
Addressing Serverless Computing 
Vendor Lock-In through 
Cloud Service Abstraction

School of Engineering and Technology
University of Washington Tacoma
14th IEEE International Conference on Cloud Computing 
Technology and Science

Di Mo, Robert Cordingly, Donald Chinn, Wes Lloyd
Presented by Robert Cordingly

1

Outline
● Background and Motivation

● Research Questions

● Methodology

● Experimental Results

● Conclusions

2



Why Serverless?

Serverless function-as-a-service 

(FaaS) platforms offer many 

desirable features:

● Rapid elastic scaling

● Scale to zero

● No infrastructure management

● Fine grained billing

● Fault tolerance

● High availability

3

Vendor Lock-In

● FaaS platforms use vendor specific 
APIs and services that require 
code to be written specifically for 
one platform

● Migrating code to another 
platform may require 
significant refactoring

● Maintaining code supporting 
multiple platforms is challenging 
due to inconsistent feature sets 
and constantly changing services

4



Vendor Lock-In
Solutions

● Cloud service abstraction 
libraries provide a common 
interface for multiple cloud 
providers

● Enabling portable code eases 
the challenge of migrating to 
different clouds

● In this study, we investigated 
the utility of a cloud service 
abstraction library in the 
context of FaaS

5

Apache Jclouds

● Open source multi-cloud toolkit for Java that aids in 

creating portable applications for multiple cloud 

providers

● Includes APIs for managed computer services (IaaS), blob 

storage, and load balancers (beta)

● Supports all major cloud providers such as AWS, GCP, 

Azure, Digital Ocean, and more…

6



Outline
● Background and Motivation

● Research Questions

● Methodology

● Experimental Results

● Conclusions

7

Research Questions
● RQ-1 (Abstraction Overhead): What are the performance implications 

of using cloud service abstraction libraries to interface with object 
storage services in FaaS code?

● RQ-2 (Code Quality): How do cloud service abstraction libraries 
impact FaaS code quality measured using static code analysis metrics?

● RQ-3 (Portability): How do cloud service abstraction libraries impact 
the portability of FaaS code when migrating functions between cloud 
providers? What factors help predict successful code migration? 

8



Outline
● Background and Motivation

● Research Questions

● Methodology

● Experimental Results

● Conclusions

9

Experiment 1a (RQ-1): 
Abstraction Library FaaS Performance

● Refactored 7 FaaS-native functions to 

use Apache Jclouds to access object 

storage on AWS and GCP

● Compared the performance of jclouds 

to the original functions

● Measured runtime (ms) and data read 

throughput (MB/sec)

10

Function Description

Transform_CSV Reads and transforms CSV sales data

Read_File Reads any file

Read_Key-value Reads 1k key-value pairs

Write_Key-value Writes 1k key-value pairs

Delete_Key-value Deletes 1k key-values pairs

Create_Buckets Creates 10 buckets

Delete_Buckets Deletes 10 buckets



Experiment 1b (RQ-2):
Abstraction Library FaaS Code Quality
● Investigated code quality implications of using cloud 

abstraction libraries

● Used the static analysis tool JArchitect to compare three 
implementations of the Read_File function 
(AWS native, Google native, and Jclouds)

● Compared source code using Jar file size (MB), # of 
source files, # of third-party elements, LOC, Refactored 
LOC, and Average Cyclomatic Complexity (CC)

11

Experiment 2 (RQ-3):
Code Portability Empirical Study
● Conducted empirical study using undergrad seniors and 

graduate cloud computing students to migrate an 

application from one FaaS platform to another

● Participants migrated a function to GCP, originally 

implemented natively for AWS or implemented with Apache 

Jclouds for object storage

● We had 42 participants and divided them into two groups…

12



Participant Demographics

13

Participant Demographics

14

Migrate native 
AWS to GCP

(Group-Native)

Migrate Jclouds 
AWS to GCP

(Group-Jclouds)



Participant Demographics

15

Migrate native 
AWS to GCP

(Group-Native)

Migrate Jclouds 
AWS to GCP

(Group-Jclouds)

Each group was 
divided 2:1 online 

vs. onsite
Onsite

Online

Onsite

Online

Participant Demographics

16

Migrate native 
AWS to GCP

(Group-Native)

Migrate Jclouds 
AWS to GCP

(Group-Jclouds)

