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Cloud Computing

NIST General Definition

“Cloud computing is a model for enabling convenient,

on-demand network access to a shared pool of

configurable computing resources (networks, servers,

storage, applications and services) that can be rapidly

provisioned and reused with minimal management effort

or service provider interaction”…
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Microprocessors Advancements

� Smaller die sizes (microns)
� Lower voltages

� Improved heat dissipation

� Energy conservation

� More transistors, but with similar clock rates

�How do we harness this new transistor density?
� Multicore CPUs

� Improve computational throughput

�How do we utilize many-core processors?
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Virtualization
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Virtualization

11

Containerization
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Virtualization Containerization
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Public Cloud Example:

Netflix

�Amazon Elastic Compute Cloud (EC2)

� Continuously run 20,000 to 90,000 VM instances

� Across 3 regions

� Host 100s of microservices

� Process over 100,000 requests/second

� Host over 1 billion hours of monthly content
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Business

Services

Services

Services

Traditional Application Deployment
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Research Challenges – WHERE
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Physical Host
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Research Challenges – WHERE
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Service Isolation Component Composition

Provisioning
Variation

Server Consolidation

Multi-tenancy Overprovisioning

Resource Contention

Research Challenges - WHAT
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Research Challenges - WHEN
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When should we 
provision?

Research Challenges - WHEN
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Hot Spot Detection Provisioning Latency

Future Load Prediction Pre-provisioning
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NP-Hard

Virtual Machine (VM) Placement 

as “Bin Packing Problem”

� Components items � virtual machines (VMs) bins

� Virtual machines (VMs) items � physical machines (PMs) bins

� Dimensions 

� # CPU cores, CPU clock speed, architecture

� RAM, hard disk size, # cores

� Disk read/write throughput

� Network read/write throughput

� PM capacities vary dynamically

� VM resource utilization varies

� Component requirements vary

35

Why Gaps Exist

� Public clouds

� Research is time/cost prohibitive

� Hardware abstraction: Users are not in control

� Rapidly changing system implementations

� Private clouds:

� Wide variance of implementations

� Systems continuously evolve 

� Performance modeling (large problem space)

� Virtualization misunderstood or overlooked

36
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Research Questions (1/2)

RQ-1: Component composition

How does resource utilization and service oriented 

application (SOA) performance vary relative to 

component composition across VMs? 

RQ-2: Performance modeling

Which resource utilization variables and modeling 

techniques best help predict SOA performance?
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Research Questions (2/2)

RQ-3: Noisy neighbors

What performance implications result from 

resource contention and how can we avoid it?

RQ-4: Infrastructure prediction

How can we predict the required cloud 

infrastructure to satisfy performance 

requirements for SOA workload hosting?
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Methodology

� Benchmark Workloads

� Scientific Modeling Workloads

� Profile resource utilization

� Collect VM-level data

� Analytics: construct performance and cost models

� R: statistical regression, neural networks

� Evaluate and refine models

� Develop heuristics

41

Scientific Modeling Workloads

� USDA Cloud Services Integration Platform (CSIP):

� Framework for scientific modeling-as-a-service

� Scientific modeling SOAs:

� RUSLE2 – Soil erosion model

� WEPS – Wind Erosion Prediction System

� SWAT-DEG: Stream channel degradation prediction

Monte carlo workloads

� Comprehensive Flow Analysis tools

Load estimator, Load duration curve, Flow duration 

Curve, Baseflow, Flood analysis, Drought analysis

42
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VM-Scaler

43 43

future

VM-Scaler

44 44

future

• REST/JSON Web services application
• Harnesses Amazon’s EC2 API

• Provides cloud infrastructure management

• Supports scientific modeling-as-a-service

• Supports research and IaaS experimentation 

• Supports Amazon, Eucalyptus 3/4 clouds

• Extensible to others, e.g. OpenStack

Eucalyptus Private Clouds

• Implemented (3) Private Clouds @ Colo State

• Eramscloud: 10 x Oracle X6270 blade system
• Dual Intel Xeon 4core HT 2.8 GHz CPUs

• 72 GB ram, 4 x 600 GB 15k rpm HDDs

• CentOS 5/6 x86_64 (host OS)

• Ubuntu x86_64 (guest OS)

• Eucalytpus 3/4
• Amazon EC2 API support

• Nodes(NC), Cloud(CLC), Cluster(CC), Storage(SC)

• Managed mode networking with private VLANs

• XEN/KVM hypervisors, para/full virtualization

45 45

Amazon AWS

• Spot instances

• Virtual Private Cloud (VPC)

