize the Serverless Application Analytics Framework to

collect CPU Time Accounting metrics from serverless

functions.

The function’s operating system keeps track of how much

time the CPU spends processing in different modes.

We utilize the CPU Time metics for our

CPU Time Accounting Memory Selection (CPU-TAMS)

method.

10

CPU Time Accounting

In previous work, we use CPU Time

metrics to predict the runtime of

serverless functions.

This can be done using the equation:

We can adapt this equation to calculate

the number of utilized CPUs, by removing

idle time and solving for the # of vCPUs:

These two equations form the foundation for CPU-Time Accounting Memory

Selection (CPU-TAMS).

11

CPU Time
Accounting
Memory Selection

By using a vCPU-to-memory model we

can map the number of utilized vCPUs

to a specific memory setting.

This memory setting should allocate an

appropriate amount of infrastructure to

the function to provide the fastest

performance at the lowest price,

usually achieving MAX-VALUE.

12

Observed utilized vCPUs at each memory setting on AWS Lambda using Stress(1)

13

Baseline Selection
Methods

We compared our CPU-TAMS approach

to 3 rules of thumb, the AWS Compute

Optimizer, and 4 search methods.

14

Outline

● Background and Motivation

● Research Questions

● CPU Time Accounting

Memory Selection (CPU-TAMS)
○ CPU-TAMS on AWS Lambda

○ IBM Cloud Functions

○ DigitalOcean Functions

○ Google Cloud Functions

● Experiments and Results

● Conclusions

15

CPU-TAMS on AWS Lambda

AWS Lambda scales performance with memory setting by
increasing available vCPU timeshare, linearly scaling vCPU
allocation across the entire range of memory settings.

AWS Lambda offers partial vCPU allocations and CPU time
accounting metrics are observable by SAAF.

We constructed a vCPU-to-memory model on AWS Lambda
by running a multi-threaded CPU bound function (e.g.
Stress(1)) across the range of memory settings and measuring
the available vCPU timeshare.

16

Fitted line shows the vCPU-to-Memory model for AWS Lambda.

17

Fitted line shows the vCPU-to-Memory model for AWS Lambda.

18

For example, if a workload uses 2
vCPUs (as calculated using CPU Time
Accounting) we can find a CPU-TAMS
memory recommendation by using the
vCPU-to-Memory model.

Outline

● Background and Motivation

● Research Questions

● CPU Time Accounting

Memory Selection (CPU-TAMS)
○ CPU-TAMS on AWS Lambda

○ IBM Cloud Functions

○ DigitalOcean Functions

○ Google Cloud Functions

● Experiments and Results

● Conclusions

19

CPU-TAMS on IBM Cloud Functions

IBM Cloud Functions scales performance with function
memory by reducing the number of tenants that share host
VMs.

Functions are left to fight for resources, resulting in function
memory settings having no impact on performance for
sequentially called functions. High memory settings only
improve performance for heavily concurrent workloads.

This leads to a vCPU-to-memory model with an additional
dimension…

20

IBM Cloud Functions vCPU-to-Memory Model

21

IBM Cloud Functions vCPU-to-Memory Model

22

For example, a workload has
an average of 20 concurrent
function invocations and
requires 0.5 vCPUs..

IBM Cloud Functions vCPU-to-Memory Model

23

CPU-TAMS would
recommend 1024 MB.

IBM Cloud Functions vCPU-to-Memory Model

24

If CPU-TAMS recommends settings
in this range, pick the lowest memory
setting the function can run at.

Outline

● Background and Motivation

● Research Questions

● CPU Time Accounting

Memory Selection (CPU-TAMS)
○ CPU-TAMS on AWS Lambda

○ IBM Cloud Functions

○ DigitalOcean Functions

○ Google Cloud Functions

● Experiments and Results

● Conclusions

25

CPU-TAMS on DigitalOcean Functions
Both IBM Cloud Functions and DigitalOcean Functions use

OpenWhisk for their backend. This results in both platforms

scaling performance by limiting the number of functions that

share infrastructure with a few key differences:

26

IBM Cloud Functions

RAM: 128-2048 MB

Host vCPUs: 4

CPU Metrics: Observable

DigitalOcean Functions

RAM: 128-1024 MB

Host vCPUs: 8

CPU Metrics: Not Available

CPU-TAMS on DigitalOcean Functions

DigitalOcean functions appears to use the same

vCPU-to-Memory model as IBM Cloud Functions, although

with a smaller range of memory settings.

Both IBM Cloud Functions and DigitalOcean functions do not

allocate functions over 1 vCPU when called concurrently. This

results in many functions benefiting from selecting the

maximum memory setting.

