

Research Challenges – WHERE

Where should infrastructure be provisioned?

October 27, 2014 Wes J. Llovd PhD Dissertation Defense

Research Chall	enges – WHERE
Service Isolation	Component Composition
Provisioning Variation	Server Consolidation
Multi-tenancy	Overprovisioning
	e Contention
October 27, 2014 Wes J. Lloyd PhD Dissertation Defe	ense 7

Research Questions (1/3)

DRQ-2: Performance modeling

What are the most important resource utilization variables and modeling techniques for predicting *service oriented application* (SOA) performance?

DRQ-3: Component composition

How does resource utilization and SOA performance vary relative to component composition across VMs?

October 27, 2014 Wes J. Lloyd PhD Dissertation Defense

Research Questions (2/3)

DRQ-4: VM placement implications

When dynamically scaling cloud infrastructure to address demand spikes how does VM placement impact SOA performance?

DRQ-5: Noisy neighbors

How can <u>noisy neighbors</u>, multi-tenant VMs that cause resource contention be detected? What performance implications result when ignoring them?

October 27, 2014 Wes J. Lloyd PhD Dissertation Defense

13

Virtual Machine (VM) Placement as "Bin Packing Problem" Bell's Number Bell's Number 9 21,147 0 0 VINTESOURCE UTILIZATION VARIES Component requirements vary

Why Gaps Exist

October 27, 2014 Wes J. Llovd PHD Dissertation Defense

achos & Gan

- Public clouds
 - Research is time/cost prohibitive
 - Hardware abstraction: Users are not in control
 - Rapidly changing system implementations
- Private clouds: systems still evolving
- Performance models (large problem space)
- Virtualization misunderstood or overlooked

Primary Research Contributions

• In the context of SOA migration to laaS Clouds

- Resource utilization modeling to predict component composition performance
- VM placement improvement to reduce contention
- Private IaaS: LeastBusy VM placement
- Public/Private IaaS: Noisy-Neighbor Detection, Avoid heterogeneous VM type implementations
- Workload cost prediction methodology for infrastructure alternatives to reduce hosting costs

October 27, 2014 Wes J. Lloyd PhD Dissertation Defense

Outline Introduction Research goals Challenges Research questions Background Research contributions Supporting Infrastructure Research Contributions Performance Modeling for Component Composition VM Placement to Reduce Resource Contention

22

- Workload Cost Prediction Methodology
- Conclusions

October 27, 2014 Wes J. Lloyd PhD Dissertation Defense

Which modeling techniques were most effective?

- Multiple Linear Regression (MLR)
- Stepwise Multiple Linear Regression (MLR-step)
- Multivariate Adaptive Regression Splines (MARS)
- Artificial Neural Network (ANNs)

October 27, 2014 Wes J. Llovd PhD Dissertation Defense

36

Which modeling techniques were most effective? Multiple Linear Model Type Adj. R² RMSE_{train} RMSE_{test} Regression D-bound MLR 0.9107 4532.85 44904 Stepwise Multivariate Adaptive Regresion MLR 0.8546 616.98 807.34 M-bound D-bound MLR-step 0.9118 4589.27 43919 M-bound MLR-step 0.8571 621.41 799.22 Solines D-bound MARS 0.918 4472.32 45137 Artifical Neural M-bound MARS 0.8718 596.45 825.34 Network D-bound ANN n/a 4440.03 44094 ANN 595.49 800.71 M-bound n/a October 27, 2014 Wes J. Llovd PhD Dissertation Defense 37

CpuSteal Noisy Neighbor **Detection Methodology (NN-Detect)** • Noisy neighbors cause resource contention and degrade performance of worker VMs Identify noisy neighbors by analyzing cpuSteal • Detection method: Step 1: Execute processor intensive workload across pool of worker VMs. Capture total cpuSteal for each worker VM Step 2: for the workload. Step 3: Calculate average cpuSteal for the workload (cpuSteal_{avg}). Identify NNs using application agnostic and specific thresholds... er 27, 2014 Wes J. Lloyd PhD Dissertation Defen

CpuSteal Noisy Neighbor **Detection Methodology (NN-Detect)**

Noise Neighbor Thresholds

Application agnostic: Minimum of 2x average cpuSteal for training workloads

Workload specific:

Select SOA workload which stresses the resource of concern (e.g. CPU-bound, disk-bound, network-bound) Observe workloads to identify minimum cpuSteal thresholds for performance degradation

A Noisy Neighbor's cpuSteal exceeds both thresholds.

