Towards Serverless Sky Computing

An Investigation of Global Workload Distribution to
Mitigate Carbon Intensity, Network Latency, and Cost

Robert Cordingly, Jasleen Kaur, Divyansh Dwivedi, Wes Lloyd

rcording@uw.edu

School of Engineering and Technology

University of Washington Tacoma

11th IEEE International Conference on Cloud Engineering
IC2E 2023

I Background and Motivation
H Research Questions
Outline 2

Serverless Proxy System
Methodology and Results
Conclusions

D

DigitalOcean Serverless function-as-a-service
(FaaS) platforms offer many

desirable features:

Rapid elastic scaling

Why Serverless? Scale to zero

No infrastructure management
Fine grained billing

Fault tolerance

No up front cost to deploy an
application

What is Sky
. 2 e The Sky sits above the clouds.
COm putlng . e Consists of compatibility layers

allowing interoperability
between multiple cloud
providers.

Goals for Sky Computing:

Reduce vendor lock-in

Allow applications to take
advantage of resources of
multiple cloud providers.

Serverless Sky
ComPUtlng Sky Computing has potential to
enhance Serverless Computing by

enabling:

/ ‘ \ Reduce carbon intensity
W 4 ¢ Improve performance

/ Reduce latency

/ 7 Reduce hosting costs
A\ Azu :
< Improve fault tolerance

e Background and Motivation
Outli ne B Research Questions

e Serverless Proxy System

e Methodology and Results

e Conclusions

Research Questions

RQ-1 (Performance Variation): How does function network
latency and runtime of a serverless platform vary over time by
region?

RQ-2 (Carbon Intensity): How is the carbon intensity of a
serverless application impacted by different cloud aggregations?
How does the carbon intensity of cloud regions change over time?

Research Questions

RQ-3 (Sustainability Costs): What are the latency and
performance implications of minimizing the carbon footprint of a
serverless application through carbon-aware load distribution?

RQ-4 (Multi-configuration Aggregation): How can serverless
resource aggregation be leverages to reduce application hosting
costs by utilizing function deployments with many different
configurations?

e Background and Motivation

OUtl.i ne e Research Questions

I Serverless Proxy System
e Methodology and Results
e Conclusions

Serverless Proxy System

)

—1 Analyzer Smart Proxies
— : o : e Collects carbon intensity e Deployed in every AWS region
(o] ”:J metrics for every AWS region e Designed to minimize overhead
Stores data in S3 for future use cost:
1| e Informs Smart Proxies to make o Performs optimally atthe
routing decisions lowest memory setting

o Hasminimal runtime
e Invoked synchronously and
handles routing request
e Makes routing decisions using
5 load distribution techniques

e Deployed to US-West-1 and is
called every 15 minutes

e Canbeexpanded in the future
to collect latency/runtime
metrics

10

Smart Proxy Load Distribution Techniques

—

1. Ohio: All requests, route to a single region: Ohio

2. Minimize Carbon: Requests route to the region with the

lowest carbon footprint (nearest if there is a tie)

Minimize Distance: Requests route to the nearest region

Balanced: Weighs increases in distance and carbon

equally to make routing decisions

5. Weighted on Distance: 3X weight is applied to distance
over carbon, prioritizing low latency but also considering

% carbon footprint

> w

11

Function [TLP | Description

MST* 1 Generates a graph and calculates the min
spanning tree.

BFS* 1 Generates a graph and processes a breadth
first search.

Page 12 Generates a graph and processes page rank
Rank* of each node.

DNA* 3 Pulls DNA sequence from S3 and creates
visualization data.

Compress* Generates files and compresses them into
orkloads

Resize* Pulls an image from S3, resizes it and

saves it back to S3.

Stress Tool used to generate CPU stress.

Writer Generates text and repeatedly writes it
to disk and deletes.

CSv Generates a large CSV file and performs
Processor calculates on columns.

Calcs Executes random math operations.

Matrix Generates random large matrices and performs
Calcs matrix operations.

HTTP Makes a HTTP request with a defined
Request payload to a URL.

Using

SAAFina Function:
smple mportnd

Supporting Tools - SAAF

We utilize the Serverless Application Analytics Framework to
collect metrics from serverless functions.

Metrics such as CPU timing accounting, runtime, latency, and
more can collected by the Analyzer function and used to make
routing decisions by the Proxies.

SAAF and our other tools are is available here:
https://github.com/wlloyduw/SAAF

13

Routing

Demonstration

https://github.com/wlloyduw/SAAF

Lowest Carbon
Emissions

Lowest
Runtime

Lowest
Latency

Outline

Research
Question 1

How does function network
latency and runtime of a
serverless application vary over
time by region?