27

Outline

● Background and Motivation

● Research Questions

● CPU Time Accounting

Memory Selection (CPU-TAMS)
○ CPU-TAMS on AWS Lambda

○ IBM Cloud Functions

○ DigitalOcean Functions

○ Google Cloud Functions

● Experiments and Results

● Conclusions

28

CPU-TAMS on Google Cloud Functions

Creating the vCPU-to-Memory model is incredibly easy on

Google Cloud Functions.

Unlike all of the other platforms, GCF reports in the logs the

exact number of vCPUs allocated to a function at each

memory setting.

Although, GCF does not scale performance linearly, but uses a

tiered approach where multiple memory settings will have the

same number of vCPUs.

29

Platform Comparison

30

vCPU-to-Memory model for each platform. AWS Lambda and GCF extend to higher memory settings.

31

Platform
Comparison

Each FaaS platform is different. We

developed vCPU-to-Memory models

for AWS Lambda, IBM Cloud Functions,

DigitalOcean Functions, and Google

Cloud Functions.

We also investigated Azure Cloud

Functions and OpenFaaS. These

platforms do not scale performance

with a memory setting so CPU-TAMS is

not applicable.

32

*
*

* Up to with tenancy of 1

Outline

● Background and Motivation

● Research Questions

● CPU Time Accounting

Memory Selection (CPU-TAMS)
○ CPU-TAMS on AWS Lambda

○ IBM Cloud Functions

○ DigitalOcean Functions

○ Google Cloud Functions

● Experiments and Results

● Conclusions

33

Functions

We used 14 functions across all of our

experiments.

Some functions are only compatible

with certain platforms.

34

Observed utilized vCPUs at each memory setting on AWS Lambda using Stress(1)

35
RQ - 1 (FaaS Resource Scaling) Results: CPU Timeshare Scaling

Network I/O and /tmp read performance scaling on AWS Lambda

36
RQ - 1 (FaaS Resource Scaling) Results: Network and Storage Performance Scaling

Runtime and cost comparison of memory setting selections for Breadth First Search (BFS) Function.

37
RQ - 2 (FaaS Memory Prediction) Results: AWS Lambda

Selection method average percent error compared to brute force discovered MAX-VALUE memory setting.

38
RQ - 2 (FaaS Memory Prediction) Results: AWS Lambda

Function value comparison on Google Cloud Functions

39

Value Sweet Spot

RQ - 2 (FaaS Memory Prediction) Results: Google Cloud Functions

vCPU-to-Memory model for each platform. AWS Lambda and GCF extend to higher memory settings.

40

Memory settings at the edge of tiers
provide higher value as you are charged for

both vCPUs and RAM

RQ - 2 (FaaS Memory Prediction) Results: Google Cloud Functions

Function value comparison on IBM Cloud Functions

41

Value Sweet Spot

RQ - 2 (FaaS Memory Prediction) Results: IBM Cloud Functions

vCPU-to-Memory model for each platform. AWS Lambda and GCF extend to higher memory settings.

42

Value Sweet Spot

RQ - 2 (FaaS Memory Prediction) Results: IBM Cloud Functions

Outline

● Background and Motivation

● Research Questions

● CPU Time Accounting

Memory Selection (CPU-TAMS)
○ CPU-TAMS on AWS Lambda

○ IBM Cloud Functions

○ DigitalOcean Functions

○ Google Cloud Functions

● Experiments and Results

● Conclusions

43

Conclusions RQ-1 (FaaS Resource Scaling)

We found unique observations about each platform’s
resource scaling:

● AWS Lambda scaled vCPU, disk, and networking
performance with memory setting.

● IBM and DigitalOcean scale performance by reducing the
number of instances sharing host VMs.

○ IBM showed a distinct ‘sweet spot’ memory setting where
performance was much higher than the rest.

● Google Cloud Function utilizes a tiered approach for
vCPU allocation rather than linear like AWS.

44

Conclusions RQ-2 (FaaS Memory Prediction)

CPU-TAMS was able to find MAX-VALUE memory settings with
only 5% cost, and 8% runtime mean absolute percent error
compared to brute force discovered MAX-VALUE on AWS Lambda.

On all other platforms, CPU-TAMS was able to find the
MAX-VALUE memory setting with no error by leveraging distinct
characteristics of each platform’s vCPU-to-memory scaling policy.

 Our efforts demonstrate that a one-size-fits-all approach to find
optimal FaaS function memory configurations for every platform is
not possible as accounting for platform heterogeneity is required.

45

46

This research is supported by the NSF Advanced Cyberinfrastructure Research Program
(OAC-1849970), NIH grant R01GM126019, and the AWS Cloud Credits for Research program.

Thank You!

Questions?

47

This research is supported by the NSF Advanced Cyberinfrastructure Research Program
(OAC-1849970), NIH grant R01GM126019, and the AWS Cloud Credits for Research program.

