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] Node.js 12.x

Serverless: Function-as-a-Service

» Developers create small applications called
micro-services in a selection of supported
languages by the cloud provider.

» Cloud providers automatically scale and manage
cloud infrastructure instead of developers.

The cost of FaaS:
A + (Function Runtime)x (Memory:Setting) x (Price)

« Billed only:forruntimelused:

Basic information

Function name
Enter a name that describes the purpose of your function.

I helloCBDComm I

Use only letters, numbers, hyphens, or underscores with no spaces.

Runtime Info
Choose the language to use to write your function.

|Go1.x a |

Latest supported

.NET Core 3.1 (C#/PowerShell) rwhen you add triggers.

[ cotx |

Java 11

Python 3.8 Cancel
Ruby 2.7

Other supported
.NET Core 2.1 (C#/PowerShell)
Java 8

Node.js 10.x
Python 2.7

Create function
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Research Questions

RQ-1: (Performance) How does the choice of programming
language (Java, Go, Python, Node.js) impact the overall
performance and throughput of a serverless data processing
pipeline?
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RQ-2: (Scalability) How does programming language choice
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when processing many concurrent data payloads?

RQ-3: (Infrastructure State) How does the choice of
programming language impact cold FaaS performance
compared to warm FaaS performance for a data processing
pipeline?




Research Questions

RQ-3: (Infrastructure State) How does the choice of
programming language impact cold FaaS performance
compared to warm FaaS performance for a data processing
pipeline?

RQ-4: (Memory/Cost) How does performance vary for a
serverless data processing pipeline across alternate memory:.
settings for implementations in different languages.
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Serverless Applicatig&énalytics Framework
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Transform-Load-Query Pipeline

Sy
Client || ) A
» | SV |
{E_ Transform va
/\:
|||n 71
Load \
Query Aurora Bucket
We developed a three-tunction data processing pipeline creating
functionallViidentical versions in Java, Go Nodelis and Rvthon

Pulls CSV data from Amazon S3
Removes duplicate rows

Adds new columns

Calculates aggregate data

Saves data back to S3




« Pulls transformed CSV data from S3
» Breaks dataset into small batches

+ Loads data onto Amazon Aurora
Serverless MySQL database
using insert SQL queries

Executes 5 aggregate queries
Results combined with JOIN query

Saves results back to S3

Additionally executes SELECT * on all data
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: o
Query Aurora Bucket

Static Code Analysis

Service Cloud Service Usage

S3 Get/Put

S3 Get/Put

S3 Get/Put

S3 Get/Put
S3 Get, DB Conn x1
S3 Get, DB Conn x1
S3 Get, DB Conn x1
S3 Get, DB Conn x1
S3 Put, DB Conn x2
S3 Put, DB Conn x2
S3 Put, DB Conn x2
S3 Put, DB Conn x2
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Transform

Transform

Transform

Transform
Load
Load
Load
Load

Query
Query
Query
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Code Available at github.com/wlloyduw/FaaSProgLangComp
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Experiment 1: Overall Performance Comparison

Compare function runtime across different workload sizes:
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Hybrid Ripeline outperformed Java by:17%, Go by.37%, Rython by.81%, and Node.js by.129%.
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Compare function runtime as the number. of.concurrent calls is increased.




Python Java = Go NodeJS.l‘:
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Experiment 3: Cold/Warm Performance

y | |

Compare function latency.between cold and warm FaaS Infrastructure.

50




Go Java = Python " Node.js

Additional Latency (ms)

300
Transform Load Query.

Go: 463 ms, Java: 684 ms, Rython 602 ms, Node.js 645 ms

Experiment 4: Memory Configuration Comparison

Compare FaaS performance scaling as memory. setting is changed.
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Conclusions

RQ-1: (Performance) How does the choice of programming
language (Java, Go, Python, Node.js) impact the overall

5 I I performance and throughput of a serverless data processing
pipeline?

For a single language, Java offered the best performance,
outperforming Node.js by 94%. The fastest pipeline used a
hybrid combination of both Go and Java functions.




Conclusions

RQ-2: (Scalability) How does programming language choice
impact the scalability of a serverless data processing pipeline
when processing many concurrent data payloads?

All languages performed similarly with Node.js performing
negatively for workloads with higher concurrency.

Conclusions

RQ-3: (Infrastructure State) How does the choice of

programming language impact cold FaaS performance

compared to warm FaaS performance for a data processing
% pipeline?

Java, Python, and Node.js had similar latency, while Go had
about 33% less latency than Java.




Conclusions

RQ-4: (Memory/Cost) How does performance vary for a
serverless data processing pipeline across alternate memory
settings for implementations in different languages.

Performance scaled approximately linearly for memory: sizes
up to 1.5 GBs for all pipelines. Beyond 1.5 GB, no major.
performance improvements were observed.




Thank You for Watching

Questions or comments?
Please email:
rcording@uw.edu or wlloyd@uw.edu

Download Serverless Application Analytics Framework
github.com/wlloyduw/saaf
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