

RQ1: (Resource Contention) What extent of performance degradation (e.g. CPU, disk, network) results from VM co-location when running identical benchmarks in parallel on a public cloud?

> How is public cloud resource contention impacted by recent advancements in virtualization hypervisors and hardware?

IC2E 2020: Characterizing Public Cloud Resource Contention to Support Virtual Machine Co-residency Prediction

April 22, 2020

Benchmark	Description
sysbench CPU	CPU stress test: generate first 2 million prime numbers, w/ 2 threads, 10x
Y-cruncher CPU+memory	CPU+memory stress test: calculate PI to 25 million decimal digits, w/ 2 threads
pgbench CPU+memory+disk +network	PostgreSQL relational database benchmark: measured total number of transactions performed in 60 seconds (select, update, insert queries) to derive transactions per second, w/ 10 threads
iPerf network	Measure bandwidth of concurrent data transfer between client and server for 15-sec test runs Requires 2 VMs: client and server

19

- **Default AWS IOPS quotas:** deter disk contention: i.e. *the provided pipe is bigger than the allowed volume*
- EBS GP2 volume: 3000 IOPS per 2 vCPU VM Host has ~64,000 estimated IOPS total, 16 VMs/host
- Solution: use provisioned IOPS volumes (16 VMs x 5000) Total 80,000 IOPS, exceeded host capacity by ~16,000 IOPS
- Technique produced performance degradation in pgbench
- Downside: benchmark somewhat expensivemust delete volumes quickly...
- Creating disk I/O contention only an issue on instances without local storage option

IC2E 2020: Characterizing Public Cloud Resource Contention to Support Virtual Machine Co-residency Prediction

Репонна	nce Indica	ators: ec2	dedicated b
KPI	c3	c4	z1d, m5d
Xeon CPU model	E5-2680v2	E5-2666v3	Platinum 8191(z1d), Platinum 8175m(m5d)
family/microns/yr	Ivy Bridge-EP/ 22nm/Sep2013	Haswell-EP / 22nm/Nov2014	Skylake-SP / 14nm/Jul2017
vCPUs/host	40	40	48 (z1d), 96 (m5d)
physical CPU cores/host	20	20	24 (z1d), 48 (m5d)
Base clock MHz	2800	2900	3400 (z1d), 2500 (m5c
Burst clock MHz (single / all)	3600/3100	3500/3200 [30]	4000/4000 (z1d), 3100/3500 (m5d) [31]
Hypervisor / virtualization-type	XEN / full	XEN / full	AWS Nitro (KVM/full)
Max # of 2 vCPU instances/host	16 x c3.large	16 x c4.large	24 x z1d.large, 48 x m5d.large
Pg db storage	16 GB local shared SSD	100GB io1 EBS volume, 5k iops	75GB local shared NVMe
Network capacity/instance	"Moderate" ∼550 Mbps	"Moderate" ∼550 Mbps	Up to 10 Gbps
Host price/hr	\$1.848	\$1.75	\$4.91 (z1d), \$5.97 (m5d)
VM price/hr	\$.1155	\$.109375	\$.205 (z1d), \$ 124 (m5d)

April 22, 2020

RQ-1: Resource Contention

What extent of performance degradation (e.g. CPU, disk, network) results from VM co-location when running identical benchmarks in parallel on a public cloud?

Characterizing Public Cloud Resource Contention to Support Virtual Machine Co-residency Prediction

RQ-2: VM Co-residency Prediction

Prediction Accuracy

How accurate are VM co-residency predictions from multiple linear regression and random forest models?

M Co-reside	ncv	۱M	odel	Fv:	alu	ation	
	,		ouci			acion	
ndependent Variable Eva	aluati	on – I	Random	Forest			
Independent Variable			ncrease ir Iode Purit	ı Y		% Increase in MSE	
iPerf (throughput in MB/sec)			70,725			9.268	
Sysbench (runtime in sec)			106,714			31.064	
Y-cruncher (runtime in sec)	Fea	ture	135,112			49.908	
Pgbench (transactions/min)	Impor	rtance	146,221			56.220	
	Decre	eases					
/M co-residency model e	valua	ition					
Evoluction Matric		Ra	andom For	rest		MLR	
Evaluation Metric		with raw data with				th normalized data	
R ²			.9755			.9423	
Root Mean Squared Error (RM	1SE)		2.479	Lov	ver	2.175	
Mean Absolure Error (MAE)			1.950	Predi	ctive	1.608	
Min Prediction			4.537	Err	or	-0.480	
Max Prediction			47.479			49.543	
			-				

Independent Variable Evaluation	- Random I	Forest	
Multiple reg	ressio	n moo	lel
forecasted VM v average to wi	l co-res thin ±	sideno 1.61 \	cy on /Ms
forecasted VM average to wi	l co-rest thin ±	sideno 1.61 \	cy on /Ms .9423
forecasted VM average to wi R ² Root Mean Squared Error (RMSE)	l co-res thin ± .9755 2.479	sidend 1.61 \	.9423 2.175
forecasted VM average to wi R ² Root Mean Squared Error (RMSE) Mean Absolure Error (MAE)	1 co-res thin ± .9755 2.479 1.950	sidenc 1.61 \ Lower Predictive	.9423 2.175 1.608
S forecasted VM P forecasted VM VI average to wi R2 R2 Root Mean Squared Error (RMSE) Mean Absolure Error (MAE) Min Prediction Min Prediction	co-res thin ± .9755 2.479 1.950 4.537	Lower Predictive Error	.9423 2.175 1.608 -0.480

Questions

Thank You !

Email: wlloyd@uw.edu Webpage: http://faculty.washington.edu/wlloyd/