• Ubuntu (guests)

• Xen virtualization

�Many VM types and generations
� m1.medium, m1.large, m1.xlarge, c1.medium, c1.xlarge

� m2.xlarge, m2.2xlarge, and m2.4xlarge

� c3.large, c3.xlarge c3.2xlarge, m3.large
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M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Log server (Codebeamer)
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Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM 
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Log server (Codebeamer)
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Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM 
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Log server (Codebeamer)

Bell’s Number:

k: number of ways 
n components can be 
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,147

n . . .
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SC15
SC14

SC13
SC12
SC11
SC10
SC9

SC8
SC7
SC6
SC5
SC4

SC3
SC2
SC1

CPU time        disk reads   disk writes  network reads     network writes

Resource utilization profile changes 
from component composition

M-bound RUSLE2
• Box size shows absolute deviation (+/-) from mean
• Shows relative magnitude of performance variance

53

SC15
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SC11
SC10
SC9
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SC5
SC4

SC3
SC2
SC1

CPU time        disk reads   disk writes  network reads     network writes

∆  Resource Utilization Change
Min to Max Utilization

m-bound d-bound

CPU time: 6.5% 5.5%
Disk sector reads: 14.8% 819.6%
Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

Resource Utilization Data 

Collection

� Resource utilization sensors

� Sensor on each VM/PM 

� Transmits data to VM-Scaler @ 

configurable intervals

CPU
- CPU time: (cpuUsr + cpuKrn)
- cpuUsr: CPU time in user mode
- cpuKrn:CPU time in kernel mode 
- cpuIdle: CPU idle time 
- contextsw: # of context switches 
- cpuIoWait: CPU time waiting for I/O
- cpuIntSrvc: CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts
- cpuNice: CPU time executing prioritized processes
- cpuSteal: CPU ticks lost to virtualized guests
- loadavg: (# proc / 60 secs)

Disk
- dsr: disk sector reads 
- dsreads: disk sector reads completed 
- drm: merged adjacent disk reads 
- readtime: time spent reading from disk 
- dsw: disk sector writes 
- dswrites: disk sector writes completed
- dwm: merged adjacent disk writes 
- writetime: time spent writing to disk 

Network
- nbs: network bytes sent 
- nbr: network bytes received 



10/22/2016

10

Can Resource Utilization Statistics

55

Model Application Performance? 

55

Which resource utilization variables

are the best predictors?  

56

CPU

Disk I/O

Network I/O

56

Which modeling techniques 

were most effective?

�Multiple Linear Regression (MLR)

� Stepwise Multiple Linear Regression (MLR-step)

�Multivariate Adaptive Regression Splines (MARS)

�Artificial Neural Network (ANNs)

5757

Artificial
Neural

Network

Stepwise
MLR

Multivariate
Adaptive

Regression
Splines

Which modeling techniques 

were most effective?

58

Multiple
Linear

Regression

58

(ms) (ms)

Which modeling techniques 

were most effective?

59

Multiple
Linear

Regression

Stepwise
MLR

Multivariate
Adaptive
Regresion

Splines

Artifical
Neural

Network

59

(ms) (ms)

Model performance did not vary much

Best vs. Worst

D-Bound M-Bound
.11% RMSEtrain .08%
.89% RMSEtest .08%
.40 rank err .66

Performance implications of

component deployments

60

Slower deployments

Faster deployments
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Performance implications of

component deployments

61

Slower deployments

Faster deployments

∆  Performance Change:
Min to max performance

M-bound: 14%
D-bound: 25.7%
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CpuSteal

� CpuSteal: VM’s CPU core is ready to execute 

but the physical CPU core is busy

� Symptom of over provisioning physical servers

� Factors which cause CpuSteal:

1. Processors shared by too many busy VMs

2. Hypervisor kernel (Xen dom0) is occupying the CPU

3. VM’s CPU time share <100% for 1 or more cores, 

and 100% is needed for a CPU intensive workload. 
63

Noisy Neighbor (NN-Detect)

Detection Methodology

�Noisy neighbors cause resource contention and 
degrade performance of worker VMs
� Identify noisy neighbors by analyzing cpuSteal

�Detection method:
Step 1: Execute processor intensive workload across 

pool of VMs.

Step 2: Capture total cpuSteal for each VM for the 
workload.

Step 3: Calculate average cpuSteal for the workload 
(cpuStealavg). 

Identify NNs using application agnostic and 
specific thresholds…

64

VM Type 
Host CPU 

Intel Xeon 

Average R
2
 

linear reg. 

