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Abstract—In this paper, we investigate efficacy of cross-
architecture performance models for serverless Function-as-a-
Service (FaaS) platforms. Specifically, we create and evaluate
models that predict serverless function runtime for functions
executed on ARM64 processors, by utilizing resource utilization
profiling data from function execution on x86 64 processors.
We train regression based function-specific, and also generalized
performance models using Linux CPU time accounting profiling
data. We evaluate accuracy of serverless function runtime pre-
dictions for both seen and unseen functions, those not included
as training data. We leveraged 18 distinct serverless function
workloads, including 11 seen and 7 unseen, in total encompassing
over 144,000 serverless function calls. We evaluate three different
generalized performance models for unseen predictions: All-
in-one, where all training data is combined into one model,
Resource-bound, where separate models are trained for CPU
vs. I/O bound functions, and ARM-speed models, where three
separate models are trained based on ARM64 relative speed
vs. x86 64. Using a separate classification model, we automate
selection of the appropriate ARM-speed model to make pre-
dictions. For seen workloads on ARM64 processors, we predict
function runtime with a mean absolute percentage error (MAPE)
of only ∼1.17. Using our ARM-speed generalized performance
models, we predict function runtime with MAPE of only ∼10.29
for unseen workloads, and ∼3.04 for seen workloads. Our
performance modeling techniques can be leveraged to support
creating a broadly applicable tool that predicts serverless function
runtime on ARM64 processors by profiling unseen functions on
x86 64 to provide inference data for model inputs.

Index Terms—FaaS, Serverless Computing, Performance Mod-
eling, Cloud Computing, Cross-Architecture Analysis

I. INTRODUCTION

Function-as-a-Service (FaaS) is a cloud computing delivery
model that allows developers to deploy and run code in a
serverless environment. FaaS platforms execute code as server-
less functions, providing scalability and cost-effectiveness
compared to traditional virtual machine (VM) and container
hosting solutions. FaaS infrastructure automatically adapts to
fluctuating workloads, relieving developers from management
burden while efficiently handling traffic spikes. FaaS platform
charges are based on actual resource consumption, making
them particularly economical for applications with variable
workloads. FaaS providers only charge for the amount of
resources a function consumes, not for entire servers or VMs
enabling developers to save considerable costs, especially

when hosting applications with variable server utilization. By
leveraging the benefits of serverless computing, developers can
build and deploy robust, scalable, and cost-effective applica-
tions that are highly available and responsive to traffic spikes.

As cloud computing platforms evolve, 64-bit ARM pro-
cessors are gaining traction for their energy efficiency and
high performance, presenting a viable alternative to tradition-
ally dominant x86 64 processors. Cloud providers, including
Amazon Web Services (AWS), have incorporated ARM64
processors in their data centers, offering them alongside
x86 64 processors. Amazon’s FaaS platform AWS Lambda,
for example, provides ARM64 Graviton2 processors for 20%
lower cost than Intel Xeon x86 64 CPUs [1]. Despite the
appealing energy and cost benefits of ARM64, challenges
exist regarding adoption, including code migration, software,
and tool availability necessitating additional effort in code
migration and testing. Developers and organizations looking to
adopt ARM processors can gain insights from understanding
the performance implications of their workloads on these
processors.When code migration requires extensive refactoring
and developer effort, it is helpful to first understand perfor-
mance and cost implications to help developers and practition-
ers prioritize and plan code migration efforts. Understanding
ARM function runtime is also important in edge and fog
environments with a FaaS delivery model that feature these
processors to enable informed scheduling decisions [2]–[4].

This paper extends previous research on predicting server-
less function runtime for functions executed on different
x86 64 processors. In [5], the authors investigated efficacy
of serverless function performance models to predict runtime
of compute-bound functions on seven different x86 64 Intel
Xeon processors across two cloud providers. In this paper,
we extend previous work in important ways. First, in [5],
only one compute-bound serverless function was leveraged
to create and evaluate performance models. In this paper, we
leverage eighteen distinct serverless functions from SeBS and
FunctionBench [6], [7]. We also created custom serverless
function wrappers to instrument Linux Sysbench workloads
[8]. Our functions feature diverse resource utilization char-
acteristics and are described in Table I and Figure 1. Using
these functions, we assess performance over forty distinct



time steps to analyze 720 unique function configurations with
runtime spanning from ∼3 to 140 seconds. Second, our study
investigates the efficacy of resource utilization performance
modeling across CPU architectures (x86 64→ARM64). In
[5], performance models only predicted function runtime on
processors with the same architecture (Intel Xeon x86 64).
Third, in [5], performance models were only trained for
specific functions. In this study, we create both function-
specific and generalized serverless function performance mod-
els. Generalized models are particularly important because
they can predict function runtime for unseen functions not
included in the training dataset. Generalized models can be
immediately reused without retraining to estimate function
runtime for new functions. Here we investigate multiple and
random forest regression models in isolation, or combined with
Linux CPU time accounting principles that are introduced in
[9]. We leverage CPU time accounting metrics, collected via
the Serverless Application Analytics Framework (SAAF) as
features to predict function runtime on ARM processors [10].

First, we assessed the accuracy of function-specific perfor-
mance models, where function profiling data was included in
training datasets. Next, we trained generalized performance
models and evaluated their accuracy at predicting function
runtime for unseen functions not included as training data. For
generalized performance models, we evaluate three distinct
modeling approaches: (1) a single combined general model
using all training data, All-in-one, (2) a set of models trained
with specific resource-bound workloads (e.g. CPU-bound, I/O-
bound) known as Resource-bound, and (3) a set of mod-
els trained with workloads having specific ARM64 runtime
behavior (e.g. faster than x86 64, slower than x86 64, or
similar to x86 64) known as ARM-speed. To automate pairing
an ARM-speed model with an unseen workload, we trained
performance classifiers to categorize ARM64 performance rel-
ative to x86 64. This approach automates selection of the best
ARM-speed model for function runtime prediction, enabling
creation of a fully automatic tool to predict ARM64 function
runtime for unseen workloads based on x86 64 profiling data.
Such a tool can support developers to analyze serverless
functions and prioritize code migrations to ARM64 where cost
and runtime benefits are greatest. Cloud providers presently do
not provide function runtime predictions, forcing developers to
migrate functions and benchmark ARM64 performance.

