
FaaSET: A Jupyter notebook to streamline
every facet of serverless development
Robert Cordingly, Wes Lloyd
rcording@uw.edu, wlloyd@uw.edu

April 9th 2022

School of Engineering and Technology
University Of Washington, Tacoma

5th Workshop on Hot Topics in Cloud Computing Performance (HotCloudPerf 2022)
1

Outline

● Introduction
● Supporting Tools
● FaaSET Workflow

○ Develop, Deploy, Test
○ Execute Experiments
○ Data Analysis

● Evaluation
● Conclusions

2

Serverless Computing

Serverless Function-as-a-Service platforms offer many appealing features:

● No infrastructure management
● Automatic scaling
● Fine grained usage-based billing models

But packaging, deploying, testing and running experiments across multiple FaaS
platforms leads to unique challenges:

● Vendor lock-in requires specific tools, services, application design

3

Hub

4

 + FaaSET

5

Outline

● Introduction
● Supporting Tools
● FaaSET Workflow

○ Develop, Deploy, Test
○ Execute Experiments
○ Data Analysis

● Evaluation
● Conclusions

6

7

SAAF
SAAF supports profiling Function-as-a-Service (FaaS)
workload performance, resource utilization, and
infrastructure enabling accurate performance and cost
characterizations.

SAAF supports profiling deployments to AWS Lambda,
Google Cloud Functions, IBM Cloud Functions,
OpenFaaS, and Azure Functions written in Java, Python,
Javascript, and BASH.

FaaS Runner
FaaS Runner is a client-side Python application used in conjunction
with SAAF and the FaaSET notebook.

FaaS Runner can invoke large batches of functions synchronously,
or asynchronously and orchestrate complex pipelines of functions.

Experiments are defined using functions and experiment files that
explain how functions show be executed and how the results from
SAAF should be processed.

Supporting Tools

2018
SAAF Java

2020
SAAF Python,
Node.js, Bash

2022
FaaSET

2019
FaaS Runner

2021
SAAF Jupyter

Integration

Outline

● Introduction
● Supporting Tools
● FaaSET Workflow

○ Develop, Deploy, Test
○ Execute Experiments
○ Data Analysis

● Evaluation
● Conclusions

8

Function-as-a-Service Experiment Toolkit (FaaSET)

FaaSET provides aggregated tools to write, deploy, test, and run experiments on
FaaS platforms all in a unified Jupyter Notebook workspace.

FaaSET supports many commercial and open source FaaS platforms:

● AWS Lambda (x86 and ARM64 with or w/o Docker Containers)
● Google Cloud Functions (Gen 1 and 2)
● IBM Cloud Functions/OpenWhisk (with or w/o Docker Containers)
● Azure Cloud Functions
● OpenFaaS

9

Execute Experiments

Serverless
Function

R
esponses

SAAF

Data

● Invoke Functions
● Reconfigures Functions
● Compiles Results
● Exports to Notebook

Profile

R
eq

ue
st

s

Develop, Deploy,
and Test Functions

λ

λ

λ

D
ep

lo
y

λ

λ

1 2

Process and
Visualize Results

3

λ

Output

Te
st

λ

λ

Input

G
en

er
at

e

FaaS Platform

10

def hello_world(request, context):

 return {"message": "Hello " + str(request["name"]) + "!"}

Function Development and Deployment with FaaSET

11

def hello_world(request, context):

 return {"message": "Hello " + str(request["name"]) + "!"}

Function Development and Deployment with FaaSET

import FaaSET

@FaaSET.cloud_function(platform="AWS", config={"memory":256})

def hello_world(request, context):

 return {"message": "Hello " + str(request["name"]) + "!"}

12

def hello_world(request, context):

 return {"message": "Hello " + str(request["name"]) + "!"}

Function Development and Deployment with FaaSET

import FaaSET

@FaaSET.cloud_function(platform="AWS", config={"memory":256})

def hello_world(request, context):

 return {"message": "Hello " + str(request["name"]) + "!"}

13

def hello_world(request, context):

 return {"message": "Hello " + str(request["name"]) + "!"}

Function Development and Deployment with FaaSET

import FaaSET

@FaaSET.cloud_function(platform="AWS", config={"memory":256})

def hello_world(request, context):

 return {"message": "Hello " + str(request["name"]) + "!"}

hello_world({'name': 'Bob'}, None)

>> Deploying to AWS Lambda…

>> {"message": "Hello Bob!"}

14

def hello_world(request, context):

 return {"message": "Hello " + str(request["name"]) + "!"}

Function Development and Deployment with FaaSET

import FaaSET

@FaaSET.cloud_function(platform="AWS", config={"memory":256})

def hello_world(request, context):

 return {"message": "Hello " + str(request["name"]) + "!"}

hello_world({'name': 'Bob'}, None)