Average 

cpuSteal 

per core 

% with 

Noisy 

 Neighbors 

us-east-1c 

c3.large-2c E5-2680v2/10c .1753 2.35 0% 

m3.large-2c E5-2670v2/10c - 1.58 0% 

m1.large-2c E5-2650v0/8c .5568 7.62 12% 

m2.xlarge-2c X5550/4c .4490 310.25 18% 

m1.xlarge-4c E5-2651v2/12c .9431 7.25 4% 

m3.medium-1c E5-2670v2/10c .0646 17683.2
1
 n/a 

c1.xlarge-8c E5-2651v2/12c .3658 1.86 0% 

us-east-1d 

m1.medium-1c E5-2650v0/8c .4545 6.2 10% 

m2.xlarge-2c E5-2665v0/8c .0911 3.14 0% 

 

Amazon EC2 CpuSteal Analysis
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Amazon EC2 CpuSteal Analysis
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Test Configuration:

• Completed 4 x 1000 WEPS runs over ~5 hours
• ~50 VM pools (c1.xlarge 25, m3/m1.medium 60)
• Round robin load balancing of runs across pools
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Amazon EC2 CpuSteal Analysis
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Key Result #1

4 VM types had R2 > 0.44

m1.large, m2.xlarge, m1.xlarge, m1.medium

Key Result #2

Where cpuSteal could not be predicted

it did not exist. This hardware tended to be 
CPU core dense.  (e.g. 8, 10, or 12)

�Compared performance of small 5 VM pools

� 5 Noisy-Neighbor VMs

� 5 regular VMs

�WEPS: 10 x 100 runs

�RUSLE2: 10 x 660 runs

�Normalized results to regular VM pools

68

Noisy Neighbor

Performance Degradation

VM type Region WEPS RUSLE2 

m1.large 
E5-2650v0/8c 

 
us-east-1c 

117.68% 
df=9.866 

p=6.847·10
-8

 

125.42% 
df=9.003 
p=.016 

m2.xlarge 
X5550/4c 

us-east-1c 
107.3% 

df=19.159 
p=.05232 

102.76% 
df=25.34 

p=1.73·10
-11

 

c1.xlarge 
E5-2651v2/12c 

us-east-1c 
100.73% 
df=9.54 
p=.1456 

102.91% 
n.s. 

m1.medium 
E5-2650v0/8c 

us-east-1d 
111.6% 

df=13.459 
p=6.25·10

-8
 

104.32% 
df=9.196 

p=1.173·10
-5

 

 

EC2 Noisy Neighbor 

Performance Degradation
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EC2 Noisy Neighbor 

Performance Degradation
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Key Result #1

Maximum performance loss:

WEPS 18%, RUSLE2 25%

Key Result #2

3 VM types with significant performance loss (p <.05)

Average performance loss: WEPS/RUSLE2 ~ 9%
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Workload Cost Prediction

72

Example: 
Base VM-type: [5 x c3.xlarge] = 20 cores

• Scale the number of worker VMs
• Achieve equivalent performance using any VM type
• Load balance workload across VM pool

c3.xlarge ���� c1.medium

c3.xlarge ���� m1.large

c3.xlarge ���� m2.4xlarge

c3.xlarge ���� m2.2xlarge

c3.xlarge ���� m2.xlarge

c3.xlarge ���� m1.xlarge

c3.xlarge ���� m1.medium
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Workload Cost Prediction

� Predict number of VMs of alternate type(s) 

supporting equivalent workload execution time

� Execution within +/- 2 seconds using any base VM type

� Supports use of alternate VM types based on

� Public cloud: lowest price VM-type

� Private cloud: Most available or convenient VM-type

� Some VM types may be too slow to be viable 

73

Approach

�Harness Linux CPU time accounting principles

Workload wall clock time can be calculated:

Sum CPU resource utilization variables across the worker

VM pool, and divide by total # of CPU cores

74

Workloadtime = 
∑

������
�
	���
���	����
���	����������	

����������
�
	���������������	��������	���������

��
�����

VM-type Resource Variable Conversion 

Multiple Linear Regression

RU variable adjusted R2

m1.xlarge LR
adjusted R2

m1.xlarge MLR
adjusted R2

c1.medium MLR

cpuUsr .9924 .9993 .9983

cpuKrn .9464 .989 .9784

cpuIdle .7103 .9674 .9498

cpuIoWait .9205 .9584 .9725

adjusted R2

m2.xlarge MLR
adjusted R2

m3.xlarge MLR

cpuUsr .9987 .9992

cpuKrn .967 .9831

cpuIdle .9235 .9554

cpuIoWait .9472 .9831

75

Single
Linear

Regres.