A. Research Questions
This paper investigates the following research questions:

RQ-1: (Function-Specific Performance Modeling): What
is the accuracy of ARM64 function runtime predictions for
FaaS functions based on profiling on x86 64 processors where
training data includes functions being predicted?
RQ-2: (Generalized Function Performance Modeling):
What is the accuracy of ARM64 function runtime predictions
for unseen FaaS functions not included as training data for
models, where models are trained using carefully selected
workloads having a range of resource utilization characteristics
(e.g. CPU, memory, disk, network)?

RQ-3: (ARM Performance Classification): How accurate are
ARM64 serverless function runtime performance classifica-
tions using classifiers trained with x86 64 profiling data? Are
performance classifications (i.e. ARM-faster, ARM-slower,
and ARM-similar) sufficient for pairing pre-trained models to
provide runtime predictions? Which metrics best support ARM
performance classification?
RQ-4: (ARM Performance Modeling without FaaS): Out-
side a FaaS platform, what is the accuracy of ARM64 func-
tion runtime predictions using models trained by running
functions on x86 64 VMs? We seek to validate that our
x86 64→ARM64 runtime prediction approach is generaliz-
able outside the context of AWS Lambda.

II. BACKGROUND AND RELATED WORK

A. Towards Adoption of ARM64 Processors for FaaS

ARM64 servers present an enticing alternative for improv-
ing system flexibility, performance isolation, and resource uti-
lization in serverless computing. In late 2021, AWS Lambda,
a predominant public FaaS platform, began offering ARM64
processors as an alternative to x86 64. To encourage adoption,
ARM64 processors are offered at a 20% discount [1]. Prior in-
vestigations have primarily benchmarked ARM64 performance
for hosting FaaS platforms or workloads [11]–[15].

Xie et al. compared the use of x86 64 Intel Xeon processors
to the ARM Phytium 2000+ processor for hosting serverless
FaaS platforms by deploying the Kubernetes-based Knative
and OpenFaaS frameworks [11]. Both frameworks were de-
ployed using one master node and eight worker nodes with
8 virtual CPUs (vCPUs) and 16GB memory each. Xie inves-
tigated implications of cold-start initialization, auto-scaling,
and performance isolation of co-located function instance con-
tainers. Xie found that ARM64 processors exhibited greater
startup latency, but similar scaling responsiveness while being
more susceptible to resource contention when under intense
pressure from many concurrent function requests. In [12],
Javed et al. compared performance of OpenFaaS, Apache
OpenWhisk, and AWS Greengrass hosted on a cluster of four
ARM-based Raspberry Pis, in contrast to AWS Lambda and
Azure Functions. The authors used three functions where each
stressed one resource (e.g., CPU, memory, and disk) and found
that OpenFaaS was most suitable to deploy and run on edge
devices, and that network latency to the cloud made executing
functions locally faster for their use cases.

Redacted authors et al. compared x86 64 vs. ARM64
performance for a natural language processing (NLP) pipeline
on AWS Lambda [13]. The pipeline runtime averaged 1.7%
slower on x86 64 processors than ARM64, but this perfor-
mance loss was likely due to resource contention. Running
the pipeline continuously for 24 hours on both processors, the
fastest observed runtime was on x86 64 (13.53% faster), while
the slowest runtime was also on x86 64 (17.10% slower).
Runtime variation was 3x greater on x86 64 than ARM64,
while ARM64 was projected to be ∼21.4% less expensive
for 10,000 NLP pipeline executions. Park et al. profiled
performance of a deep neural network inferencing suite on



AWS Lambda using ARM64 and x86 64 processors [14].
Park tested various model optimization heuristics, finding that
ARM64 optimization libraries did not deliver equivalent per-
formance enhancements compared to x86 64. Park concluded
that ARM64 hardware is not yet as efficient due to immaturity
of the development ecosystem. In our earlier work, Redacted
author et al. deployed 18 distinct serverless functions and
compared runtime using x86 64 and ARM64 processors on
AWS Lambda and found that while only 7 functions were
faster on ARM64, 15 were less expensive due to favorable
ARM64 pricing [15]. Function runtime variation on ARM64
was less than x86 64 potentially from ARM64’s lack of
hyperthreading and potentially lower resource contention from
less user demand for ARM64 CPUs on AWS Lambda.

B. Towards Serverless Performance Modeling

Serverless computing platforms including FaaS and
Backend-as-a-Service (BaaS) are revolutionizing how cloud-
based applications are developed and deployed. A big chal-
lenge with serverless platforms is their variable performance.
Schleier-Smith et al. note that serverless providers use statis-
tical multiplexing that creates challenges in predicting how
long serverless functions will take to execute, or the extent of
resources they will consume [16]. Redacted author et al. ob-
served runtimes for an identical NLP data processing workload
on AWS Lambda over 24 hours varied by 45.1% on x86 64,
and 14.5% on ARM64 processors [13]. This variability can
be a major problem for applications that require predictable
performance or that have strict service level agreements
(SLAs) [17]. On serverless platforms, use of heterogeneous
processors can increase runtime variability, making accurate
function runtime predictions more difficult [5]. This trade-off
exposes the challenge for cloud providers between maximizing
resource usage and ensuring predictability. [18]

In addition to performance-related challenges with server-
less computing, cost-performance trade-offs have been iden-
tified. While serverless platforms offer highly scalable and
flexible architecture, they can be more expensive than tra-
ditional cloud platforms, especially for hosting long-running
workloads or high volume service endpoints. Developers and
organizations must carefully evaluate cost and performance
requirements for serverless deployments. Predicting customer
costs for serverless computing is not trivial, as understanding
hosting cost implications across multiple providers is a chal-
lenging issue identified for further research [19]–[21].