>> Deploying to AWS Lambda…

>> {"message": "Hello Bob!"}

15

Write Once Deploy Across Multiple Platforms

@cloud_function(platform="AWS")

def hello_world(request, context):

 return {"message": "Hello Lambda!"}

16

@cloud_function(platform="GCF")

def hello_world(request, context):

 return {"message": "Hello Google!"}

@cloud_function(platform="IBM")

def hello_world(request, context):

 return {"message": "Hello IBM!"}

@cloud_function(platform="Azure")

def hello_world(request, context):

 return {"message": "Hello Azure!"}

@cloud_function(platform="AWS ARM")

def hello_world(request, context):

 return {"message": "Hello Lambda!"}

@cloud_function(platform="OpenFaaS")

def hello_world(request, context):

 return {"message": "Hello OpenFaaS!"}

@cloud_function(platform="GCF Gen2")

def hello_world(request, context):

 return {"message": "Hello Google!"}

@cloud_function(platform="IBM Docker")

def hello_world(request, context):

 return {"message": "Hello IBM!"}

FaaSET Function Management Features:

17

● FaaSET tracks changes and only deploys
when functions are modified

● Supports a simplified function
development workflow using a Notebook
while also allowing full control over
function source code, packaging, and
deployment

● Invoke existing functions already deployed
in your notebooks

● Reconfigure functions on the fly without
rebuilding package/containers

● Functions are automatically defined on
startup allowing immediate access

FaaSET Function Management Features:

18

● FaaSET tracks changes and only deploys
when functions are modified

● Supports a simplified function
development workflow using a Notebook
while also allowing full control over
function source code, packaging, and
deployment

● Invoke existing functions already deployed
in your notebooks

● Reconfigure functions on the fly without
rebuilding package/containers

● Functions are automatically defined on
startup allowing immediate access

@FaaSET.cloud_function(platform="AWS")

def hello_world(request, context):

 return {"message": "Hello Bob!"}

hello_world({}, None)

hello_world({}, None)

>> Deploying to AWS Lambda…

>> {"message": "Hello Bob!"}

>> {"message": "Hello Bob!"}

@FaaSET.cloud_function(platform="AWS")

def hello_world(request, context):

 return {"message": "Hola Bob!"}

hello_world({}, None)

>> Deploying to AWS Lambda…

>> {"message": "Hola Bob!"}

Calling twice only
deploys on the first call

Redeploys after
function is changed

FaaSET Function Management:

19

● FaaSET tracks changes and only deploys
when functions are modified

● Supports a simplified function
development workflow using a Notebook
while also allowing full control over
function source code, packaging, and
deployment

● Invoke existing functions already deployed
in your notebooks

● Reconfigure functions on the fly without
rebuilding package/containers

● Functions are automatically defined on
startup allowing immediate access

FaaSET Function Management Features:

20

● FaaSET tracks changes and only deploys
when functions are modified

● Supports a simplified function
development workflow using a Notebook
while also allowing full control over
function source code, packaging, and
deployment

● Invoke existing functions already deployed
in your notebooks

● Reconfigure functions on the fly without
rebuilding package/containers

● Functions are automatically defined on
startup allowing immediate access

@cloud_function(platform="IBM",deploy=False)

def java_function(request, context):

 pass

@cloud_function(platform="Azure",deploy=False)

def nlp_pipeline(request, context):

 pass

@cloud_function(platform="GCF",deploy=False)

def imageprocessor(request, context):

 pass

@cloud_function(platform="OpenFaaS",deploy=F…

def node_info(request, context):

 pass

FaaSET Function Management Features:

21

● FaaSET tracks changes and only deploys
when functions are modified

● Supports a simplified function
development workflow using a Notebook
while also allowing full control over
function source code, packaging, and
deployment

● Invoke existing functions already deployed
in your notebooks

● Reconfigure functions on the fly without
rebuilding package/containers

● Functions are automatically defined on
startup allowing immediate access

FaaSET Function Management Features:

22

● FaaSET tracks changes and only deploys
when functions are modified

● Supports a simplified function
development workflow using a Notebook
while also allowing full control over
function source code, packaging, and
deployment

● Invoke existing functions already deployed
in your notebooks

● Reconfigure functions on the fly without
rebuilding package/containers

● Functions are automatically defined on
startup allowing immediate access

import FaaSET

>> Loading platforms…

>> Platforms: AWS, GCF, IBM, Azure, AWS Docker…

>> Loading functions…

>> Functions: hello_world, nlp_pipeline, node_info…

FaaSET.hello_world({}, None)

>> {"message": "Hola Bob!"}

Execute Experiments

Serverless
Function

R
esponses

SAAF

Data

● Invoke Functions
● Reconfigures Functions
● Compiles Results
● Exports to Notebook

