
Towards Serverless Sky Computing
An Investigation of Global Workload Distribution to
Mitigate Carbon Intensity, Network Latency, and Cost

School of Engineering and Technology
University of Washington Tacoma
11th IEEE International Conference on Cloud Engineering
IC2E 2023

Robert Cordingly, Jasleen Kaur, Divyansh Dwivedi, Wes Lloyd
rcording@uw.edu

1

Outline
● Background and Motivation

● Research Questions

● Serverless Proxy System

● Methodology and Results

● Conclusions

2

Why Serverless?

Serverless function-as-a-service

(FaaS) platforms offer many

desirable features:

● Rapid elastic scaling

● Scale to zero

● No infrastructure management

● Fine grained billing

● Fault tolerance

● No up front cost to deploy an

application

3

What is Sky
Computing? ● The Sky sits above the clouds.

● Consists of compatibility layers

allowing interoperability

between multiple cloud

providers.

Goals for Sky Computing:

● Reduce vendor lock-in

● Allow applications to take

advantage of resources of

multiple cloud providers.

4

Serverless Sky
Computing Sky Computing has potential to

enhance Serverless Computing by

enabling:

● Reduce carbon intensity

● Improve performance

● Reduce latency

● Reduce hosting costs

● Improve fault tolerance

5

Outline
● Background and Motivation

● Research Questions

● Serverless Proxy System

● Methodology and Results

● Conclusions

6

Research Questions
● RQ-1 (Performance Variation): How does function network

latency and runtime of a serverless platform vary over time by

region?

● RQ-2 (Carbon Intensity): How is the carbon intensity of a

serverless application impacted by different cloud aggregations?

How does the carbon intensity of cloud regions change over time?

7

Research Questions
● RQ-3 (Sustainability Costs): What are the latency and

performance implications of minimizing the carbon footprint of a

serverless application through carbon-aware load distribution?

● RQ-4 (Multi-configuration Aggregation): How can serverless

resource aggregation be leverages to reduce application hosting

costs by utilizing function deployments with many different

configurations?

8

Outline
● Background and Motivation

● Research Questions

● Serverless Proxy System

● Methodology and Results

● Conclusions

9

Serverless Proxy System

Analyzer

● Collects carbon intensity

metrics for every AWS region

● Stores data in S3 for future use

● Informs Smart Proxies to make

routing decisions

● Deployed to US-West-1 and is

called every 15 minutes

● Can be expanded in the future

to collect latency/runtime

metrics

Smart Proxies

● Deployed in every AWS region

● Designed to minimize overhead

cost :
○ Performs optimally at the

lowest memory setting

○ Has minimal runtime

● Invoked synchronously and

handles routing request

● Makes routing decisions using

5 load distribution techniques

10

Smart Proxy Load Distribution Techniques

1. Ohio: All requests, route to a single region: Ohio

2. Minimize Carbon: Requests route to the region with the

lowest carbon footprint (nearest if there is a tie)

3. Minimize Distance: Requests route to the nearest region

4. Balanced: Weighs increases in distance and carbon

equally to make routing decisions

5. Weighted on Distance: 3X weight is applied to distance

over carbon, prioritizing low latency but also considering

carbon footprint

11

Workloads

12

Supporting Tools - SAAF

We utilize the Serverless Application Analytics Framework to

collect metrics from serverless functions.

Metrics such as CPU timing accounting, runtime, latency, and

more can collected by the Analyzer function and used to make

routing decisions by the Proxies.

SAAF and our other tools are is available here:

https://github.com/wlloyduw/SAAF

13

Routing
Demonstration

14

https://github.com/wlloyduw/SAAF

15

Close
st

Proxy

Proxy

Proxy

Proxy Proxy

16

Lowest
Latency

Lowest
Runtime

Lowest Carbon
Emissions

Outline
● Background and Motivation

● Research Questions

● Serverless Proxy System

● Methodology and Results

● Conclusions

17

Research
Question 1

How does function network
latency and runtime of a

serverless application vary over
time by region?

Experiment 1

● Performance and Network

Latency Evaluation

18

19

Proxy

Proxy

Proxy

Proxy Proxy

EX-1 Network Latency Evaluation

Each region was used as a Smart Proxy and to run
clients to simulate a distributed userbase

20

Proxy

Proxy

Proxy

Proxy Proxy

EX-1 Network Latency Evaluation

Used each region to call each other region in
North/South America and measured latency

21

Proxy

Proxy

Proxy

Proxy Proxy

EX-1 Network Latency Evaluation

● Used each region to call each
other region in North/South
America and measured
latency

● Each region was invoked
every 15 minutes

● EX-2 ran from November
2022 to March 2023

Experiment-1: Network Latency Variation

22

Experiment-1: Network Latency Variation

23

Research
Question 2

How is the carbon intensity of a
serverless application impacted
by different cloud aggregations?