Analytical performance models have long been used to
predict and improve the performance of distributed computing
systems. However, there is a lack of such models for serverless
computing platforms. Infrastructure abstraction on commercial
serverless platforms reduces observability making creation of
performance models more difficult [10]. Unique characteristics
and policies of serverless platforms make it difficult to apply
performance models developed for other systems directly.
The lack of transparency and modeling capabilities make it
challenging for developers to optimize performance and cost of
their serverless applications. New approaches and models are

needed to accurately estimate performance and cost of server-
less applications [22]–[25]. Initial efforts have focused on
modeling the performance and cost of serverless functions and
workflows. In [5], Redacted authors et al. modeled serverless
function runtime across heterogeneous processors and memory
settings. This effort considered only x86 64 processors, and
leveraged a single compute-bound function in developing the
overall methodology. In [26], Lin et al. predict serverless
application runtime and cost distributions based on profiling
functions 10,000 times on AWS Lambda. Their effort did not
consider how different CPUs impact performance, but instead
focused on estimating the broad range of possible runtime and
cost outcomes. Up to 16 serverless functions were utilized, but
details regarding these functions and the rationale for their
selection is limited.

Other efforts have modeled runtime and cost of serverless
workflows [25], [27]. Eismann et al. presented a methodology
for predicting serverless workflow costs by modeling function
response times and outputs [25]. Runan et al. used static
code analysis to extract dependencies among functions to
improve workflow runtime predictions [27]. In this paper, in
contrast to earlier efforts that model performance for sets
of static functions or workflows, we contribute generalized
performance models capable of predicting function runtime
for unseen functions not included in training datasets. Earlier
efforts have also largely ignored performance differences from
heterogeneous CPUs which are commonplace in the cloud.
We contribute models that predict function performance across
CPUs with different architectures.

III. METHODOLOGY

A. Benchmarking Environment

In this paper, we deployed and profiled serverless func-
tions on AWS Lambda, Amazon’s versatile FaaS platform
[28]. AWS Lambda supports a wide array of programming
languages, as well as the deployment of custom runtimes and
container-packaged functions. AWS Lambda was chosen in
our study because among commercially available serverless
FaaS platforms, it is currently the only platform that offers
both ARM64 and x86 64 processors [1], [13].

To profile serverless functions on AWS Lambda run on both
x86 64 and ARM64 processors, we utilized the Serverless
Application Analytics Framework (SAAF) [10], [29]. SAAF
helps developers characterize workload performance, resource
utilization, and infrastructure and is instrumental in under-
standing and optimizing serverless application performance.
SAAF supports collection of 48 distinct metrics to profile
function CPU, memory, and I/O utilization while monitoring
infrastructure state (e.g., cold vs. warm). SAAF supports
reproducible testing to enable repeatable measurements of
function performance and scalability over time, across differ-
ent platforms and configurations. SAAF supports numerous
programming languages, seamlessly integrating with server-
less function packages, making it deployable across various
commercial and open-source FaaS platforms. By enhancing



observability of function deployments, SAAF plays a crucial
role in enabling serverless function runtime predictions [5].

B. Serverless Functions

To support our research, in this paper, we leveraged the 18
serverless functions described in table I. We utilized functions
from FunctionBench, which provides a diverse set of functions
tailored for benchmarking FaaS platforms [7]. We deployed
four FunctionBench functions including: linpack, json dumps,
chameleon, and float. In addition, we also leveraged the
Serverless Benchmark Suite (SeBS), which provides functions
for benchmarking FaaS platforms [6]. We leveraged five SeBS
functions including: graph-pagerank, graph-mst, graph-bfs,
compression, and video-processing.

We created four custom serverless functions to wrap existing
Linux performance benchmarks. Three functions were cre-
ated by wrapping Linux Sysbench benchmarks: primenumber
(sysbench-cpu), thread (sysbench-threads), and readmemory
(sysbench-memory) [8]. The readdisk function was created by
wrapping the fio - flexible I/O tester benchmark [30].

We created five new serverless functions to stress specific
aspects of the system that are not covered by other bench-
marks. Chacha20 used the openssl encryption libraries to
encode an 8MB file n times [31]. For chacha20, we disabled
acceleration, Neon on ARM, and AVX on x86 64 in our
testing. Sqlite executes random queries against an embedded
SQLite file-based database. Filehandle opens and closes a
scalable number of file handles. We scaled the number of file
handles from 100,000 to 12,000,000 to scale the function’s
runtime. The socket function opened and closed a socket
n times to scale runtime. Readwritememory performed n
iterations of creating a 1 KB byte array, writing 1,024 bytes,
and deleting the array in memory. Collectively, we used these
18 functions because they provide a diverse range of CPU
profiles, as shown in figure 1. Two functions used multiple
threads, while five others featured considerable CPU kernel
time consistent with a high volume of I/O operations and/or
kernel API calls. Our functions encompassed tasks ranging
from compute-intensive to I/O-bound workloads, enabling us
to build and evaluate performance models for a broad range of
use cases to consider serverless system performance for both
architectures.

C. Model Development and Evaluation

1) Predicting Serverless Function Runtime: For our run-
time prediction models, we employed three distinct ap-
proaches: simple linear regression (SLR) using only runtime,
multiple linear regression (MLR), and Linux CPU time ac-
counting (LTA). Multiple linear regression and Linux CPU
time accounting used cpuUser, cpuKernel, and cpuIdle as
features. We implemented each approach with simple/multiple
linear regression (SLR, MLR, LTA) and random forest (SLR-
RF, MLR-RF, LTA-RF) to compare accuracy.

