



#### Characterizing X86 and ARM Serverless Performance Variation: A Natural Language Processing Case Study

Danielle Lambion, Robert Schmitz, Robert Cordingly, Navid Heydari, Wes Lloyd dlambion@uw.edu, rgs1@uw.edu, rcording@uw.edu, navidh2@uw.edu, wlloyd@uw.edu

#### April 9, 2022

School of Engineering and Technology University of Washington, Tacoma 5th Workshop on Hot Topics in Cloud Computing Performance (HotCloudPerf 2022)





# Characterizing X86 and ARM Serverless Performance Variation

- Investigate support for x86\_64 and ARM64
  CPU architectures on AWS Lambda
- Harnessed container images to package and deploy 3-step Natural Language Process (NLP) pipeline
- Investigate performance variation for a 24-hour period across four cloud regions and two CPU architectures



# **Related Work**

- Schad et al. (2010) evaluated performance variation of Infrastructure-as-a-Service (IaaS) cloud and object storage platforms on Amazon EC2
- Leitner and Cito (2016) evaluated performance variation on VMs (IaaS) deployed on Amazon, Google, Azure, and IBM for 72-hour periods
- Uta and Obaseki (2018) emulated network bandwidth variability results on (IaaS) from Ballani et al. (2011) to investigate performance variation implications for big data workloads
- Wang et al. (2018) observed multiple CPU types and VM configurations on serverless Function-as-a-Service (FaaS) platforms to account for performance variation from CPU heterogeneity to produce a performance model
- Other related work identified the number of function "tenants" increases when scaling up concurrent requests on AWS Lambda (FaaS)





# **Research Questions**

April 9, 2022 HotCloudPerf 2022

**<u>RQ-1</u>**: What are the performance and cost implications of adopting ARM64 vs. x86\_64 CPU architecture on a commercial serverless FaaS platform?

<u>**RQ-2:</u>** What performance variation results from use of alternative cloud regions where the state of resource contention is likely to change on a commercial serverless FaaS platform?</u>

Characterizing X86 and ARM Serverless Performance Variation: A Natural Language Processing Case Study





### Natural Language Processing Use Case - 2

• <u>Preprocessing (P) function</u>: load and prepare news headline data for model training

(avg. runtime ARM64: 2.64 min, x86\_64: 2.82 min)

- <u>Training (T) function</u>: train a latent Dirichlet allocation (LDA) topic model using the output from the data preprocessing function (avg. runtime ARM64: 3.75 min, x86\_64: 3.02 min)
- <u>Query (Q) function</u>: query the model for topics with new headlines (avg. runtime ARM64: 5.86 min, x86\_64: 6.63 min)
- Total Pipeline Runtime: ARM64: 12.25 minutes x86 64: 12.47 minutes

April 9, 2022 HotCloudPerf 2022







- Tested across 4 regions: Tokyo (ap-northeast-1), Frankfurt (eu-central-1), Ohio (us-east-2), and Oregon (us-west-2)
- Lambda functions were deployed via container images
- Deployed an (ARM64) c6gd.large EC2 instance in each region as client to invoke Lambda functions
- Invoked each Lambda function in the NLP pipeline sequentially using the AWS CLI with a 2-second delay between each function call
- The Serverless Application Analytics Framework (SAAF) was used to obtain profiling data for each function call
- 112 pipeline executions were performed in each region/architecture for a 24-hour period



# **RQ-1: Architecture Performance**

What are the performance and cost implications of adopting the ARM64 vs. x86\_64 Intel CPU architecture for running a multi-step NLP pipeline on a commercial serverless FaaS platform?



