NSFE

Implications of Programming Language
Selection for Serverless Data Processing
Pipelines
Robert Cordingly, Hanfei Yu, Varik Hoang, David Perez, David Foster,
Zohreh Sadeghi, Rashad Hatchett, Wes Lloyd

August 17-24, 2020

School ofiEngineering'andiTechnology:

Outline

» Background and Motivation

« Research Questions

» Serverless Application Analytics Framework (SAAF)
» TLQ Pipeline and Static Code Analysis
» Experiments and Results

« Conclusions

] Node.js 12.x

Serverless: Function-as-a-Service

» Developers create small applications called
micro-services in a selection of supported
languages by the cloud provider.

» Cloud providers automatically scale and manage
cloud infrastructure instead of developers.

The cost of FaaS:
A + (Function Runtime)x (Memory:Setting) x (Price)

« Billed only:forruntimelused:

Basic information

Function name
Enter a name that describes the purpose of your function.

I helloCBDComm I

Use only letters, numbers, hyphens, or underscores with no spaces.

Runtime Info
Choose the language to use to write your function.

|Go1.x a |

Latest supported

.NET Core 3.1 (C#/PowerShell) rwhen you add triggers.

[cotx |

Java 11

Python 3.8 Cancel
Ruby 2.7

Other supported
.NET Core 2.1 (C#/PowerShell)
Java 8

Node.js 10.x
Python 2.7

Create function

Outline

» Background and Motivation
» Research Questions
» Serverless Application Analytics Framework (SAAF)
» TLQ Pipeline and Static Code Analysis
« Experiments and Results

« Conclusions

Research Questions

RQ-1: (Performance) How does the choice of programming
language (Java, Go, Python, Node.js) impact the overall
performance and throughput of a serverless data processing
pipeline?

Research Questions

RQ-1: (Performance) How does the choice of programming
language (Java, Go, Python, Node.js) impact the overall
performance and throughput of a serverless data processing
pipeline?

RQ-2: (Scalability) How does programming language choice
impact the scalability of a serverless data processing pipeline
when processing many. concurrent data payloads?

Research Questions

RQ-2: (Scalability) How does programming language choice
impact the scalability of a serverless data processing pipeline
when processing many concurrent data payloads?

RQ-3: (Infrastructure State) How does the choice of
programming language impact cold FaaS performance
compared to warm FaaS performance for a data processing
pipeline?

Research Questions

RQ-3: (Infrastructure State) How does the choice of
programming language impact cold FaaS performance
compared to warm FaaS performance for a data processing
pipeline?

RQ-4: (Memory/Cost) How does performance vary for a
serverless data processing pipeline across alternate memory:.
settings for implementations in different languages.

Outline

» Background and Motivation
» Research Questions
» Serverless Application Analytics Framework (SAAF)
» TLQ Pipeline and Static Code Analysis
» Experiments and Results

« Conclusions

Serverless Applicatig&énalytics Framework

Example Output JSON:

The attributes collect can be customized by changing which functio Attributes Coll

ected by Each Function

more detailed descriptions of each variable and the functions that ¢ The amountof
. " Of data colecte ;
see the framework documentation for each language. functiong ected is detem .
ion: thode " "t need o b callog Y Which funciion
AAF in a Func : f 1F Y0u wouig jike 1, colnrr C2led. 1f some attribyt
H f ect every atyyj tributes are nop
Us“’\g S { - Core Attripyteg U, the inspocyayy me«::d:;,' then some
: ing the fran "version": 0.2 f § un aif
P simple importing o — - / Field
. F in a function isas ol be appel’\ded lang": "python", ! -
Using SAX tes collected by SAAF W dinto "Intel(R) Xeon(R) Processor @ 2.50G ‘ersion g, Version of Description
tribute \d be store 63 [| ten © SARF Frame
of code. A R is data coul 5 / 9 The work,
synchronous functions, thl. - ehed “vmuptime": 1551727835, [anguage of the function,
- 4 after the function i fini “uuid": "d241c618-78d8-48e2-9736-997dc1a031d4 " Thesenversigg
retrieve “vmID": "tiUCnA", [T T U pocn that th "™ WeN the function initializeqt gy
jon: "platform": "AWS Lambda" | . ® Inspector yag . "l Inspector. g .
ction: P U . ins; . initializeq | 0) is calleq,
Example Fun "newcontainer": 1, f PeCthmamero inms,
« "cpuUsrDelta": "904", f Fielq
i T o q
tor impor cpuNiceDelta i
from Inspec “cpuKrnDelta" e A unique igengis Description
. B er assigneq 1
i equest): "cpuldleDelta neWContaingr 9 containe
fFunction(r X ether a congar . i one g
et tor and collect da "cpulowaitDelta": "226" VMuptime Time wh container is neyy (g assigned uui) o .,OES Nt already gysy.
ec " ", len the ifit b
Init jalize the Insp cpulrgDelta": | © host baoteg i seconds g 35 been yseq before,
tor = 1nspector() "cpuSoftIrgDelt o, inspectcpy) %€ January 1, 1970 (i
inspec @ inspectAll() "vmcpustealDelt 1594", : epoch).
inspector: "frameworkRuntime": 35.72, Field
uHello Wo rld!" message: uhello "message": "Hello Fred Smith!", CPUType The mog Descrption
L ddAttribUte("“‘essage ' “runtime": 38.94 CPUMode) ‘el name of the cpy,.
inspector: ° } cpuUsr The mode Number of e cpy,
cted. i .
. no+uren attributes C?“f COuNian "Me SPent normally ayen. ..

