Enabling Serverless
Sky Computing

Robert Cordingly, Wes Lloyd

School of Engineering and Technology

University of Washington Tacoma

11th IEEE International Conference on Cloud Engineering
IC2E 2023 - PhD Symposium

- Biography

Background and Motivation

Outl.i ne e Proposed Research

Preliminary Research and
Results
Conclusions

Biography

My name is Robert Cordingly

Ph.D. student studying Distributed Systems and Cloud
Computing in the School of Engineering and Technology
at the University of Washington Tacoma

e This Ph.D. researchis still in the early planning phases

e Biography
. I Background and Motivation
Outl.l ne e Proposed Research

e Preliminary Research and
Results
e Conclusions

D

DigitalOcean Serverless function-as-a-service

(FaaS) platforms offer many
desirable features:

What is Serverless
. 5 Rapid elastic scaling
ComPUtlng . Scale to zero

No infrastructure management
Fine grained billing

Fault tolerance
’_ No up front cost to deploy an
{- ‘ ‘ application

IBM Cloud Functions Apache OpenWhisk

What is Sky
. 2 e The Sky sits above the clouds.
COm putlng . e Made up of compatibility layers

providing interoperability
between multiple cloud
providers.

Goals of Sky Computing:

Reduce vendor lock-in

Enable applications to leverage
resources of multiple cloud
providers.

Sky Resource
Aggregation

2’

AAzu re Google Cloud

dWS

\/‘7

\\

History of Sky
Computing

Resource Aggregation Benefits:

Reduce Costs

Improved Fault Tolerance
Improved Availability
Improved Runtime
Reduce Network Latency

Reduced Carbon Footprint
Workload Consolidation
Automatic Deployment and
Management

First discussed in early 2010’s
as a means to reduce vendor
lock-in on laaS platforms
More recently, sky-layers have
been developed and
investigated for specific use

cases:
o SkyPilot - Intercloud Broker for
Large Language Model Training
o SkyBridge - Data management
system allowing multi-cloud data

storage
Goal: Investigate and enable
Sky computing to deliver key
enhancements for serverless
computing

Challenges

e Vendor lock-in
e Cross cloud deployment and management
e Network latency
e Monitoring and observability
e Dataavailability
o Move data to compute
o Move compute to data
e Biography
. e Background and Motivation
Outl.l ne I Proposed Research

e Preliminary Research and
Results
e Conclusions

Resea rCh e Thrust-1: FaaS Resource

Aggregation Investigation

Thrusts B Thrust-2: Sky-layer Prototyping

and Trade-off Analysis
e Thrust-3: Autonomous
Application Aggregation

aWS Thrust 1 - FaaS Resource

e Aggregation Investigation

e Investigate how serverless resources can be combined
and aggregated across multiple cloud providers to
achieve performance enhancements

A AZ U re o Our Erototype on AWS has shown this to be possible

e Expand scope beyond a single cloud provider (AWS) to
other major platforms such as Google Cloud and Azure

e Aggregating resources between clouds introduces new

> challenges as platforms have varying pricing models,

performance, APls, available services, locations, etc
Google Cloud

12

Thrust 1

FaaS Resource Aggregation
Investigation

Research
Thrusts

RQ-1: How can serverless resource
aggregation optimize for
performance objectives such as

runtime, latency, throughput, carbon
intensity, and cost while ensuring
portability and observability?

e Thrust-1: FaaS Resource
Aggregation Investigation

) Thrust-2: Sky-layer Prototyping

and Trade-off Analysis
e Thrust-3: Autonomous
Application Aggregation

Thrust 2 - Sky-layer Prototyping and
Trade-off Analysis

e Prototype the sky-layer architecture to streamline
application deployment, execution, and analysis
o Our existing tools, such as FaaSET, can be leveraged to build upon
e Investigate alternate architectures for key sky-layer
components such as:
o Deployment system

o Loaddistribution system
o Datamanagement system

) e Create platform neutral API abstractions for cloud
services to enable platform cross-compatibility

15

RQ-2: How can platform-neutral
abstractions be innovated to
improve compatibility between
platforms while proving feature

parity on serverless cloud platforms?
Thrust 2
RQ-3: What are the trade-offs of
Sky-layer Development and different resource aggregation and
Trade-off Analysis deployment strategies (e.g.

multi-region, multi-cloud,
multi-configuration deployment)
utilized in the sky-layer?