Runtime Linear Regression (SLR, SLR-RF): This method
performs simple linear regression using runtime data from
function executions without incorporating additional features

TABLE I
FUNCTION DESCRIPTIONS AND SHORT NAMES GROUPED BY THE

PREDOMINANTLY STRESSED RESOURCE.

Function Name Source Description
chacha20*† openssl Repeatedly perform openssl

encryption of 8MB file
n times

graph-bfs† sebs Breadth-first search (BFS)
implementation with igraph.

graph-mst† sebs Minimum spanning tree
(MST) implementation with
igraph.

graph-pagerank† sebs PageRank implementation
with igraph.

cp
uU

se
r

primenumber*† sysbench Prime number generator

chameleon FunctionBench Create HTML table of n rows
and M columns

csv [redacted] [32] Generates a large CSV file and
performs calculates on columns.

float FunctionBench Perform sin, cos, sqrt ops
json dumps FunctionBench JSON deserialization using

a downloaded JSON-encoded
string dataset

sqlite original Execute n random SELECT
queries on a 10*1000 SQLite
database

video-processing* sebs Convert PNG to GIF n times
filehandle† original Open and close file handles
socket† original Open and close socket n times
thread† sysbench Create thread, put locks and

release thread

cp
uK

er
ne

l

readmemory*† sysbench N sequential reads of 1GB
memory block

readwritememory† original Allowcate 1MByte of memory,
write 0x42 into it and releaseM

em
or

y

readdisk*† fio Test random read speed on a
1GB block

I/
O

compression sebs Create a .gz file for a file

cpuUser group: Runtime dominated by CPU user time (blue), cpuKernel
group: Runtime with higher CPU kernel time (yellow), Memory group:
Workload is memory intensive (orange), and I/O group: Workload is I/O
intensive (grey).
*: Function executes external binary program (non-Python)
†: Function used to train models
as predictors. It serves as a baseline to assess the effectiveness
of more complex modeling approaches.

Multi-Regression Analysis (MLR, MLR-RF): This ap-
proach integrates multiple features derived from SAAF pro-
filing, specifically CPU User, CPU Kernel, and CPU Idle time
into regression models. We focused on these features, because
profiling serverless functions on AWS Lambda indicated little
to no CPU time spent in other modes.

Linux CPU Time Accounting (LTA, LTA-RF): This ap-
proach leverages Linux CPU time accounting to incorporate
CPU timing metrics to aid performance modeling [5], [9].
The premise of Linux CPU time accounting is that for every
second of function runtime, each vCPU provides one second
of CPU time divided across all CPU modes. Linux CPU time
accounting captures CPU time spent in distinct modes: CPU
User is when the CPU executes code in user mode, CPU
Kernel is when the CPU executes in kernel mode, CPU IO
wait is when the CPU waits for I/O to complete, CPU Sft Int



Srvc is when the CPU waits for soft interrupts, and CPU
Idle is when the CPU is idle. We model each CPU time
component independently to improve accuracy. We capture the
CPU profile on one platform, and create models to predict the
CPU profile on a target platform. Profiling effectiveness can
be verified because for every second, the total observed CPU
time for all modes combined must equal 1 second for each
vCPU. Linux CPU time accounting can provide improvements
over traditional regression-based performance models because
it enables modeling each component of workload behavior
separately (i.e. user code, kernel code, I/O wait, interrupts,
and idle time). In this paper, we apply Linux CPU time
accounting to build x86 64 to ARM64 serverless function
performance models using multiple features derived from
SAAF profiling to generate multiple linear regression models
to predict CPU profile metrics (e.g. CPU User, CPU Idle,
etc.). A total of 21 features (e.g. totalMemory, freeMemory,
pageFaults, frameworkRuntime, userRuntime, cpuUserDelta,
cpuNiceDelta, cpuKernelDelta, cpuIdleDelta, cpuIOWaitDelta,
cpuIrqDelta, cpuSoftIrqDelta, cpuStealDelta, cpuGuestDelta,
cpuGuestNiceDelta, pageFaultsDelta, availableCPUs, utilized-
CPUs, recommendedMemory, frameworkRuntimeDeltas, and
runtime) were used to predict each CPU metric.

We evaluated the accuracy of our models against actual
observed runtimes on AWS Lambda with ARM64 proces-
sors. For each of our 18 serverless functions, we collect a
comprehensive dataset to characterize function runtime. We
scale function runtime up from ∼3 to 140 seconds in 40
distinct steps by adjusting a configuration parameter. The
parameter adjusts the number of iterations or the volume
of work a function performs to enable profiling function
runtime over an increasing time span. For each step, we collect
100 runtime samples, for a total of 4,000 samples for each
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Fig. 1. CPU mode time percentage of each function

CPU (i.e. ARM64, x86 64) per function. To reduce x86 64
runtime variance, we only use runtime samples from the Intel
Xeon 8259CL x86 64 processor identified by its 2.5 GHz
clock and 36608KB cache size, and perform additional runs
when failing to obtain this processor. Recently three distinct
x86 64 CPUs were identified on AWS Lambda [32]. For this
paper, we performed over 115,000 x86 64 function calls and
identified 5 distinct x86 64 processors (see III.D). To establish
ground truth for function runtime on ARM64, we observe the
inference sample’s percentile position in the x86 64 dataset,
and map this to the equivalent percentile position in the corre-
sponding ARM64 dataset. This method allows us to estimate
an expected ARM64 runtime to pair with each x86 64 runtime
observation. We then evaluate performance model accuracy by
calculating the mean absolute percentage error (MAPE) across
all observations. For runtime prediction in cloud computing,
we note that ground truth must also be estimated because all
samples are simply observations that fall somewhere along
a distribution. Runtime of identical serverless function calls
always exhibits some variability.
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Fig. 2. Generalized Performance Models Input Space Coverage: Serverless
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2) Generalized Serverless Function Performance Models:
We investigated creating generalized performance models to
predict ARM64 serverless function runtime for any serverless
function. While prior efforts at predicting function runtime
have focused on predicting runtime only for observed work-
loads [5], [25], in this paper, we investigate performance
models to make runtime predictions for unseen functions, not
included in model training datasets. Generalized performance
models are needed to create a tool that predicts function run-
time on ARM64 processors for unseen functions that can help
developers prioritize ARM64 function migration decisions.
While creating models that predict function runtime for unseen
workloads with perfect accuracy is likely intractable, we seek
to create models that can provide ”good” estimates of runtime
for unseen functions, sufficient to be of value to developers
and practitioners.

