FaaSRank:
Learning to Schedule
Functions for Serverless

Platforms

Hanfei Yu', Athirai A. Irissappane’, Hao Wang?, Wes J. Lloyd’
September 29, 2021

University of Washington Tacoma',

Lsu Louisiana State University?

Outline

Background
Design
Implementation
Evaluation
Conclusion

V V.V VvV V

Background

> Serverless Computing & FaaS
> Scheduling & Load Balancing

> Reinforcement Learning

Traditional Load Balancing

> Web Service Load Balancing

> Classic Algorithms
— Round-robin
> distributes requests to servers in rotation
— Least-connections
> distributes requests to the server with the least number of
active connections
— Greedy
> sends requests to the same server until filling capacity
— Hashing
> sends requests to servers based on unique hash values

Faa$S vs Traditional Scheduling

> Common
— Distribute web/function requests to servers

> Differences?

Traditional Web Service FaaS

Fixed deployment Freeze-thaw life cycle

Static resource management Dynamic resource provisioning

> Existing schedulersin FaaS > Classic!
— AWS Lambda: Greedy
— Apache OpenWhisk: Hashing

How do we incorporate server states to improve
scheduling outcomes for FaaS?

Server Assessment

> A static fithess function
— Scores are used to characterize fitness of attributes

> Select a server with the highest score
> Schedule the next function request to the
selected server

Server CPU Score | Memory | Disk Score | Network | Infrastructure Load Overall
Score Score Score Score Score
#1 0.2 0.1 0.05 0.05 0.1 0.1 0.6
#2 0.15 0.05 0.05 0.05 0.05 0.15 0.5
#3 0.3 0.1 0.05 0.05 0.1 0.2 0.8

Proof of Concept Experiment

> An Apache OpenWhisk cluster

— 10 workers

— Each worker with 8 CPU cores, 16 GBs RAM

> Workload
— 10 serverless applications

— Realworld invocation traces from Microsoft Azure Functions

> Schedulers
— Hashing (OpenWhisk defa
— Greedy (AWS Lambda)

— Static-rank (a fitness function) * our heuristic approach

Motivation Result

B Hashing B Greedy B Static-rank

28
“© 27
|_
Y 26
L
> 25
T 24
()
3 23

N
N

ult)

=

==

Scheduler

Relative to
Hashing

Hashing

100.00%

Greedy

104.78%

Static-rank

89.90%

Server Assessment

> A static fithess function
— Scores are used to characterize fitness of attributes

Server CPU Score | Memory | Disk Score | Network | Infrastructure Load
Score Score Score Score
#1 0.2 0.1 0.05 0.05 0.1 0.1
#2 0.15 0.05 0.05 0.05 0.05 0.15
#3 0.3 0.1 0.05 0.05 0.1 0.2

Can we automate this? Yes!

> A self-learning function using
Reinforcement Learning (RL)

(Deep) Reinforcement Learning (DRL)

Environment: FaaS platform

Agent: scheduler

State: server/function information

Action: schedule a function to a server
Reward: performance of function execution
Policy: scheduling algorithm learned by agent

Reward r;

VVVYVVyV

A 4

Agent Policy
Tlo(Sk, ax)

Neural
network

()]

—

Q

—

D
\ 4

Take action a, | Environment

Parameter 6

Observe state s,

Overall
Score

0.6
0.5
0.8

10

Policy Gradient in DRL Training

> Learn policies by performing gradient ascent
directly on the parameters of neural networks

> Gradient Ascent
— Push up the probabilities of actions that lead to higher
rewards, and push down the probabilities of actions that lead
to lower rewards, until arriving at the optimal policy

> Reward
— provides feedback

> Actor-Critic
— Actor network outputs decisions and receives rewards
— Critic network outputs values to judge actor network
— The policy distribution is updated with the Advantage
— Advantage = rewards - values

11

Reinforcement Learning
for FaaS Scheduling

> Challenges
> Objective

> FaaSRank

Challenges

> Server assessment

- How to compose together available metrics to assess
individual servers to make reasonable trade-offs between
cold starts and resource contention in real-time?

> Cluster scalability
— Can the neural networks adapt to scalable clusters?

> Huge action space
— Can the RL agent efficiently explore the action space?