# **RQ-1: Resource Utilization**





# **RQ-1: Resource Utilization**



#### **RQ-1: Runtime and Cost Comparison**

| arm64(s) | arm64 (%intel)                                                               | x86_64(s)                                                                                          | x86_64 (%arm)                                                                                                                                     |
|----------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 692.59   | 115.64                                                                       | 598.9                                                                                              | 86.47                                                                                                                                             |
| 799.5    | 85.40                                                                        | 936.2                                                                                              | 117.10                                                                                                                                            |
| 735.07   | 98.31                                                                        | 747.74                                                                                             | 101.72                                                                                                                                            |
| 106.91   | 31.70                                                                        | 337.3                                                                                              | 315.50                                                                                                                                            |
| 18.15    | 35.24                                                                        | 51.51                                                                                              | 283.80                                                                                                                                            |
| 2.47     | 35.85                                                                        | 6.89                                                                                               | 278.95                                                                                                                                            |
| \$245.02 | 78.64                                                                        | \$311.56                                                                                           | 127.15                                                                                                                                            |
|          |                                                                              |                                                                                                    | across all regions                                                                                                                                |
|          |                                                                              |                                                                                                    |                                                                                                                                                   |
|          | arm64(s)<br>692.59<br>799.5<br>735.07<br>106.91<br>18.15<br>2.47<br>\$245.02 | arm64(s)arm64 (%intel)692.59115.64799.585.40735.0798.31106.9131.7018.1535.242.4735.85\$245.0278.64 | arm64(s)arm64 (%intel)x86_64(s)692.59115.64598.9799.585.40936.2735.0798.31747.74106.9131.70337.318.1535.2451.512.4735.856.89\$245.0278.64\$311.56 |

## **RQ-1: Runtime and Cost Comparison**

|                | CPU arch | nitecture runtime con | nparison  |               |
|----------------|----------|-----------------------|-----------|---------------|
| metric         | arm64(s) | arm64 (%intel)        | x86_64(s) | x86_64 (%arm) |
| min runtime    | 692.59   | 115.64                | 598.9     | 86.47         |
| max runtime    | 799.5    | 85.40                 | 936.2     | 117.10        |
| avg runtime    | 735.07   | 98.31                 | 747.74    | 101.72        |
| runtime spread | 106.91   | 31.70                 | 337.3     | 315.50        |
| stdev runtime  | 18.15    | 35.24                 | 51.51     | 283.80        |
| CV (%)         | 2.47     | 35.85                 | 6.89      | 278.95        |
| cost-10k runs  | \$245.02 | 78.64                 | \$311.56  | 127.15        |

across all regions

#### **RQ-1: Runtime and Cost Comparison**

| metric                       | arm64(s)               | arm64 (%intel)                      | x86_64(s)                  | x86_64 (%arm)           |
|------------------------------|------------------------|-------------------------------------|----------------------------|-------------------------|
| min runtime                  | 692.59                 | 115.64                              | 598.9                      | 86.47                   |
| max runtime                  | 799.5                  | 85.40                               | 936.2                      | 117.10                  |
| avg runtime                  | 735.07                 | 98.31                               | 747.74                     | 101.72                  |
| runtime spread               | 106.91                 | 31.70                               | 337.3                      | 315.50                  |
| stdev runtime                | 18.15                  | 35.24                               | 51.51                      | 283.80                  |
| CV (%)                       | 2.47                   | 35.85                               | 6.89                       | 278.95                  |
| cost-10k runs                | \$245.02               | 78.64                               | \$311.56                   | 127.15                  |
|                              |                        |                                     |                            | across all regions      |
|                              |                        |                                     |                            |                         |
| il 9. 2022 HotCloudPerf 2022 | Characterizing X86 and | d ARM Serverless Performance Varial | tion: A Natural Language F | Processing Case Study 2 |

# **RQ-1: Runtime and Cost Comparison**

| CPU architecture runtime comparison |          |                |           |               |  |  |  |
|-------------------------------------|----------|----------------|-----------|---------------|--|--|--|
| metric                              | arm64(s) | arm64 (%intel) | x86_64(s) | x86_64 (%arm) |  |  |  |
| min runtime                         | 692.59   | 115.64         | 598.9     | 86.47         |  |  |  |
| max runtime                         | 799.5    | 85.40          | 936.2     | 117.10        |  |  |  |
| avg runtime                         | 735.07   | 98.31          | 747.74    | 101.72        |  |  |  |
| runtime spread                      | 106.91   | 31.70          | 337.3     | 315.50        |  |  |  |
| stdev runtime                       | 18.15    | 35.24          | 51.51     | 283.80        |  |  |  |
| CV (%)                              | 2.47     | 35.85          | 6.89      | 278.95        |  |  |  |
| cost-10k runs                       | \$245.02 | 78.64          | \$311.56  | 127.15        |  |  |  |