To train generalized performance models, we used a diverse
set of 11 functions having different resource utilization charac-
teristics with a runtime input space spanning from ∼ 3 to 140
seconds as described in table I and III. Figure 2 depicts training
vs. unseen function runtime overlap for our datasets up to
75 seconds. Specifically, we used the functions: primenumber,



readmemory, readdisk, chacha20, readwritememory, filehan-
dle, thread, graph-pagerank, graph-mst, graph-bfs, and socket
to train generalized models. We investigated three distinct
approaches for creating generalized performance models:
All-in-one: uses all available training workloads to train a
combined model to predict ARM64 runtime for unseen func-
tions. The advantage with this approach is that there is only
one model, so it is easy to train and use to make predictions.
Resource-bound: involves creating resource-specific models
trained with a subset of the available workloads having par-
ticular characteristics. For our Resource-bound approach, we
created separate CPU-User and CPU-Kernel bound models.
Functions with more than 10% CPU kernel time were used
to train the CPU-Kernel model; otherwise, the remaining
functions were used to train the CPU-User model.
ARM-speed: involves training a series of performance mod-
els by combining workloads with similar ARM64 runtime
performance relative to x86 64. We created three models
by combining training workloads together based on their
performance behavior: ARM-faster, ARM-slower, and ARM-
similar. Here, ARM-faster indicates that ARM64 had >15%
faster runtime than x86 64, ARM-slower meant ARM64 had
>15% slower runtime, and for ARM-similar, ARM64 runtime
was within +/-15% of the x86 64 runtime.

3) Classification Models for Characterizing ARM64 Perfor-
mance to Support ARM-speed Model Selection: Our ARM-
speed generalized performance modeling approach involved
training separate models to predict serverless function runtime
for workloads exhibiting ARM-faster, ARM-slower, or ARM-
similar performance. Selecting the best ARM-speed model
for an unseen workload represents a new problem. It is
necessary to rapidly identify the best generalized model (i.e.
ARM-faster, ARM-slower, or ARM-similar) to make runtime
predictions for new unseen serverless workloads. To address
this challenge, we trained classification models to classify
ARM function runtime into the three categories (i.e. faster,
slower, similar) using x86 64 profiling data. The classification
can then be used to select the best generalized ARM-speed
model for runtime predictions. A total of 21 features were used
to generate the prediction models. We explored the following
classification algorithms: Random Forest Classifier, Ada Boost
Classifier, MLP (Multi-Layer Perception) Classifier, Decision
Tree Classifier, KNeighbors Classifier, Gaussian Process Clas-
sifier, and Quadratic Discriminant Analysis. Each classifier
was trained using x86 64 and ARM64 performance data with
ground-truth performance categories assigned using the 15%
thresholds described above. When collecting training and test
data, we filtered out cold function calls. Cold calls were
not included because they are notoriously slower than warm
calls, introducing runtime variability that can skew the model’s
predictions. We tested our classifiers ability to accurately
classify ARM function runtime into subgroups: ARM-faster,
ARM-slower, or ARM-similar. While our primary aim was to
identify classifiers that could infer the performance subgroup
of unseen workloads (RQ-3), we note our classifiers can also
be applied to help developers rapidly identify workloads most

TABLE II
CPU MODEL COMPARISON: AWS LAMBDA X86 64 AND ARM64 CPUS

CPU AWS Graviton 2 Platinum 8259CL
Clock Speed: 2.5 GHz 2.5/3.5/1.2 GHz base/turbo/low
Cores: 64 (1 Socket) 24 (48 Threads) (8 Socket)
Core/Arch: Neoverse N1 Cascade Lake-SP
TDP 80-110w 210w
Node: TSMC 7nm Intel 14nm
Cache: 48K instruc/c, 64K data/c 32k instruc/c, 32k data/c

1M L2/c, 32M L3 1M L2/c, 35.75M L3
Memory: DDR4 8 channel/chip DDR4 6 channel/chip
CPU Cluster: 4 1

likely to benefit from faster execution on ARM64 processors,
i.e. workloads classified as ”ARM-faster”.

4) Tools and Frameworks: We used the sklearn Python
library to create and evaluate models [33]. Sklearn offers many
tools and algorithms for machine learning, making it well
suited for performance modeling. It provides functionalities
for data prepossessing, model training, cross-validation, and
performance evaluation, which are crucial for the robust de-
velopment and assessment of our prediction models.

5) Evaluation Metrics: To evaluate runtime models, we
employed standard evaluation metrics including MAPE and
R-squared (R²) for regression models. For our classification
models we performed ternary classification and evaluated ac-
curacy as a percentage. These metrics provide a comprehensive
view of model performance, allowing us to assess, not only
the accuracy of predictions, but also the models’ ability to
generalize across different workloads and conditions.

D. Experimental Approach

Our analysis was conducted on AWS Lambda in the us-
west-2 (Oregon) region. We provisioned our AWS Lambda
functions with 3 GB memory to ensure full access to 2 vCPUs
[34]. This is the smallest memory size that allows full access
to 2 vCPUs. Any smaller memory size results in a fractional
share of CPU time equivalent to less than 2 vCPUs. Under-
provisioning vCPUs could lower performance and increase
runtime performance variance, skewing the results of our com-
parisons. Functions were tested using identical configurations
(e.g. memory and vCPUs) on x86 64 and ARM64 to ensure
consistency for accurate benchmarking and analysis. Currently,
there are no other commercially available FaaS platforms using
ARM processors, limiting our study to AWS Lambda.