13

Objective

> Function Completion Time (FCT): the time from

function arrival until its completion
— Initialization overhead

— Waiting time in any platform queues
— Function execution time

> Average FCT: averaged over an individual function
or workload

> Our goal is to minimize the average FCT of an
entire workload

14

FaaSRank

> A RL-based scheduler for serverless FaaS

platforms
— 22 features of server state
— 5 features of controller state

> Given any workloads, FaaSRank tries to
— Minimize overall average FCT
— Scale to any size of cluster
— Efficient exploration of the action space

15

> Server Assessment
(Policy Network Embedding Layer)

> Score-Rank-Select
(Policy Network)

> Training FaaSRank

Policy Network Embedding Layer

Available Memory Slots }—>

/7| Warm Infrastructures }—>

Resource Utilization Metrics

Server
Inflight Invocations

Invocation

Policy Network

Embedding Layer

Concatenate

Ranking Procedure

Server

Information

Function

1
1
1
o 1
. Information !
1 ! o
1 1 N
. 1 : o
i : . : .
1 L z
Server N 1 :
, 1
1
: Server N ;
. Information !
1
1
Invocation ,

Function
Information

State Vector

—{ 1

Selecting Procedure

Softmax

-
&

17

Best Server
A

18

Training FaaSRank

> Proximal Policy Optimization (PPO)
— State-of-the-art, efficient and performant, devised by Open-Al,
3930+ citations
— Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O.,
Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

> Training proceeds in episodes. In each episode:
— A series of client function invocations arrive at the FaaS platform
— When all of the function invocations finish, the episode is
considered complete

19

FaaSRank Training Algorithm

> Initialize parameters of actor and critic network

> For episode 1, 2, 3, ... do:
— Run policy in environment until termination
— Collect trajectory (state-action pairs)
— Discount rewards
— Compute baseline values from critic network
— Compute advantage = rewards - baseline values
— Use advantages to update both actor and critic network

> End for

20

Implementation

> FaaSRank Integrated with OpenWhisk

Apache OpenWhisk

> An open source, distributed serverless platform

> Execute functions (fx) in response to events at any
scale

> Manage the infrastructure, servers, and scaling
using Docker containers

> Support functions in Node.js, Go, Java, Scala, PHP,
Python, Ruby, Swift, Ballerina, .NET, and Rust

22

OpenWhisk with FaaSRank

HTTP Queue Timer Storage

LR

REST Interface

T Return ¢ Invoke

FaaSRank

Controller ‘ o
Action,

\ 1
. KV DRL
¢
haeaatl®) : [, [y
1
|State

Store

Load Balancer

1
1
i
. 1
; § , | :

Ack Schedul

Database Distributed Messaging

Submit ¢ Place Invoker Pool

23

o8 e
1,5

= ®) [2]3])|

Evaluation

> Experimental Setups

> Results

Baseline Schedulers

> Hashing
— OpenWhisk

> Round-robin
> Least-connections

> Greedy
— AWS Lambda

> Static-rank
— We created Static-rank to investigate resource utilization
aware scheduling prior to developing FaaSRank
— Overall Score = 2*CPU + 1.5*Mem + Disk + Net
Load_Avg + Available_Mem_Slots

25

Testbed Clusters

> Compute Canada Cloud
— 13 VMs, 1 inference engine, 1 frontend, 1 backend, 10
workers
— Each with 8 CPU cores (Intel Xeon Skylake IBRS 2.50GHz), 16
GBs RAM

> AWS EC2

— Spot Instances

— 13 c5d.2xlarge VMs, 1 inference engine, 1 frontend, 1
backend, 10 workers

— Each with 8 CPU cores (Intel Xeon Platinum 8124M 3.00GHz),
32 GBs RAM

26

Applications

Application Type
Dynamic Html (DH) Web App
Email Generation (EG) Web App
Image Processing (IP) Multimedia
Video Processing (VP) Multimedia
Image Recognition (IR) ML
K Nearest Neighbors (KNN) ML
Gradient Descent (GD) ML
Arithmetic Logic Unit (ALU) Scientific
Merge Sorting (MS) Scientific
DNA Visualization (DV) Scientific

Applications

Memory (MBs)
512
256
256
512
512
512
512
256
256

512

Avg Cold FCT (s)
4.45
2.20
5.88
6.86
4.28
4.99
4.15
5.72
3.87
8.57

Avg Warm FCT (s)
2.34
0.21

3.52

0.60
3.45
1.94

3.1

> Characterized on a mini OpenWhisk cluster
— AWS EC2 Dedicated Host
— 1 user, 1 frontend, 1 backend, 1 worker