Background and Motivation
Research Questions
Serverless Proxy System

- Methodology and Results

Conclusions

Experiment 1

Performance and Network
Latency Evaluation

EX-1 Network Latency Evaluation

[
O § : '

' ProxyF ‘

Proxy‘l ' '

' Proxy [Proxy n

Each region was used as a Smart Proxy and to run
clients to simulate a distributed userbase

EX-1 Network Latency Evaluation

Used each region to call each other region in
North/South America and measured latency

EX-1 Network Latency Evaluation

8

Used each region to call each
other region in North/South
America and measured
latency

Each region was invoked

every 15 minutes
EX-2 ran from November
2022 to March 2023

Experiment-1: Network Latency Variation
Mean Latency —— Linear Regression (R*2=0.992)
800
600
w
E
3 400
(=
&)
©
=1
200
0
0 5k 10k 15k 20k
Distance between Regions (km) *

Experiment-1: Network Latency Variation
O Latency from Ohio to N. Virginia CVv
20 _|
. e A >
[] [N \L_)’
5 ..) 15 S
3 . o : K
E - ° ¢ : . .) . . : o °© ° ° O~ C>U
P T S S S R .10 %5
o $. i - - o 3 . 0 o
g did g fed TreapT P 5
- O
100 éé %I > B
O
O
5 o\°
0 5 10 15 20
Time of Day (Hour) z
Research
Question 2 Experiment 2

e Carbon Data Collection

How is the carbon intensity of a
serverless application impacted
by different cloud aggregations?
How does the carbon intensity of
cloud regions change over time?

Electricity Maps API

Electricity Maps is a leading resource for up-to-date
electricity and carbon emissions data and is utilized by major
corporations such as Google, Microsoft, and Cisco.

We estimated Carbon Intensity of a Serverless workload
using Fossil Fuel Gigabyte Seconds:

FFGBS = Runtimege. x Memorygp * Fossil Fuely,

25

1. HongKong
2. Tokyo
o Seoul Experiment 2 - Carbon Data
. saka
5. Mumbai
6. Singapore
7. Sydney 1. From November 2022 to March 2023 the Analyzer
8. Frankfurt function collected carbon information from Electricity
9. Stockholm M
10. Milan aps
11. Ireland 2. Datawascollected from 19 regions on AWS
12. London a. Thisrepresents every location on AWS that Electricity Maps had
13. Paris data for
14. Canada
15. Sao Paulo
16. N.Virginia
17. Ohio

18. N.California
19. Oregon 26

Experiment-2: Carbon Variation (Americas)

Canada — Sao Paulo N. Virginia — Ohio
N. California —— Oregon
100
(=]
é 80
q’ |
L:IE 60 L It J‘|(i
— | | 1 \“ ' y! ‘ | ‘ 1 | l
2 1y Uh ? ’ F | l‘
O 40
I
2 20 | '
O I
0
Nov20 Dec4 Decl18 Janl Janl1l5 Jan29 Feb1l2 Feb26 Marl2
2022 2023
Date z
Experiment-2: Carbon Variation (Europe)
Frankfurt —— Stockholm Milan — Ireland London — Paris
100
X 80
.
L 60
E
O 40
LL
S
O

0 anls

Nov20 Dec4 Dec1l8 Janl Jan1l5 Jan29 Feb1l2 Feb26 Mar1l2
2022 2023

28

Date

Grid Fossil Fuel %

Experiment-2: Carbon Variation (Asia/Oceania)

Hong Kong —— Tokyo Seoul — Osaka ~—— Mumbai
— Singapore —— Sydney

100 HJ,IW{H{HWDH hmwm M

?“Whﬂ Il |"| HH m i lnl' l|m' '“ MI\

S Hl'H"'IH‘ N e

40

20

Nov20 Dec4 Decl18 Janl Janl1l5 Jan29 Feb12 Feb26 Marl2
2022 2023

Date

29

Grid Fossil Fuel %

Experiment-2: Carbon Variation (Asia - 1 Month)

1: F\"\' \RRANT ”‘.\”PNN“NI‘M‘. 'M\\I\llmlilf f
IALANAY \K AR ARAAR AR
1

30

Date

Resea rCh Experiment 3
QueStion 3 e Dual-region Load Distribution

E i t4
What are the latency and APEHITED

performance implications of e Global Load Distribution
minimizing the carbon footprint
of a serverless application
through carbon-aware load
distributions?

EX-3 Dual-Region Distribution

EX-3 Dual-Region Distribution

Divided all AWS regions into
American, European, and
Asian aggregations.

We picked two regions in
each aggregation to act as
the target region.