47

October 27, 2014 Wes J. Lloyd PhD Dissertation Defense

zon EC	С2 Ср	uSt	e al I	Ana
VM type	Backing CPU	Average R ² linear reg.	Average cpuSteal per core	% with Noisy Neighbors
	us	-east-1c		
c3.large-2c	E5-2680v2/10c	.1753	2.35	0%
m3.large-2c	E5-2670v2/10c	-	1.58	0%
m1.large-2c	E5-2650v0/8c	.5568	7.62	12%
m2.xlarge-2c	X5550/4c	.4490	310.25	18%
m1.xlarge-4c	E5-2651v2/12c	.9431	7.25	4%
m3.medium-1c	E5-2670v2/10c	.0646	17683.2 ¹	n/a
c1.xlarge-8c	E5-2651v2/12c	.3658	1.86	0%
	us	-east-1d		
m1.medium-1c	E5-2650v0/8c	.4545	6.2	10%
m2.xlarge-2c	E5-2665v0/8c	.0911	3.14	0%

EC2 Noisy Neighbor **Performance Degradation** VM type Region WEPS RUSLE2 m1.large E5-2650v0/8c 117.68% 125 42% df=9.866 p=6.847·10 us-east-1c df=9.003 p=.016 107.3% 102.76% m2.xlarge X5550/4c us-east-1c df=19,159 df=25.34 p=1.73·10⁻¹¹ p=.05232 100.73% 102.91% c1.xlarge E5-2651v2/12c us-east-1c df=9.54 p=.1456 n.s. 104.32% df=9.196 p=1.173·10⁻⁵ 111 6% m1.medium E5-2650v0/8c us-east-1d df=13.459 p=6.25.10⁻⁸ October 27, 2014 Wes J. Llovd PhD Dissertation Defense 50

Step 1: Train Resource Utilization Models

57

59

- Select representative SOA workloads
- Apples → Apples: Fix the # of CPU cores of worker VM pools
- Benchmark SOA workloads • Capture resource utilization profiles
- Train MLR-RU models
 Models convert RU for different VM-types

October 27, 2014 Wes J. Lloyd PhD Dissertation Defense

October 27, 2014 Wes J. Lloyd PhD Dissertation Defense

VM-type Resource Variable Conversion Multiple Linear Regression

RU variable		djusted R ² adjusted R ² .xlarge MLR c1.medium MLR
cpuUsr	.9924	.9993 .9983
cpuKrn	.9464 Single	.989 Multp .9784
cpuldle	.7103 Linear	.9674 Linear .9498
cpuloWait	.9205 Regres.	.9584 Regres. .9725
	adjusted R ² m2.xlarge MLR	adjusted R ² m3.xlarge MLR
cpuUsr	.9987	.9992
cpuKrn	.967 Strong	predictability 9831
cpuldle		the crux of 9554
cpuloWait	.9472 the a	approach ₉₈₃₁

Step 2: Profile workload resource utilization• Perform single profiling run to capture
resource utilization for a base VM-type
 $(VM_{base} = 5 \times c3.xlarge)$ Image: Image:

Step 4: Scale resource utilization profile

- "Virtually" scale up the # of worker VMs Calculate # of VMs required to "fit" workload execution into available wall clock time.
- Application agnostic, application aware heuristics

-	o 5: Se ource	elect utiliza	tion	pro	file	
• M	ust sele	ct RU p	rofile	with	suffici	ent <i>cpuldle</i> time
•	Convert	base typ	e cpul	<i>dle</i> tin	ne, the	n scale value
•	Applicati	ion agno	stic, a	pplicat	ion aw	are heuristics
•	Too low	cpuldle s	ugges	ts not	enougł	n wall clock time
VMs / cores	wall time- goal	available clock ticks	cpuUsr	cpuKrn	cpuldle	
5 / 20	94.076s	188152	221502	10231	-43581	
6 / 24	94.076s	225782	222533	10231	-6982	Clearly not enough
7 / 28	94.076s	263412	223565	10231	29616	Possibly not enough
8 / 32	94.076s	301043	224597	10231	66215	← Too much?
9 / 36	94.076s	338673	225629	10231	102813	
10 /40	94.076s	376304	226661	10231	139412	
October 2	, 2014 Wes J. I	loyd PhD Disse	rtation Defe	inse		62

Step 6: Select VM type to minimize cost

- Resource scaling and profile selection heuristics allow determination of the required # of VMs for different VM types for equivalent performance
- Cost calculation involves plugging in resource costs