Strong predictability
forms the crux of 

the approach

Multp
Linear

Regres.

VM-type Resource Variable Conversion 

Multiple Linear Regression

RU variable adjusted R2

m1.xlarge LR
adjusted R2

m1.xlarge MLR
adjusted R2

c1.medium MLR

cpuUsr .9924 .9993 .9983

cpuKrn .9464 .989 .9784

cpuIdle .7103 .9674 .9498

cpuIoWait .9205 .9584 .9725

adjusted R2

m2.xlarge MLR
adjusted R2

m3.xlarge MLR

cpuUsr .9987 .9992

cpuKrn .967 .9831

cpuIdle .9235 .9554

cpuIoWait .9472 .9831
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Single
Linear

Regres.

Strong predictability
forms the crux of 

the approach

Multp
Linear

Regres.

High R2 reflects our ability to use
c3.xlarge profiles to predict

resource requirements for the
same workload on other VM types

VM infrastructure predictions

for equivalent performance

Mean Absolute Error (# VMs)

SOA / VM-type PS-1 (RS-2)

WEPS .5

RUSLE2 .125

SWATDEG-STOC .5

SWATDEG-DET .125

m1.xlarge .25

c1.medium .5

m2.xlarge .25

m3.xlarge .25

Average .3125
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Workload hosting cost prediction
10,000 compute hours

SOA m1.xlarge c1.medium m2.xlarge

WEPS $38,400 $22,400 $24,600

RUSLE2 $38,400 $22,400 $24,600

SWATDEG-Stoc n/a $19,600 $24,600

SWATDEG-Det $38,400 $25,200 $28,700

Total $115,200 $89,600 $102,500

m3.xlarge Total error

WEPS $27,000 -$7,600

RUSLE2 $27,000 $0

SWATDEG-Stoc $27,000 -$8,600

SWATDEG-Det $27,000 +$1,300

Total $108,000 -$14,900 (3.59%)

78



10/22/2016

14

Workload hosting cost prediction
10,000 compute hours

SOA m1.xlarge c1.medium m2.xlarge

WEPS $38,400 $22,400 $24,600

RUSLE2 $38,400 $22,400 $24,600

SWATDEG-Stoc n/a $19,600 $24,600

SWATDEG-Det $38,400 $25,200 $28,700

Total $115,200 $89,600 $102,500
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SWATDEG-Det $27,000 +$1,300

Total $108,000 -$14,900 (3.59%)

79

Key Result

Maximum Cost ∆:

~28.6%  ($25,600 for 10,000 hours)

m1.xlarge (4-core VM) vs. c1.medium (2-core VM)
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Retrospective

� Infrastructure-as-a-service leads to the simplistic 
view that resource are homogeneous and scaling can 
infinitely provide linear performance gains

� This research has demonstrated many infrastructure 
management challenges in cloud computing

� Our results provide:

Methodologies and analytics to support application 
performance improvements while reducing 
infrastructure hosting costs

Enabling us to do more with less!
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Future Directions   (1/5)

� Optimizing performance and cost using new 
workloads
� Bioinformatics (Yeung-Rhee)

� Machine Learning (DeCock)

� Geospatial (Ali)

� Cyber-Physical IoT (Tolentino)

� Big Data analytic workloads (Teredesai)

� eScience Institute (UW Seattle)

� Heavy I/O, Heavy processing, Long lifetime

� Infrastructure management improvements for Big 
Data system performance
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Future Directions   (2/5)

�Characterize different technologies

�Harness performance modeling

�Support tool development:

What is the best infrastructure for my workload?

What is the cost of deployment?

�Docker, CoreOS/Rocket, KVM, XEN

�Cost and performance of IaaS, PaaS, SaaS
What service level is best for my workload?
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Future Directions   (3/5)

�Large scale public cloud resource 

contention study

�What trends and usage patterns emerge 

over time?

�How can we harness cloud usage data to 

best improve application performance 

while reducing hosting costs?
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Future Directions   (4/5)

�Continuous application deployment

�Reactive component composition

�Using OS containers (Docker, LXC)

�How can deployments adapt to to resource 

contention?  
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Future Directions   (5/5)

�Harness and develop hybrid, federated, 
mobile, and ad-hoc cloud infrastructures

� To build resilient, scalable infrastructures using 
heterogeneous devices (IoT)

� How do we transparently provide resource 
elasticity, workload migration, and high 
availability with diverse clouds to end users?

�Support green computing goals:
� Opportunistic workload consolidation and 

migration to the most sustainable, economical, 
and energy efficient resources
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