Each group was 
divided 2:1 online 

vs. onsite

Of each group the 
number of graduate vs 

undergrad students were 
balanced

Onsite

Online

Onsite

Online



Participant Demographics

17

Migrate native 
AWS to GCP

(Group-Native)

Migrate Jclouds 
AWS to GCP

(Group-Jclouds)

Each group was 
divided 2:1 online 

vs. onsite

Of each group the 
number of graduate vs 

undergrad students were 
balanced

Participants were evaluated on whether they completed the function 
migration. Each participant completed pretrial and post-trial surveys

Onsite

Online

Onsite

Online

18

Demographics: Years of Experience per Language



19

Demographics: Years of Experience per Language

20

Demographics: Years of Experience per Language



Tasks

Group-GCP

● Training Upload Object Task
○ 2 parameters

● Training Read Object Task
○ 6 lines of code
○ 1 method

● Code Migration Activity
(Image Processing Function)

○ ~24 lines of code
○ 2 methods

Group-Jclouds

● Training Upload Object Task
○ 1 parameter

● Training Read Object Task
○ 7 lines of code
○ 1 method

● Code Migration Activity
(Image Processing Function)

○ ~10 lines of code
○ 1 method

21

Each group had 4 hours to complete three activities:

Outline
● Background and Motivation

● Research Questions

● Methodology

● Experimental Results

● Conclusions

22



Experiment 1a
Abstraction Library FaaS 

Performance

23

RQ-1: Abstraction Overhead

● Across all tests, functions using jclouds were 25% slower 

on AWS compared to native libraries for accessing object 

storage

● On Google, jclouds were 36% slower compared to native

● Jclouds performed better when reading and writing a 

large files vs transactional operations with many 

key-pairs or buckets

24



25

Function Runtime Comparison: jclouds vs native

26

Transform_CSV Function Average Runtime

R
u

n
ti

m
e 

(s
) –

 L
o

w
er

 is
 b

et
te

r



27

Transform_CSV Function Average Runtime
R

u
n

ti
m

e 
(s

) –
 L

o
w

er
 is

 b
et

te
r

28

Transform_CSV Function Average Runtime

R
u

n
ti

m
e 

(s
) –

 L
o

w
er

 is
 b

et
te

r



Experiment 1b
Abstraction Library FaaS Code 

Quality

29

Refactored Code for Read_File – Quality Metrics

30

AWS Native GCP Native Jclouds

Jar File Size (MBs) 10 10.1 17.7

Source Files 7 7 7

Third-Party Elements 117 120 133

LOC 283 294 308

LOC Refactored (N/A, baseline) 34 63

Average CC 2.66 2.65 2.56



RQ-2: Abstraction Library Code 
Quality

● Migrating to jclouds involved nearly twice as many lines 

of code refactored (63 LOCR) compared to migrating to 

native GCP (34 LOCR)

● Jclouds exhibited slightly reduced code complexity (CC of 

2.56) vs 2.66 on AWS and 2.65 on GCP

31

Experiment 2
Code Portability Empirical Study

32



RQ-3: Code Portability

● Of the 42 participants, 15 were able to successfully 
migrate their function from AWS to GCP

● Of those 15, 11 successes were in Group-Jclouds while 
only 4 were in Group-Native

○ Using jclouds increased success of function migration by 30%
(statistically significant – two proportion z-test: z=-2.0265, p=0.04236)

● Using Jclouds increased the average migration time by 
14.3 minutes (from 93.3 mins to 104.6 mins)

33

Survey Results

34



Survey Feature Importance

● Utilized random forest modeling to analyze 
features that could most accurately predict 
successful outcomes

● With the survey and class graded we 
evaluated over 100 features to build our 
models

● We wanted to know what lead to successful 
outcomes

35

Experiment 2: Survey Results

● A students quiz score was the most 

important feature for determining 

successful migration

● 6/9 features that contributed to successful 

migration where course grade components

36



Outline
● Background and Motivation

● Research Questions

● Methodology

● Experimental Results

● Conclusions

37

Conclusions

● (RQ-1: Abstraction Overhead) jclouds increased 

function runtime by 25% on AWS and 36% on GCP

● (RQ-2: Code Quality) jclouds increased overall code size 

by 8% and reduced cyclomatic complexity by 4%

● (RQ-3: Portability) jclouds improved serverless function 

migration outcomes by 30% with Java competency and 

course grades helped predict success 

38



39

Thank You!