	VM type	CPU cores	ECUs/core	RAM	Disk	Cost/hr.	
	c3.xlarge	4	3.5	7.5 GB	2x40 GB SDD	30¢	
	m1.xlarge	4	2	15 GB	4x420 GB	48¢	Multiply
,	c1.medium	2	2.5	1.7 GB	1x350 GB	14¢	by
	m2.xlarge	2	3.25	17.1 GB	1x420 GB	41¢	# of VM
	m3.xlarge	4	3.25	15 GB	2x40 GB SSD	45¢	
7, 2014	4 Wes J. Lloyd	l PhD Diss	ertation Defen	se			63

VMs required for equivalent performance Mean Absolute Error (# VMs)

SOA / VM-type	PS-1 (RS-1)	PS-2 (RS-1)	PS-1 (RS-2)	PS-2 (RS-2)
WEPS	.5	.5	.5	.5
RUSLE2	.25	0	.125	.125
SWATDEG-STOC	.75	.5	.5	.625
SWATDEG-DET	.25	.375	.125	.125
m1.xlarge	.375	.25	.25	.25
c1.medium	.875	.625	.5	.625
m2.xlarge	.25	.25	.25	.25
m3.xlarge	.25	.25	.25	.25
Average	.4375	.34375	.3125	.34375

SOA	m1.xlarge	c1.med	lium	m2.xlarge	
WEPS	\$3.84	\$2.24		\$2.46	
RUSLE2	\$3.84	\$2.24		\$2.46	
SWATDEG-Stoc	n/a \$1.96		6	\$2.46	
SWATDEG-Det	\$3.84	\$2.52		\$2.87	
Total	\$11.52	\$8.96		\$10.25	
	m3.xlarge			Total error	
WEPS	\$2.70			-\$.76	
RUSLE2	\$2.70			\$0	
SWATDEG-Stoc	\$2.70	-\$.86			
SWATDEG-Det	\$2.70			+\$.13	
Total	\$10.80		-5	\$1.49 (3.59%)	

Outline

- Introduction
 - Research goals
 - Challenges
 - Research questions
 - Background
 - Research contributions
- Supporting Infrastructure
- Research Contributions
 - Performance Modeling for Component Composition
 - VM Placement to Reduce Resource Contention
 - Workload Cost Prediction Methodology

Conclusions

October 27, 2014 Wes J. Lloyd PhD Dissertation Defense

66

Key Innovations

- Workload cost prediction methodology
 Infrastructure alternatives to reduce costs
- Resource utilization performance modeling
 Supports prediction of component compositions
- Noisy neighbor detection method
 SOA performance improvement
- Least-Busy VM placement
 Dynamic scaling improvement

October 27, 2014 Wes J. Lloyd PhD Dissertation Defense

Conclusions (1 of 3)

DRQ-2: Performance modeling

Best independent variables vary based on application profile characteristics. CPU-bound applications : *cpuUsr*, *cpuKrn*, *dswrites*. I/O-bound applications: *contextsw*, *dsr*, *dsreads*

DRQ-3: Component composition

Intuition is insufficient to determine best performant component compositions. Magnitude of performance variance depends on application profile characteristics. Performance variance of at least 15-25% is expected.

October 27, 2014 Wes J. Lloyd PhD Dissertation Defense

Conclusions (2 of 3)

Resource utilization spikes occur when launching VMs in parallel degrading application performance.

Careful VM placement reduces infrastructure requirements. Least-Busy VM placement improves service execution time by 10-15%.

DRQ-5: Noisy neighbors

Analysis of *cpuSteal* supports detection of noisy neighbors. Performance losses are reproducible for several hours. **Performance degradation from 10-25% is typical.**

October 27, 2014 Wes J. Lloyd PhD Dissertation Defense

Research Implications

69

71

67

 Infrastructure-as-a-service leads to the simplistic view that resource are homogeneous and scaling can infinitely provide linear performance gains

• Our results demonstrate:

Careful workload profiling and resource benchmarking supports intelligent performance prediction and infrastructure cost estimation helping to demystify the clouds!

October 27, 2014 Wes J. Lloyd PhD Dissertation Defense

Future Work

72

- White box resource utilization prediction
- Public cloud resource contention study
- Workload cost prediction methodology
 - Automated VM-scaler support
 - Predictive models to support resource scaling and profile selection
 - Workload cost prediction using mixed resources
 - Integration of spot market pricing models

October 27, 2014 Wes J. Lloyd PhD Dissertation Defense

Publications

73

- Wards, S. Niktkara, O. Sund, J. Lyon, M. Anda, and K. W. Bajs, "Nightan of multi-enditionation of multi-enditorial multi-enditory of an international enditory of an internatinal enditory of an international enditory of an international

October 27, 2014 Wes J. Llovd PhD Dissertation Defense