During our study we discovered that AWS Lambda em-
ployed a variety of different x86 64 compatible CPUs to
execute functions. By analyzing over 115,000 x86 64 function
calls made in April 2024 on us-west-2, we identified five
different x86 64 CPU types. Notably, we observed x86 64
function executions on the following CPUs:

• Intel Xeon 8529CL 2.50GHz 36608KB Cache (91.1515%)
• Intel Xeon 8275CL 3.00GHz 36608KB Cache (6.5606%)
• Intel Xeon 8375C 2.90GHz 55296KB Cache (2.0984%)
• AMD EPYC 2.25GHz (0.0985%)
• AMD EPYC 2.65GHz (0.0909%)

To minimize x86 64 serverless function runtime variance
we concentrated our modeling efforts exclusively on the Intel
Xeon Platinum 8259CL CPU, featuring a 2.50GHz base



frequency and 36,608 KB cache as described in table II. To
identify the specific CPU in use on AWS Lambda, we first
matched the most likely CPU based on clock speed and cache
size to those offered on Amazon EC2 VMs. Using Amazon
EC2, we then installed the Firecracker microVM hypervisor on
an m5dn.metal ec2 instance. We applied the T2CL Firecracker
CPU template, a template that supports creating microVMs
using different x86 64 processors while masking some of
the CPU differences to create a homogenized Intel Cascade
Lake compatible microVM [35]. Amazon has developed this
technique to mask x86 64 CPU differences to allow mixing,
for example, Cascade Lake and Ice Lake processors while
providing the illusion that all CPUs are Cascade Lake on
AWS Lambda. Using the T2CL template on our firecracker
microVM, we were able to precisely match Linux cpuinfo and
CPU flags observed on AWS Lambda on our own microVM to
confirm the exact x86 64 CPU most commonly used on AWS
Lambda (Xeon 8259CL). For this paper, we focus exclusively
on the Xeon 8259CL processor because it was the most
common CPU observed in over 90% of x86 64 serverless
function executions on AWS Lambda. We filtered out all other
CPUs from our datasets to homogenize our x86 64 profiling
data to one CPU. For each workload, we performed 100 runs
across each of 40 steps on this CPU for a total of 4,000
runs. Filtering other x86 64 CPUs required increasing the total
number of profiling runs by about ∼10%.

For I/O operation tests on serverless functions, we pro-
visioned a 5 GB ephemeral disk to increase available /tmp
space [36]. An ephemeral disk is a temporary cloud disk
provided to the function instance for an additional charge.
We deployed the Bonnie++ disk I/O benchmark to compare
AWS Lambda disk I/O performance on x86 64 and ARM64
processors. X86 64 functions exhibited marginally lower I/O
performance for sequential input per character but performed
comparably in other categories vs. ARM64 [37]. ARM64
however, demonstrated reduced latency in multiple scenarios.
Bonnie++ performance was consistent on AWS Lambda for
both 3GB and 10GB function memory configurations. We
conclude that I/O performance on ARM64 has lower latency
than x86 64 but overall throughput is quite similar.

We scaled up function runtime using 40 distinct steps
resulting in average runtime spanning from approximately ∼3
seconds to 140 seconds on x86 64 processors. Each function
was profiled 100 times per step on both processors. This
approach enabled us to profile functions across a wide range
of runtimes, from a few seconds to several minutes, providing
a thorough understanding of how each architecture responded
for different workloads and durations.

To extend our evaluation beyond AWS Lambda, because
we know of no other commercial FaaS platform having
ARM64 support, for (RQ-4), we investigated predicting func-
tion runtime on ARM64 processors based on x86 64 profiling
using Amazon EC2 virtual machine instances. This evaluation
helps us verify if our x86 64→ARM64 performance modeling
approach can be generalized for use outside of AWS Lambda
on self-hosted FaaS platforms or on future commercial FaaS

platforms with ARM64 support. For these tests, we utilized
the c5.xlarge (x86 64 architecture) and m6g.xlarge (ARM64
architecture) Amazon EC2 instances types. These instances
allowed us to train performance models using function profil-
ing data from x86 64 and ARM64 VMs to predict function
runtime on ARM64 VMs.

A subset of our benchmarks were selected including:
chacha20, primenumber, and graph-pagerank. These work-
loads were chosen as they were primarily CPU-bound work-
loads with runtime dominated by CPU User mode time. We
trained function-specific performance models for each function
using the same approach as for (RQ-1).

To train and evaluate performance models on EC2, each
function utilized the same 40 distinct steps as on AWS Lambda
with 50 runs per step on both processors for a total of 4,000
calls per function.

IV. RESULTS AND EVALUATION

A. ARM Performance Modeling
To investigate (RQ-1), we leveraged 11 serverless functions

with different ARM64 runtime behavior shown in figure 3 to
train and evaluate function-specific performance models. We
trained models to predict ARM64 function runtime using data
from profiling functions on x86 64 processors. We trained
models for each of the functions: chacha20, primenumber,
readdisk, filehandle, readwritememory, readmemory, socket,
graph-pagerank, graph-mst, graph-bfs, and thread.