Profile

R
eq

ue
st

s

Develop, Deploy,
and Test Functions

λ

λ

λ

D
ep

lo
y

λ

λ

1 2

Process and
Visualize Results

3

λ

Output

Te
st

λ

λ

Input

G
en

er
at

e

FaaS Platform

23

Experiments with FaaSET + FaaS Runner

24

● FaaSET includes the FaaS Runner
tool

● Define experiment parameters such
as number of runs, threads,
payloads, and call order

● Utilize FaaSETʼs reconfiguration tool
to automate complex experiments

● Results are imported into the
Notebook as a Pandas dataframes

λ

λ
λ

λ

λ
λ

λ
λ

λ

λ

λ

λ

λ

λ
λ

λ

λ

λ

Execute Experiments

Serverless
Function

R
esponses

SAAF

Data

● Invoke Functions
● Reconfigures Functions
● Compiles Results
● Exports to Notebook

Profile

R
eq

ue
st

s

Develop, Deploy,
and Test Functions

λ

λ

λ

D
ep

lo
y

λ

λ

1 2

Process and
Visualize Results

3

λ

Output

Te
st

λ

λ

Input

G
en

er
at

e

FaaS Platform

25

26

Serverless
Function

R
esponses

R
eq

ue
st

s

SAAF

Data

Profile

λ

λ

λ

λ

λ

FaaS Platform

Data Analysis with FaaSET + SAAF

● FaaSET integrates the Serverless
Application Analytics Framework

○ SAAF is placed in the deployment
package of the function

○ Collects information about the host
infrastructure, resource utilization
metrics, and FaaS platform

● Combining FaaSET and SAAF
improves accessibility of
observations into FaaS platforms
from a Jupyter Notebook:

○ Tenancy, warm/cold infrastructure,
latency, round-trip time, and more

FaaSET

27

Data Analysis in FaaSET

● Since FaaSET is designed to be used
inside Jupyter Notebooks, existing
libraries can be used for data
analysis:

○ Numpy
○ Pandas
○ Matplotlib
○ Plotly
○ Scikit-learn
○ Scipy

● FaaS Runner experiments directly
output results in Pandas dataframes

Outline

● Introduction
● Supporting Tools
● FaaSET Workflow

○ Develop, Deploy, Test
○ Execute Experiments
○ Data Analysis

● Evaluation
● Conclusions

28

Hosting FaaS Experiments

29

● To run experiments on FaaS platforms a host is required to invoke the
functions. This can be a local PC, powerful cloud virtual machine, or Jupyter
Notebook-as-a-Service platforms (e.g. Google Colaboratory).

● We compared the performance of running 1,000 concurrent function
invocations on AWS Lambda using a local PC (i9-9900k CPU, 1Gbps Network),
powerful EC2 instance (c5.metal), and the free tier of Google Colab.

Host CPU vCPUs Memory Network

PC i9-9900k @ 3.6 GHz 10 32 GBs ~1 Gbps

c5.metal Xeon 8275L @ 3 GHz 96 192 GBs 25 Gbps

Colab Xeon @ 2.2 Ghz 2 12 GBs Unknown

30

c5.metal: 450

Local PC: 230

Colab: 31

31

c5.metal: 345 ms

Local PC: 700 ms

Colab: 1400 ms

Outline

● Introduction
● Supporting Tools
● FaaSET Workflow

○ Develop, Deploy, Test
○ Execute Experiments
○ Data Analysis

● Evaluation
● Conclusions

32

Conclusions

33

● FaaSET provides many features for deploying, testing, and running experiments
on FaaS platforms.

○ FaaSETʼs goal is to provide a streamlined development environment for developers or researchers
running experiments on FaaS platforms.

● While Google Colaboratory has the worse performance, it is the easiest to set up,
is free, and has useful collaboration features making it great for small
experiments:
Try FaaSET by visiting: https://bit.ly/3DNVeOE

Note: FaaSET on Google Colaboratory only supports AWS Lambda

Thank You!

34

Get FaaSET on GitHub: https://github.com/wlloyduw/SAAF
Try FaaSET in Google Colab: https://bit.ly/3DNVeOE

Any Questions?

35

Get FaaSET on GitHub: https://github.com/wlloyduw/SAAF
Try FaaSET in Google Colab: https://bit.ly/3DNVeOE

FaaSET: A Jupyter notebook to streamline
every facet of serverless development
Robert Cordingly, Wes Lloyd
rcording@uw.edu, wlloyd@uw.edu

April 9th 2022

School of Engineering and Technology
University Of Washington, Tacoma

5th Workshop on Hot Topics in Cloud Computing Performance (HotCloudPerf 2022)
36

Results Summary

● The host evaluation experiment found:
○ Maximum concurrent function calls:

■ c5.metal: 450
■ i9 PC: 230
■ Google Colab: 31

○ Average total Latency:
■ c5.metal: 345 ms
■ i9 PC: 700 ms
■ Google Colab: 1400 ms

37