Resea rCh Thrust-1: FaaS Resource

Aggregation Investigation

Th rUStS Thrust-2: Sky-layer Prototyping

and Trade-off Analysis

- Thrust-3: Autonomous
Application Aggregation

Thrust 3 - Autonomous Application
Aggregation

e Investigate autonomous composition and aggregation of
serverless resources to achieve performance
enhancements

o Our previous research touches on autonomous function
configuration and modeling

e Investigate alternate modeling techniques and strategies:

o Autonomous function deployment and relocation
E o Autonomous function configuration and dynamic reconfiguration

)

RQ-4: How can serverless
aggregation strategies by
Th rust 3 dynamically learned and applied for
specific goals (reduced cost, reduced
latency, reduced carbon footprint)

Autonomous Application
for different aggregations of

Aggregation
serverless resources?
e Biography
. e Background and Motivation
Outl.l ne e Proposed Research

- Preliminary Research and
Results
e Conclusions

Towards Serverless Sky
Computing

An Investigation on Global Workload
Distribution to Mitigate Carbon
Intensity, Network Latency, and Cost

Cordingly, R., Kaur, J., Dwivedi, D., Lloyd, W., Towards Serverless Sky
Computing: An Investigation on Global Workload Distribution to
Mitigate Carbon Intensity, Network Latency, and Cost, 2023 11th
|IEEE International Conference on Cloud Engineering (IC2E 2023),

Sept 25-28,2023

Relates to Thrust-1, shows
some of the benefits a
Serverless Sky Computing
platform could have.

Shows that aggregation of
resources can be used to reduce
latency, costs, runtime, and
carbon footprint.

Lowest Carbon
Emissions

Lowest
Runtime

Lowest
Latency

Function Memory
Optimization for
Heterogeneous Serverless
Platforms with CPU Time
Accounting

Cordingly, R., Xu, S., & Lloyd, W. (2022, September). Function Memory
Optimization for Heterogeneous Serverless Platforms with CPU Time
Accounting. In 2022 IEEE International Conference on Cloud
Engineering (IC2E) (pp. 104-115). IEEE.

Developed the CPU-TAMS
model to select optimal memory
settings based off the number of
vCPUs a function utilized.

Relates to Thrust-3 where
memory configuration will be
needed for autonomous
workload configuration

https://ieeexplore.ieee.org/abstract/document/9946331/
https://ieeexplore.ieee.org/abstract/document/9946331/
https://ieeexplore.ieee.org/abstract/document/9946331/
https://ieeexplore.ieee.org/abstract/document/9946331/
https://ieeexplore.ieee.org/abstract/document/9946331/

Supporting Tools - SAAF

We utilize the Serverless Application Analytics Framework to
collect various metrics about the infrastructure and platform
serverless functions are hosted with.

SAAF collected CPU Timing metrics, latency information,
hardware specifications, runtime metrics, and more.

We utilize the CPU Time metics for our

CPU Time Accounting Memory Selection (CPU-TAMS)
method.

25

25
2
g
315
O
Y
e 4
>
05
0

vCPU-to-Memory model for each platform. AWS Lambda and GCF extend to higher memory settings.