across all regions

#### **RQ-1: Runtime and Cost Comparison**

| 692.59   | 115 64                                        |                                                                                                    |                                                                                                                                                    |
|----------|-----------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 115.04                                        | 598.9                                                                                              | 86.47                                                                                                                                              |
| 799.5    | 85.40                                         | 936.2                                                                                              | 117.10                                                                                                                                             |
| 735.07   | 98.31                                         | 747.74                                                                                             | 101.72                                                                                                                                             |
| 106.91   | 31.70                                         | 337.3                                                                                              | 315.50                                                                                                                                             |
| 18.15    | 35.24                                         | 51.51                                                                                              | 283.80                                                                                                                                             |
| 2.47     | 35.85                                         | 6.89                                                                                               | 278.95                                                                                                                                             |
| \$245.02 | 78.64                                         | \$311.56                                                                                           | 127.15                                                                                                                                             |
|          |                                               |                                                                                                    | across all regions                                                                                                                                 |
|          |                                               |                                                                                                    |                                                                                                                                                    |
|          |                                               |                                                                                                    |                                                                                                                                                    |
|          | 735.07<br>106.91<br>18.15<br>2.47<br>\$245.02 | 735.07    98.31      106.91    31.70      18.15    35.24      2.47    35.85      \$245.02    78.64 | 735.07    98.31    747.74      106.91    31.70    337.3      18.15    35.24    51.51      2.47    35.85    6.89      \$245.02    78.64    \$311.56 |



# **RQ-2: Performance Variation**

What performance variation results from the use of alternative cloud regions over 24-hours where the state of resource contention is likely to change to host a multi-step NLP pipeline on a commercial serverless FaaS platform?

27

| RQ | -2: Perfo         | orma      | ance      | Over         | 24 ho                 | ours |
|----|-------------------|-----------|-----------|--------------|-----------------------|------|
|    |                   |           |           | ( OC         | <b>C A</b>            |      |
|    | metric/region     | us-east-2 | us-west-2 | eu-central-1 | _04<br>ap-northeast-1 |      |
|    | avg cpuSteal/min  | 8.89      | 18.26     | 4.24         | 4.79                  |      |
|    | % of eu-central-1 | 209.7     | 431.6     | 100.0        | 113.0                 |      |
|    | $R^2$ runtime     | 0.618     | 0.379     | 0.427        | 0.39                  |      |
|    | Pearson (r)       | 0.7861    | 0.6157    | 0.6537       | 0.6249                |      |
|    |                   |           |           |              |                       |      |

| RQ | -2: Perfo         | orma      | ance      | Over         | 24 hou         | Jrs |
|----|-------------------|-----------|-----------|--------------|----------------|-----|
|    |                   |           |           |              |                |     |
|    |                   |           |           |              |                |     |
|    | CPU ste           | al across | AWS regi  | ons for x86  | _64            |     |
|    | metric/region     | us-east-2 | us-west-2 | eu-central-1 | ap-northeast-1 |     |
|    | avg cpuSteal/min  | 8.89      | 18.26     | 4.24         | 4.79           |     |
|    | % of eu-central-1 | 209.7     | 431.6     | 100.0        | 113.0          |     |
|    | $R^2$ runtime     | 0.618     | 0.379     | 0.427        | 0.39           |     |
|    | Pearson (r)       | 0.7861    | 0.6157    | 0.6537       | 0.6249         |     |
|    |                   |           |           |              |                |     |
|    |                   |           |           |              |                |     |
|    |                   |           |           |              |                |     |
|    |                   |           |           |              |                |     |
|    |                   |           |           |              |                |     |
|    |                   |           |           |              |                |     |
|    |                   |           |           |              |                |     |
|    |                   |           |           |              |                |     |









# Conclusions

(RQ-1):

- ARM64 architecture on AWS Lambda featured both discounted cost and lower resource contention versus x86\_64
- up to ~33.4% cost savings for our NLP pipeline - ARM64 in us-west-2
- ARM64 cost savings, however, may only be temporary (RQ-2):
- Potential to improve non-latency sensitive workload performance by leveraging regions outside regular business hours
- 6% global average runtime differential across four regions from 6:00am-8:00am vs. 10:00pm-12:00pm

#### THANK YOU FOR WATCHING

**Questions or Comments?** 

Please Email:

dlambion@uw.edu, rgs1@uw.edu, rcording@uw.edu, or wlloyd@uw.edu



pudPerf 2022 Characterizing X86 and ARM Serverless Performance Variation: A Natural Language Processing Case Study