Outline

» Background and Motivation
« Research Questions

» Serverless Application Analytics Framework (SAAF)

TLQ Pipeline and Static Code Analysis

» Experiments and Results

« Conclusions

Transform-Load-Query Pipeline

Sy
Client ||) A
» | SV |
{E_ Transform va
/\:
|||n 71
Load \
Query Aurora Bucket
We developed a three-tunction data processing pipeline creating
functionallViidentical versions in Java, Go Nodelis and Rvthon

Pulls CSV data from Amazon S3
Removes duplicate rows

Adds new columns

Calculates aggregate data

Saves data back to S3

« Pulls transformed CSV data from S3
» Breaks dataset into small batches

+ Loads data onto Amazon Aurora
Serverless MySQL database
using insert SQL queries

Executes 5 aggregate queries
Results combined with JOIN query

Saves results back to S3

Additionally executes SELECT * on all data

Clier\t "In

E Transform

) S3
: o
Query Aurora Bucket

Static Code Analysis

Service Cloud Service Usage

S3 Get/Put

S3 Get/Put

S3 Get/Put

S3 Get/Put
S3 Get, DB Conn x1
S3 Get, DB Conn x1
S3 Get, DB Conn x1
S3 Get, DB Conn x1
S3 Put, DB Conn x2
S3 Put, DB Conn x2
S3 Put, DB Conn x2
S3 Put, DB Conn x2

W

Transform

Transform

Transform

Transform
Load
Load
Load
Load

Query
Query
Query

W | |] B W] W W] W W W

Query

Code Available at github.com/wlloyduw/FaaSProgLangComp

Outline

» Background and Motivation
- Research Questions
» Serverless Application Analytics Framework (SAAF)
» TLQ Pipeline and Static Code Analysis
» Experiments and Results

« Conclusions

Experiment 1: Overall Performance Comparison

Compare function runtime across different workload sizes:

Hybrid | 433
Java I $31
Go I $52
Python I 739
Node.js Il 719
Hybrid [|
NEVZ I
Gol |
Python I B
Node.js I ||
Hybrid I

Go |

Workload / Language

00

9,6

8,458
Il Il Il 1 | Il Il L | Il Il L 1‘
12,000° 24,000° 36,000 48,000 60,000 72,000 84,000 96,000

Python B
Node.js
Hybrid B
Java W
Go |
Python
Node.js
Hybrid I
Go M
Java
Python 481

e

=2
o
=
o)
c
©
|
~
T
(1]
<
=
=
=

12,000 24,000 36,000 48,000 60,000 72,000 84,000 96,000
Runtime (ms)

Hybrid Ripeline outperformed Java by:17%, Go by.37%, Rython by.81%, and Node.js by.129%.

cpuUser B cpuSoftiIRQ ™ cpuKernel B cpuldle

Transform Load

(2]
©
c
(©)
(S
(<})
(7p)

Compare function runtime as the number. of.concurrent calls is increased.

Python Java = Go NodeJS.l‘:

Pipeline Runtime (ms)

|

15 20 25 30 35 40 45
Concurrency/Parallel Invocations

Experiment 3: Cold/Warm Performance

y | |

Compare function latency.between cold and warm FaaS Infrastructure.

50

Go Java = Python " Node.js

Additional Latency (ms)

300
Transform Load Query.

Go: 463 ms, Java: 684 ms, Rython 602 ms, Node.js 645 ms

Experiment 4: Memory Configuration Comparison

Compare FaaS performance scaling as memory. setting is changed.

CPU User Time by Memory Setting CPU Idle Time by Memory Setting

Go Java = Python Node.js Go Java = Python Node.js
| 100

75

50

Seconds
Seconds

: \
512 1024 1536 2048 2560 3072 512 1024 1586 2048 2560 3072
Memory Setting (MBs) Memory Setting (MBs)

|
25 e

Go Java = Python

({0}
(@)
2

Scaled Function Speed (%

1(0[0]0) 1500 200]0) 4510]0)
Memory Setting (MBs)

Outline

Background and Motivation
Research Questions
Serverless Application Analytics Framework (SAAF)

TLQ Pipeline and Static Code Analysis

« Experiments and Results

* Conclusions

Conclusions

RQ-1: (Performance) How does the choice of programming
language (Java, Go, Python, Node.js) impact the overall

5 I I performance and throughput of a serverless data processing
pipeline?

For a single language, Java offered the best performance,
outperforming Node.js by 94%. The fastest pipeline used a
hybrid combination of both Go and Java functions.

Conclusions

RQ-2: (Scalability) How does programming language choice
impact the scalability of a serverless data processing pipeline
when processing many concurrent data payloads?

All languages performed similarly with Node.js performing
negatively for workloads with higher concurrency.

Conclusions

RQ-3: (Infrastructure State) How does the choice of

programming language impact cold FaaS performance

compared to warm FaaS performance for a data processing
% pipeline?

Java, Python, and Node.js had similar latency, while Go had
about 33% less latency than Java.

Conclusions

RQ-4: (Memory/Cost) How does performance vary for a
serverless data processing pipeline across alternate memory
settings for implementations in different languages.

Performance scaled approximately linearly for memory: sizes
up to 1.5 GBs for all pipelines. Beyond 1.5 GB, no major.
performance improvements were observed.

Thank You for Watching

Questions or comments?
Please email:
rcording@uw.edu or wlloyd@uw.edu

Download Serverless Application Analytics Framework
github.com/wlloyduw/saaf

4

This research is'supported by, NSE Advanced Cyberinfrastructure Research Program (©OAC-1849970), NIH
grant RO1GM126019, and the AWS Cloud Credits for Research program.

