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Serverless: Function-as-a-Service
• Developers create small applications called  

micro-services in a selection of supported 
languages by the cloud provider. 

• Cloud providers automatically scale and manage 
cloud infrastructure instead of developers.
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λ
The cost of FaaS: 

• (Function Runtime) x (Memory Setting) x (Price) 

• Billed only for runtime used. 

6



Outline

• Background and Motivation 

• Research Questions 

• Serverless Application Analytics Framework (SAAF) 

• TLQ Pipeline and Static Code Analysis 

• Experiments and Results 

• Conclusions

7

Research Questions

RQ-1: (Performance) How does the choice of programming 
language (Java, Go, Python, Node.js) impact the overall 
performance and throughput of a serverless data processing 
pipeline? 

8



Research Questions

RQ-1: (Performance) How does the choice of programming 
language (Java, Go, Python, Node.js) impact the overall 
performance and throughput of a serverless data processing 
pipeline? 

9

RQ-2: (Scalability) How does programming language choice 
impact the scalability of a serverless data processing pipeline 
when processing many concurrent data payloads? 
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RQ-3: (Infrastructure State) How does the choice of 
programming language impact cold FaaS performance 
compared to warm FaaS performance for a data processing 
pipeline? 

RQ-4: (Memory/Cost) How does performance vary for a 
serverless data processing pipeline across alternate memory 
settings for implementations in different languages. 
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Serverless Application Analytics Framework
(SAAF)
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We developed a three-function data processing pipeline creating 
functionally identical versions in Java, Go, Node.js, and Python.

Transform-Load-Query Pipeline
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• Pulls CSV data from Amazon S3 

• Removes duplicate rows 

• Adds new columns 

• Calculates aggregate data 

• Saves data back to S3
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• Pulls transformed CSV data from S3 

• Breaks dataset into small batches 

• Loads data onto Amazon Aurora 
Serverless MySQL database  
using insert SQL queries
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• Executes 5 aggregate queries 

• Results combined with JOIN query 

• Saves results back to S3 

• Additionally executes SELECT * on all data
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Static Code Analysis

Code Available at github.com/wlloyduw/FaaSProgLangComp

Service Lang Funcs Vars SLOC Loops Cloud Service Usage

Transform Java 3 40 86 2 S3 Get/Put

Transform Python 3 28 64 3 S3 Get/Put

Transform Go 3 30 77 1 S3 Get/Put

Transform Node.js 3 24 96 1 S3 Get/Put

Load Java 3 25 77 2 S3 Get, DB Conn x1

Load Python 3 21 57 3 S3 Get, DB Conn x1

Load Go 3 15 65 1 S3 Get, DB Conn x1

Load Node.js 4 18 83 1 S3 Get, DB Conn x1

Query Java 4 36 111 7 S3 Put, DB Conn x2

Query Python 5 44 96 9 S3 Put, DB Conn x2

Query Go 4 34 104 8 S3 Put, DB Conn x2

Query Node.js 5 17 74 1 S3 Put, DB Conn x2
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Experiment 1: Overall Performance Comparison
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Compare function runtime across different workload sizes. 
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Hybrid Pipeline outperformed Java by 17%, Go by 37%, Python by 81%, and Node.js by 129%.
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Transform Load Query

Experiment 2: Scalability Performance Testing
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Compare function runtime as the number of concurrent calls is increased. 
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Experiment 3: Cold/Warm Performance
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Compare function latency between cold and warm FaaS Infrastructure. 
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Go: 463 ms, Java: 684 ms,  Python 602 ms, Node.js 645 ms

Experiment 4: Memory Configuration Comparison
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Compare FaaS performance scaling as memory setting is changed. 
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Conclusions

RQ-1: (Performance) How does the choice of programming 
language (Java, Go, Python, Node.js) impact the overall 
performance and throughput of a serverless data processing 
pipeline? 
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For a single language, Java offered the best performance, 
outperforming Node.js by 94%. The fastest pipeline used a 
hybrid combination of both Go and Java functions. 



Conclusions
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RQ-2: (Scalability) How does programming language choice 
impact the scalability of a serverless data processing pipeline 
when processing many concurrent data payloads? 

All languages performed similarly with Node.js performing 
negatively for workloads with higher concurrency. 

Conclusions
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RQ-3: (Infrastructure State) How does the choice of 
programming language impact cold FaaS performance 
compared to warm FaaS performance for a data processing 
pipeline? 

Java, Python, and Node.js had similar latency, while Go had 
about 33% less latency than Java. 



Conclusions
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RQ-4: (Memory/Cost) How does performance vary for a 
serverless data processing pipeline across alternate memory 
settings for implementations in different languages. 

Performance scaled approximately linearly for memory sizes 
up to 1.5 GBs for all pipelines. Beyond 1.5 GB, no major 
performance improvements were observed. 
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Questions or comments? 
Please email: 

rcording@uw.edu or wlloyd@uw.edu 

Download Serverless Application Analytics Framework 
github.com/wlloyduw/saaf 


