
Implications of Programming Language
Selection for Serverless Data Processing

Pipelines

August 17-24, 2020

School of Engineering and Technology
University of Washington Tacoma

CBDCom 2020: IEEE International Conference on Cloud and Big Data

Robert Cordingly, Hanfei Yu, Varik Hoang, David Perez, David Foster,
Zohreh Sadeghi, Rashad Hatchett, Wes Lloyd

1

Outline

• Background and Motivation

• Research Questions

• Serverless Application Analytics Framework (SAAF)

• TLQ Pipeline and Static Code Analysis

• Experiments and Results

• Conclusions

2

3

Serverless: Function-as-a-Service
• Developers create small applications called

micro-services in a selection of supported
languages by the cloud provider.

• Cloud providers automatically scale and manage
cloud infrastructure instead of developers.

5

λ
The cost of FaaS:

• (Function Runtime) x (Memory Setting) x (Price)

• Billed only for runtime used.

6

Outline

• Background and Motivation

• Research Questions

• Serverless Application Analytics Framework (SAAF)

• TLQ Pipeline and Static Code Analysis

• Experiments and Results

• Conclusions

7

Research Questions

RQ-1: (Performance) How does the choice of programming
language (Java, Go, Python, Node.js) impact the overall
performance and throughput of a serverless data processing
pipeline?

8

Research Questions

RQ-1: (Performance) How does the choice of programming
language (Java, Go, Python, Node.js) impact the overall
performance and throughput of a serverless data processing
pipeline?

9

RQ-2: (Scalability) How does programming language choice
impact the scalability of a serverless data processing pipeline
when processing many concurrent data payloads?

Research Questions

10

RQ-2: (Scalability) How does programming language choice
impact the scalability of a serverless data processing pipeline
when processing many concurrent data payloads?

RQ-3: (Infrastructure State) How does the choice of
programming language impact cold FaaS performance
compared to warm FaaS performance for a data processing
pipeline?

Research Questions

11

RQ-3: (Infrastructure State) How does the choice of
programming language impact cold FaaS performance
compared to warm FaaS performance for a data processing
pipeline?

RQ-4: (Memory/Cost) How does performance vary for a
serverless data processing pipeline across alternate memory
settings for implementations in different languages.

Outline

• Background and Motivation

• Research Questions

• Serverless Application Analytics Framework (SAAF)

• TLQ Pipeline and Static Code Analysis

• Experiments and Results

• Conclusions

12

Serverless Application Analytics Framework
(SAAF)

13

Outline

• Background and Motivation

• Research Questions

• Serverless Application Analytics Framework (SAAF)

• TLQ Pipeline and Static Code Analysis

• Experiments and Results

• Conclusions

14

15

We developed a three-function data processing pipeline creating
functionally identical versions in Java, Go, Node.js, and Python.

Transform-Load-Query Pipeline

16

• Pulls CSV data from Amazon S3

• Removes duplicate rows

• Adds new columns

• Calculates aggregate data

• Saves data back to S3

17

• Pulls transformed CSV data from S3

• Breaks dataset into small batches

• Loads data onto Amazon Aurora
Serverless MySQL database
using insert SQL queries

18

• Executes 5 aggregate queries

• Results combined with JOIN query

• Saves results back to S3

• Additionally executes SELECT * on all data

19

20

Static Code Analysis

Code Available at github.com/wlloyduw/FaaSProgLangComp

Service Lang Funcs Vars SLOC Loops Cloud Service Usage

Transform Java 3 40 86 2 S3 Get/Put

Transform Python 3 28 64 3 S3 Get/Put

Transform Go 3 30 77 1 S3 Get/Put

Transform Node.js 3 24 96 1 S3 Get/Put

Load Java 3 25 77 2 S3 Get, DB Conn x1

Load Python 3 21 57 3 S3 Get, DB Conn x1

Load Go 3 15 65 1 S3 Get, DB Conn x1

Load Node.js 4 18 83 1 S3 Get, DB Conn x1

Query Java 4 36 111 7 S3 Put, DB Conn x2

Query Python 5 44 96 9 S3 Put, DB Conn x2

Query Go 4 34 104 8 S3 Put, DB Conn x2

Query Node.js 5 17 74 1 S3 Put, DB Conn x2

Outline

• Background and Motivation

• Research Questions

• Serverless Application Analytics Framework (SAAF)

• TLQ Pipeline and Static Code Analysis

• Experiments and Results

• Conclusions

21

Experiment 1: Overall Performance Comparison

22

Compare function runtime across different workload sizes.

23

24
Hybrid Pipeline outperformed Java by 17%, Go by 37%, Python by 81%, and Node.js by 129%.

25

Transform Load Query

Experiment 2: Scalability Performance Testing

26

Compare function runtime as the number of concurrent calls is increased.

27

Experiment 3: Cold/Warm Performance

28

Compare function latency between cold and warm FaaS Infrastructure.

29
Go: 463 ms, Java: 684 ms, Python 602 ms, Node.js 645 ms

Experiment 4: Memory Configuration Comparison

30

Compare FaaS performance scaling as memory setting is changed.

31

32

Outline

• Background and Motivation

• Research Questions

• Serverless Application Analytics Framework (SAAF)

• TLQ Pipeline and Static Code Analysis

• Experiments and Results

• Conclusions

33

Conclusions

RQ-1: (Performance) How does the choice of programming
language (Java, Go, Python, Node.js) impact the overall
performance and throughput of a serverless data processing
pipeline?

34

For a single language, Java offered the best performance,
outperforming Node.js by 94%. The fastest pipeline used a
hybrid combination of both Go and Java functions.

Conclusions

35

RQ-2: (Scalability) How does programming language choice
impact the scalability of a serverless data processing pipeline
when processing many concurrent data payloads?

All languages performed similarly with Node.js performing
negatively for workloads with higher concurrency.

Conclusions

36

RQ-3: (Infrastructure State) How does the choice of
programming language impact cold FaaS performance
compared to warm FaaS performance for a data processing
pipeline?

Java, Python, and Node.js had similar latency, while Go had
about 33% less latency than Java.

Conclusions

37

RQ-4: (Memory/Cost) How does performance vary for a
serverless data processing pipeline across alternate memory
settings for implementations in different languages.

Performance scaled approximately linearly for memory sizes
up to 1.5 GBs for all pipelines. Beyond 1.5 GB, no major
performance improvements were observed.

38

Thank You for Watching

This research is supported by NSF Advanced Cyberinfrastructure Research Program (OAC-1849970), NIH
grant R01GM126019, and the AWS Cloud Credits for Research program.

39

Questions or comments?
Please email:

rcording@uw.edu or wlloyd@uw.edu

Download Serverless Application Analytics Framework
github.com/wlloyduw/saaf