> Cold and warm runtimes are average FCT of 10
times of experiments

> Collected from

- SeBS: A Serverless Benchmark Suite for Function-as-a-Service

Computing

- Characterizing Serverless Platforms with ServerlessBench
- ENSURE: Efficient Scheduling and Autonomous Resource
Management in Serverless Environments

27

28

Workload Traces

> Adapted serverless traces from Microsoft Azure
Functions

> Trace IDs:
— Common trace: SC (Canada Cloud), SA (AWS)

— Unique traces: M1-10 (AWS)

WL Load Agg CPU Time Num calls Avg IAT Len
SC 93.75 % 4368.71 s 292 0.262 s 60 s
SA 1329 % 6196.89 s 408 0.184 s 60 s
Ml 56.67 % 264094 s 209 0.219 s 3T's
M2 57.00 % 2656.32 s 178 0.242 s 36 s
M3 57.01 % 2656.69 s 201 0.255 s 44 s
M4 59.05 % 2751.87 s 201 0.217 s 355
M5 71.83 % 334733 s 226 0.236 s 44 s
M6 74.95 % 349249 s 253 0.251 s 53 s
M7 80.22 % 3738.29 s 256 0.244 s 525
M8 82.54 % 3846.15 s 276 0.215 s 48 s
M9 86.40 % 4026.24 s 318 0.210 s 54 s
MI10 100.00 % 4659.86 s 295 0.242 s 59 s

Overall Average FCT (Canada Cloud)

B Hashing
M Least-conns M Static-rank

P R, NN
O 00 O N

Overall avg FCT (s)

[EEY
H

B Greedy

B Round-robin

“m

B FaaSRank

29

Scheduler

Relative to
Hashing

Hashing

100.00%

Static-rank

109.01%

Round-robin

100.64%

Least-connections

96.72%

Greedy

105.89%

FaaSRank

90.75%

30

Overall Average FCT (AWS)

B Hashing B Greedy B Round-robin
M Least-conns M Static-rank B FaaSRank
? 2 8 . Scheduler R:Last:’:‘;o
— 27 I Hashing 100.00%
- Static-rank 102.44%
8 2 6 ? Round-robin 92.48%
go 2 5 Least-connections 91.60%
© Greedy 102.43%
— 2 4 ﬁ é FaaSRank 89.90%
23 =
3 22
21
31
Avg FCTS Color ’
(Common trace - Canada Cloud) w0 2 w0 a0 an o
Application | Hashing | Static-rank | Round-robin | Least-connections | Greedy | FaaSRank
EG 114.37 114.93 116.56 106.89
P 100.00 102.37 123.07 112.79
VP 92.26 97.56 98.23
IR 100.75 113.68
KNN 92.84 101.15
ALU 76.86 88.36
MS 83.07 90.50
GD 101.69 102.24
DV 107.59 106.81

*All values are average FCTs (sec) normalized as a percentage (%)
relative to Hashing scheduler

32

Avg FCTs

(Common trace - AWS)

Color

|

*All values are average FCTs (sec) normalized as a percentage (%)
relative to Hashing scheduler

Unique Traces (M1-10 AWS) -

Color

Rank | 1st 2nd | 3rd | 4th ‘Sth 6th

Application | Hashing | Static-rank | Round-robin | Least-connections | Greedy | FaaSRank
DH 100.00 93.39 97.83 96.39
EG 100.00 87.98 96.32 92.20
84.62 87.80 86.62
98.68 92.48
97.24 91.23
90.63 91.84
88.91 88.21
100.00 95.61 93.76
GD 100.00 88.56 89.44 90.90
DV 100.00 93.85 93.67

33

|

-

st

2nd

3rd

4th ‘Sth 6th

Workload | Hashing | Static-rank | Round-robin | Least-connections
1 100.00 77.31 81.17
2 100.00 79.94
3 100.00 70.20
4 100.00 84.99 92.13
5 100.00 76.91 77.88
6 100.00 60.10 63.57
7 100.00 73.83 82.81
8 100.00 88.19 88.76
9 100.00 80.48 92.53
10 79.59 78.41 83.79

*All values are average FCTs (sec) normalized as a percentage (%)
relative to Hashing scheduler

FaaSRank

34

Conclusions

> FaaSRank can automatically learn good policies
for function scheduling in serverless platforms

> FaaSRank outperforms five baseline schedulers

by achieving a better overall performance for
serverless workloads

Questions

Thank You!