How does the carbon intensity of
cloud regions change over time?

Experiment 2

● Carbon Data Collection

24

Electricity Maps API

Electricity Maps is a leading resource for up-to-date

electricity and carbon emissions data and is utilized by major

corporations such as Google, Microsoft, and Cisco.

We estimated Carbon Intensity of a Serverless workload

using Fossil Fuel Gigabyte Seconds:

FFGBS = Runtime(sec) * Memory(GB) * Fossil Fuel(%)

25

Experiment 2 - Carbon Data

1. From November 2022 to March 2023 the Analyzer

function collected carbon information from Electricity

Maps

2. Data was collected from 19 regions on AWS
a. This represents every location on AWS that Electricity Maps had

data for

26

1. Hong Kong
2. Tokyo
3. Seoul
4. Osaka
5. Mumbai
6. Singapore
7. Sydney
8. Frankfurt
9. Stockholm

10. Milan
11. Ireland
12. London
13. Paris
14. Canada
15. Sao Paulo
16. N. Virginia
17. Ohio
18. N. California
19. Oregon

27

Experiment-2: Carbon Variation (Americas)

28

Experiment-2: Carbon Variation (Europe)

29

Experiment-2: Carbon Variation (Asia/Oceania)

30

Experiment-2: Carbon Variation (Asia - 1 Month)

Research
Question 3

What are the latency and
performance implications of

minimizing the carbon footprint
of a serverless application

through carbon-aware load
distributions?

Experiment 3

● Dual-region Load Distribution

Experiment 4

● Global Load Distribution

31

32

EX-3 Dual-Region Distribution

Proxy

Proxy

Target

Target

Target

Target

33

EX-3 Dual-Region Distribution

Proxy

Proxy

● Divided all AWS regions into
American, European, and
Asian aggregations.

● We picked two regions in
each aggregation to act as
the target region.

● Each other region in the
aggregation was used as
client/proxies to route
requests to the target regions

● We measured the impact on
carbon intensity…

Target

Target

34

Experiment-3: Dual Region Distribution (Americas)

35

Experiment-3: Dual Region Distribution (Asia)

36

EX-4 Global Distribution

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Target

Target

Target

Target

Target

Target

37

EX-4 Global Distribution

Proxy

Proxy

Proxy

Proxy

Proxy

Proxy

Target

Target

Target

Target

Target

Target

● After open up our platform to
every region we could then
test all of our load distribution
strategies:
○ Ohio
○ Minimize Latency
○ Minimize Carbon
○ Balanced
○ Weighted on Distance

38

Experiment-4: Global Load Distribution

39

Experiment-4: Global Load Distribution

40

Experiment-4: Global Load Distribution

Research
Question 4

How can serverless resource
aggregation be leverages to

reduce application hosting costs
by utilizing function deployments

with many different
configurations?

Experiment 5

● Performance-based Load

Distribution

41

42

EX-5 Performance Based Load Distribution

Proxy

Proxy

Function
(256 MB)

Target

● Instead of using a Proxy to
distribute between regions, we
can distribute between multiple
deployments of the same
function with different
configurations

● We can then optimize function
runtime and cost using the
CPU-TAMS model

● The proxy function predicts
optimal memory setting based
off function request parameters

Function
(512 MB)

Function
(1 GB)

Function
(2 GB)

Function
(4 GB)

Function
(8 GB)

Function
(16 GB)

43

Experiment-5: Performance Based Distribution

44

Experiment-5: Performance Based Distribution

Outline
● Background and Motivation

● Research Questions

● Serverless Proxy System

● Methodology and Results

● Conclusions

45

Conclusion Summary
● We executed large experiments using 19 regions on AWS

over than ran continuously for 6 months.

● RQ-1: We observed latency variation of 2-29% CV during

the day, averaging +/-10ms. Distance was a strong

predictor of latency with R^2 of 0.992

● RQ-2: Each region had varying carbon intensity with

Canada and Stockholm regions having almost no fossil

fuel usage.

46

46

Conclusion Summary
● RQ-3: The serverless proxy on a global distribution was

able to reduce carbon intensity by up to 99.8% while also

reducing latency by 65% compared to a single region

deployment.

● RQ-4: By utilizing multiple configurations of the same

function we were able to reduce runtime and hosting

costs by 58%.

47

47

48

This research has been supported by AWS Cloud Credits for Research.

Thank You!