Our analysis revealed that function-specific models demon-
strated very good accuracy. We calculated average MAPE for
function-specific performance models trained for the first 11
functions shown in Table III. Simple linear regression (SLR)
achieved average MAPE of 2.67. Multiple linear regression
(MLR) achieved lower average MAPE of 1.77 with an R-
squared value (R²) of ∼0.99. Linux CPU time accounting
(LTA) improved accuracy further to 1.36 MAPE. Random
forest multiple regression (MLR-RF) provided the lowest
average MAPE of just 1.17, while using random forest
for Linux CPU time accounting (LTA-RF) resulted in higher
MAPE of 1.20. We found that all of our random forest
regression models attained an R² of 0.99. Overall, function-

Fig. 3. ARM64 vs. x86 64 Function Performance of Training Workloads



TABLE III
TRAINING AND TESTING FUNCTION’S RUNTIME, COEFFICIENT OF VARIATION (CV), AND MEAN ABSOLUTE PERCENTAGE ERROR (MAPE)

Function name Min runtime Min runtime Max runtime Max runtime CV(%) CV(%) MAPE MAPE MAPE
x86 64 (sec) ARM64 (sec) x86 64 (sec) ARM64 (sec) x86 64 ARM64 fn-specific12 All-in-One1 ARM-speed1

primenumber 6.00 5.27 120.92 108.73 0.72 0.58 0.83 28.55 0.18
readmemory 3.15 3.85 132.68 106.40 2.17 3.51 1.2 7.02 2.15
readdisk 6.77 7.46 135.01 114.11 2.05 1.79 2.17 16.47 1.76
chacha20 4.70 4.53 118.90 144.54 0.73 0.23 0.2 27.93 7.42
readwritememory 5.08 3.89 123.16 134.82 1.28 2.32 1.44 8.93 5.41
filehandle 4.69 8.87 109.33 132.41 1.88 0.95 2.84 5.26 2.49
thread 4.46 5.38 128.17 135.75 0.63 0.56 0.96 18.82 1.75
graph-pagerank 5.58 6.15 58.69 61.45 0.60 0.57 0.98 9.32 2.15
graph-mst 6.83 3.40 65.03 56.15 0.63 0.56 0.96 3.05 2.46
graph-bfs 4.25 8.77 64.10 67.49 0.94 0.84 0.39 4.02 3.94
socket 7.82 6.91 125.99 130.18 2.31 3.08 0.97 1.51 3.72
video-processing 3.01 3.17 139.54 135.75 0.42 1.07 1.79 25.26 8.32
json dumps 5.30 8.71 128.80 134.02 1.59 1.45 0.64 5.23 7.83
sqlite 6.28 4.25 134.92 121.42 1.06 0.82 0.97 18.79 6.96
chameleon 5.12 8.29 112.96 101.62 1.09 0.74 1.13 13.07 10.60
compression 8.21 7.48 135.76 122.41 1.80 0.46 0.52 15.26 11.93
float 4.19 8.63 122.40 135.99 3.26 2.14 0.85 24.04 14.30
csv 8.87 8.90 136.81 124.68 1.22 0.94 2.17 29.72 12.10
Avg-training 5.39 5.86 107.45 108.37 1.27 1.36 1.17 11.90 3.04
Avg-unseen 5.85 7.06 130.17 125.13 1.49 1.09 1.15 18.77 10.29
Average 5.57 6.33 116.29 114.88 1.35 1.26 1.16 14.57 5.86

1-random forest regression w/ multi-features, 2-evaluated w/ 2nd independent 4k sample/fn dataset

specific models consistently predicted ARM64 runtime func-
tion runtime with high accuracy (<3% mean error) when
leveraging profiling data from functions run on x86 64.
B. Generalized ARM Performance Modeling

For (RQ-2), we trained generalized performance models to
predict ARM64 function runtime for unseen workloads not
included in the training dataset. We trained these models using
functions with runtime spanning from ∼3 to 140 seconds, the
first 11 functions at the top of table III. We investigated three
different modeling approaches for predicting unseen function
runtime on AWS Lambda with ARM64 processors, based on
x86 64 profiling data. Each modeling approach investigated a
different method for generalized performance modeling.

All-in-one Model: This modeling approach aggregates all
training data into a single common model providing the
advantage of simplicity. The user needs only to perform
simple inferencing with a single model to generate a runtime
prediction. The one-model-fits-all approach, however, may not
capture the nuances of specific resource-intensive workloads
as effectively as other approaches.

Resource-bound Model: We investigated training two dis-
tinct models based on the workload’s primary resource require-
ment: CPU-User intensive (i.e. primarily runs user intensive
code) and CPU-Kernel intensive (i.e. >10% CPU time spent
executing kernel instructions - indicating intensive I/O or
kernel API use) as shown in figure 1. This simple delineation
aimed to improve accuracy of runtime predictions for func-
tions with clear CPU utilization differences. Nevertheless, our
results for this approach did not provide good ARM64 runtime
prediction accuracy. In fact, this approach was less accurate
than the All-in-one model.

ARM-speed Model: We investigated training a set of three
models, known as the ARM-speed models, which group
together training workloads having similar runtime behavior.
We investigate whether models are more accurate when the

input space is constrained to workloads with similar runtime
behavior. Training functions are grouped into the models:
• ARM-faster: ARM64 runtime ≥ 15% faster than x86.
• ARM-slower: ARM64 runtime ≤ 15% slower than x86.
• ARM-similar: ARM64 and x86 64 runtime within +/-15%.
While defining more performance categories is possible, cat-
egorization is limited by the need to have a critical mass of
workloads in each category. Applying ARM-speed models to
generate runtime predictions for unseen workloads additionally
requires identifying the best models to pair with unseen
workloads to generate runtime predictions. This challenge is
addressed by (RQ-3), where we investigate classification mod-
els to support automatically selecting the best ARM-speed
model. We used readwritememory in both the ARM-slower
and ARM-similar models because its runtime performance was
right on the threshold between ARM-slower and ARM-similar.
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Fig. 4. Mean Absolute Percentage Error for Unseen workloads
Figure 4 shows average MAPE for unseen workloads using

our three generalized modeling approaches. ARM-speed mod-
els provided the best accuracy in contrast to All-in-one and
Resource-bound models for ARM64 serverless function run-
time prediction. By categorizing unseen function runtime into