AWS IBM —— Google — Digital Ocean

500 1000 1500 2000 2500
Memory Setting (MBSs)

26

Function | Cheapest* MIN AWS-CO CPU-TAMS MID MAX Fastest*
_ Price A% Price A% Price A% Price A% Price A% Price A% Price A%
Writer -10 =7 -9 -2 160
Zip -8 -5 = - 150
Resize -9 -7 -9 -7 142
DNA =21 -15 -21 -9 165
PR -6 3 -6 11 144
MST =) 4 =3 0 185
BFS =7 -6 5 55 167
Sysbench -8 -7 -8 -2 -5 0
Average -9 575 -85 25 | 1385 181.625
FOnCtion Cheapest* MIN AWS-CO CPU-TAMS MID MAX Fastest*
Runtime A% | Runtime A% | Runtime A% Runtime A% Runtime A% | Runtime A% | Runtime A%
Writer 23 367 50 13 % -4 -
Zip 26 375 56 8)) %
|__Resize | 172 51 8 -7 -4 -7
DNA 50 384 50 19 7 7 0
PR 57 57 2 11 2 13
MST 41 41 0 -5 -7 -12
BFS 26 371 58 10 2 2 -4
Sysbench 383 6 92 0 0
Average 97.25 134.25 7.75 85 -325 -6
Selection method average percent error compared to brute force discovered optimal memory setting.
. . . 27
AWS Lambda Autonomous Function Configuration using CPU-TAMS

Developed models for

Predicting Performance predicting the performance of
one FaaS configuration based
and Cost of Serverless off another
Computing Functions with : -
SAAF The goal was to improve pricing
clarity and account for random
Cordingly, R., Shu, W. and Lloyd, W.J.,, 2020, August. Predicting hardware heterogeneity of FaaS

performance and cost of serverless computing functions with SAAF. In
2020 IEEE Intl Conf on Dependable, Autonomic and Secure
Computing, Intl Conf on Pervasive Intelligence and Computing, Intl
Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science
and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech) (pp.
640-649). |IEEE.

platforms

These modeling techniques can
be expanded and applied to
more platforms in Thrust-3

Research with SAAF: Predicting Performance

= NO VPC a1 CPU = a2 CPU

$90

$80

1968193

NMT2 Cost Estimate - 1,000,000 Runs

$61 4|8
$

256 MBs 512 MBs

$70 $71. 4%6 3,

I5|

8.86

I

1024 MBs

$

$69. 7

$70.65

I

2048 MBs

AWS Lambda Function Memory Size

a3 CPU m Combined (VPC)

| 86154,

D

$96.56
Ol 48

3008 MBs

Predicting Performance Scenarios

® - 0939 x+39 R*=0.974 CPU:
256 MBs a1 - a2
256 MBs a1 » a3
256 MBs a2 - a3
512 MBs a1 > a2
512 MBs a1 > a3
512 MBs a2 — a3
1024 MBs a1 — a2
1024 MBs a1 — a3
1024 MBs a2 -+ a3
2048 MBs a1 — a2

cpuUsr (ms) - 2 GBs E5-2680v2 @ 2.8GHz

0
1000 1175 1350 1525 1700 2048 MBs a1 —» a3
2048 MBs a2 - a3

cpuUsr (ms) - 2 GBs E5-2686v4 @ 2.3 GHz

Memory:
al 256MBs — 512MBs
al 256MBs — 1024MBs
al 256MBs —+ 2048MBs
a2 256MBs — 512MBs
a2 256MBs — 1024MBs
a2 256MBs — 2048MBs
a3 256MBs — 512MBs
a3 256MBs — 1024MBs
a3 256MBs —+ 2048MBs

Platform:

256MBs a1 — i1
256MBs a1 — i2
256MBs a1 — i3
256MBs a1 i4
512MBs a1 — i1

512MBs a1 — i2
512MBs a1 — i3

512MBs a1 — i4

1024MBs a1 — i1

1024MBs a1 - i2
1024MBs a1 i3
1024MBs a1~ i4
2048MBs a1 — i1
2048MBs a1 — i2
2048MBs a1~ i3

2048MBs a1 - i4

Prediction Scenarios

. = (cpuUsr + cpuKrn + cpuldle + cpulOWait + cpulntSrvc + cpuSftintSrvc)
Runtime (# of cores)

Characterizing X86 and
ARM Serverless e Evaluated the performance of
o X86 and ARM processors on
Performance Variation: A AWS Lambda through a NLP
Natural Language pipeline
Processing Case Study