Each other region in the
aggregation was used as
client/proxies to route
requests to the target regions
We measured the impact on
carbon intensity...

Experiment-3: Dual Region Distribution (Americas)

Oregon —— Ohio — Proxy
12
%)
©
&
o 60k
) m
= Y
O] 40k LL
E g
= ©
D 20k
%)
L 4
0
0 5 10 15 20

34

Days after December 9, 2022

Experiment-3: Dual Region Distribution (Asia)
Hong Kong —— Sydney —— Proxy
400
&
@ il - T ha _-80k
5 0 % v oW R % W :
@ 350 . — : N
c 60k O
) &)
L LL
3 10k =
s 300 g
o , =
2 § 20k
3
O 250" *»
0
6 8 10 12 14 16 18
Days after December 15, 2022 *

EX-4 Global Distribution

EX-4 Global Distribution

e After open up our platform to
every region we could then
test all of our load distribution
strategies:

o Ohio

Minimize Latency

Minimize Carbon

Balanced

Weighted on Distance

o
o
(@]
o

Experiment-4: Global Load Distribution

Regions Average Latency Average Cost
Name Used Latency Cv FF-GBS Per 1m
Ohio 1 474 50 568,000 $65.25
Minimize Carbon 2 600 49 128 $64.64
Minimize Distance 12 166 72 560,000 $67.01
Weighted Evenly 2 516 70 134 $64.05
Weighted Distance 6 489 71 440 $64.64

38

Experiment-4: Global Load Distribution

Regions Average Latency Average Cost
Name Used Latency Cv FF-GBS Per 1m
Ohio 1 474 50 568,000 $65.25
Minimize Carbon 2 600 49 128 $64.64
Minimize Distance 12 166 72 560,000 $67.01
Weighted Evenly 2 516 70 134 $64.05
Weighted Distance 6 489 71 440 $64.64

39

Experiment-4: Global Load Distribution

Regions Average Latency Average Cost
Name Used Latency Cv FF-GBS Per 1m
Ohio 1 474 50 568,000 $65.25
Minimize Carbon 2 600 49 128 $64.64
Minimize Distance 2 166 72 560,000 $67.01 |
Weighted Evenly 2 516 70 134 $64.05
Weighted Distance 6 489 71 440 $64.64

40

Research
Question 4

Experiment 5

e Performance-based Load

How can serverless resource Distribution

aggregation be leverages to
reduce application hosting costs
by utilizing function deployments
with many different
configurations?

EX-5 Performance Based Load Distribution

Function
Function (512 MB)
(256 MB)
Function
Function Ny (1 GB)
(16 GB) ~J
N Function
Function N (2 GB)
(8 GB)
Function
(4 GB)

Instead of using a Proxy to
distribute between regions, we
can distribute between multiple
deployments of the same
function with different
configurations

We can then optimize function
runtime and cost using the
CPU-TAMS model

The proxy function predicts
optimal memory setting based
off function request parameters

Experiment-5: Performance Based Distribution
B CPUIdle Time CPU User Time —— Memory Setting
e
25k 8k @
g 3
= 20k o1y
CIEJ 6k j%
= 15k &
- 4k
o 10k o)
v Total CPU Time: =
5k || User: 1,332,310 ms 2k g
Idle: 1,367,290 ms
OO 20 40 60 80 0
Sequential Invocation ®
Experiment-5: Performance Based Distribution
M CPUIdle Time CPU User Time —— Memory Setting
10k
30k —
I S
o 25k 8k =
E 50
E z
= 15k n
= 4k
& 10k kil 1) g
Total CPU Time: E
5| | User: 1,332,990 ms 2k S
Idle: 570,670 ms (58% less)
OO 20 40 60 80 0

Sequential Invocation

44

Background and Motivation

OUtline Research Questions

Serverless Proxy System
Methodology and Results

I Conclusions

Conclusion Summary

e We executed large experiments using 19 regions on AWS
over than ran continuously for 6 months.

e RQ-1: We observed latency variation of 2-29% CV during
the day, averaging +/-10ms. Distance was a strong
predictor of latency with R*2 of 0.992

e RQ-2: Eachregion had varying carbon intensity with
Canada and Stockholm regions having almost no fossil
fuel usage.

46

Conclusion Summary

e RQ-3:The serverless proxy on a global distribution was
able to reduce carbon intensity by up to 99.8% while also
reducing latency by 65% compared to a single region
deployment.

il e RQ-4: By utilizing multiple configurations of the same
i JL - function we were able to reduce runtime and hosting
costs by 58%.

47

Thank You!

This research has been supported by AWS Cloud Credits for Research.