Lambion, D., Schmitz, R., Cordingly, R., Heydari, N. and Lloyd, W., 2022,
July. Characterizing X86 and ARM Serverless Performance Variation: sky-layer can leverage

A Natural Language Processing Case Study. In Companion of the 2022)
resources across multiple

ACMY/SPEC International Conference on Performance Engineering
architectures to achieve cost

(pp. 69-75).
and performance improvements

In the future, an autonomous

X86 AWS Lambda Runtime Variation

Asia — Europe US East —— US West
950

900

Pipeline Runtime (s)

0 5 10 15 20

32

Local Time (h)

ARM AWS Lambda Runtime Variation
Asia — Europe US East — US West

950

900
D
o 850
£
2 800
T
o 750
=
‘© 700
2
O 650

600

0 5 10 15 20
Local Time (h) *
Developed an environment for
FaaSET: A Jupyter developing and deploying
Notebook to Streamline platform neutral serverless
Every Facet of Serverless functions
Development FaaSET supports creating and
g avery facet of somierlon devetopment ThCombamon of deploying functions to AWS,
e A i lop.49.c5y S O Performance Google Cloud, IBM, and Azure

The sky-layer in Thrust-2 could
be built upon FaaSET’s tools

aaS Platform

Serverless
Function

@
Generate

Develop, Deploy,

and Test Functions Execute Experiments Process and

Visualize Results

Invoke Functions
Reconfigures Functions Q Q Q
Compiles Results o

utput
Exports to Notebook Q Q Q

4

35

Serverless
Function

Generate

Develop, Deploy,

and Test Functions Execute Experiments Process and

Visualize Results
Invoke Functions
Reconfigures Functions Q Q Q
Compiles Results
Exports to Notebook Q Q Q

7

36

FaaS Platform

Serverless
Function

Generate

Develop, Deploy,
and Test Functions

@
® o

Process and
Visualize Results

Execute Experiments

Invoke Functions
Reconfigures Functions
Compiles Results
Exports to Notebook

37

Function Development and Deployment with FaaSET

def hello world(request, context):

return {"message": "Hello " + str(request["name"]) + "!"}

38

Function Development and Deployment with FaaSET

def hello world(request, context):

return {"message": "Hello " + str(request["name"]) + "!"}

|:> import FaaSET

@FaaSET.cloud function(platform="AWS

", config={"memory":256})
def hello world(request, context):

return {"message": "Hello " + str(request["name"]) + "!"}

39

Function Development and Deployment with FaaSET

def hello world(request, context):

return {"message": "Hello " + str(request["name"]) + "!"}

import FaaSET

I:>@L‘ﬂaf§u‘l .cloud_function(platform="AWS", config={"memory":256})

def hello world(request, context):

return {"message": "Hello " + str(request["name"]) + "!"}

40

Function Development and Deployment with FaaSET

def hello world(request, context):

return {"message": "Hello " + str(request["name"]) + "!"}

import FaaSET
@FaaSET.cloud function(platform="AWS", config={"memory":256})
def hello world(request, context):

return {"message": "Hello " + str(request["name"]) + "!"}

‘helloiworld({'name‘: 'Bob'}, None)

>> Deploying to AWS Lambda..

>> {"message": "Hello Bob!"}

41

Biography
Background and Motivation

Outl.i ne Proposed Research

Preliminary Research and
Results

- Conclusions

Expected Contributions

e Create and evaluate a serverless Sky-layer
o Autonomous application deployment system
o Serverless load distribution system
o Serverless data management system

e Investigate resource aggregation methodologies to

‘ achieve improved performance and costs of applications
» on serverless platforms

43

Sky Resource
Aggregation

Resource Aggregation Benefits:
Reduced Carbon Footprint
Improved Fault Tolerance
Improved Availability
Improved Runtime

Reduce Network Latency
Reduce Costs

/’ Azure)\ gl Workload Consolidation
oogle Cloud
; Automatic Deployment and

aWS Management
\/‘7

\\

Thank You!

This research has been supported by AWS Cloud Credits for Research.