TABLE IV
CLASSIFIER ACCURACY COMPARISON

Classfier Accuracy (%)
Random Forest Classifier 93.35
DecisionTree Classifier 91.65
Gaussian Process Classifier 83.63
AdaBoost Classifier 78.78
KNeighbors Classifier 74.55
MLP Classifier 65.83
Quadratic Discriminant Analysis 62.05

a specific performance group (e.g. ARM-faster, ARM-slower,
and ARM-similar) and then making runtime predictions using
a category specific model, our ARM-speed models helped
tailor predictions more closely by considering their unique
performance behavior. Detailed results of ARM64 runtime
prediction for all eighteen functions is shown in table III.
C. Unseen Workload Runtime Classification

The ARM-speed models require pairing unseen workloads
with the appropriate generalized model trained to generate pre-
dictions for their specific runtime behavior (i.e. ARM-faster,
ARM-slower, and ARM-similar). For (RQ-3), we investigated
classification models shown in table IV to automatically clas-
sify the ARM64 runtime category based on x86 64 profiling.

TABLE V
RANDOM FOREST CLASSIFIER - STRONGEST FEATURES

Feature Importance Information Gain
pageFaultsDelta 0.1227 0.2177
utilizedCPUs 0.0730 0.0882
freeMemory 0.0700 0.1499
cpuUserDelta 0.0680 0.0968
cpuKernelDelta 0.0652 0.1049
frameworkRuntime 0.0063 0.1355

Feature importance shown is permutation importance. pageFaultsDelta: # of
pagefaults, frameworkRuntime: profiling time spent by SAAF, utilizedCPUs:
estimated CPUs actually used by the function, freeMemory: free memory
space in megabytes, cpuUserDelta: CPU user mode time during function
execution, cpuKernelDelta: CPU kernel time during function execution

Fig. 5. Workload Performance Classification Confusion Matrix

Accuracy of our different performance classifiers is shown
in table IV, table V describes important features, while Figure
5 provides a ternary confusion matrix detailing our random
forest classifier accuracy. Our random forest classification
model offered 93.35% accuracy when classifying expected
ARM64 performance using individual x86 64 function runs as

model input. With this high single sample accuracy, for unseen
workloads, classifying 10 function runtime samples and then
assuming the most common classification is correct reduces
the probability of misclassifying performance to just 0.025%.
Only a small number of test samples (i.e. 10) are needed to
quickly classify unseen function ARM64 performance. The
’chameleon’ workload provided a more challenging scenario
with single sample classification accuracy of just ∼60%. In
this challenging scenario, by expanding the analysis to 100
samples, and then assuming the most common classification
is correct, the probability of misclassification is just ∼2.7%.

Supported by our random forest classifier, our ARM-speed
models can generate ARM64 runtime predictions with average
MAPE of 10.29 for unseen functions, and 5.86 for all func-
tions. This marks a promising advancement towards providing
a methodology to build an automated tool to predict ARM64
serverless function runtime based on profiling on X86 64
processors. As future work, we plan to expand the number of
training functions used in generalized models. Enriching the
datasets to cover a broader input space has potential to enhance
our ability to classify a larger array of serverless functions to
support improved ARM64 runtime predictions.
D. Performance Estimation on Non-FaaS Platforms

To investigate (RQ-4), we conducted experiments using
AWS EC2 instances, specifically c5.xlarge (x86 64 architec-
ture) and m6g.xlarge (ARM64 architecture). We chose these
VM types because they enabled us to train a VM performance
model for an Intel Xeon x86 64 CPU to predict runtime on
the Graviton2 ARM64 CPU. We selected three functions for
this purpose: chacha20, primenumber, and graph-bfs. We ran
function code inside the Podman containers restricted to 2
vCPUs to evaluate function-specific x86 64→ARM64 perfor-
mance predictions using the same approaches as with (RQ-
1). Due to the significant time and cost involved in profiling
functions on VMs, for each function we performed 50 runs
(not 100) across 40 steps using 20 VMs in parallel, resulting
in 6,000 total profiling runs for each CPU architecture. This is
half of the profiling data compared to function-specific models
trained on AWS Lambda for (RQ-1). For our three functions
average MAPE was 1.41 for ARM64 runtime predictions on
EC2. This included chacha20 (MAPE: 0.93), primenumber
(MAPE: 1.87), and graph-pagerank (MAPE: 1.42). These
results demonstrate that our x86 64 to ARM64 performance
modeling approach is robust and adaptable in contexts outside
AWS Lambda. Future work can investigate function runtime
predictions in open-source FaaS environments like Apache
OpenWhisk and OpenFaaS deployed on ARM64 hardware.

V. CONCLUSIONS

In this paper, we present function-specific and generalized
performance models to support predicting ARM64 serverless
function runtime. For (RQ-1), using random forest regres-
sion models we demonstrated our ability to predict ARM64
serverless function runtime with on average only ∼1.17 MAPE
using x86 64 profiling data. For (RQ-2), we investigated three
approaches for training generalized performance models to



predict ARM64 function runtime for unseen workloads not
included in model training datasets. Our ARM-speed model
provided ARM64 runtime predictions with only 3.04 MAPE
for training functions, 10.29 MAPE for unseen functions, and
5.86 MAPE for all functions on average. To automatically
select the best ARM-speed model to make ARM64 runtime
predictions for unseen functions (RQ-3), we trained a series of
classifiers to predict the behavioral category (i.e. ARM-faster,
ARM-slower, or ARM-similar). Our random forest classifier
achieved 93.35% accuracy at predicting the function’s per-
formance category using a single function profiling sample.
By taking the most common classification using a set of
samples (e.g. 10 to 100), we are able to reliably pair an
ARM-speed model to an unseen function. For (RQ-4), we
demonstrated generalizability of our approach by reproducing
ARM64 function runtime predictions using EC2 VMs achiev-
ing 1.41 MAPE with only half the volume of training data. Our
approaches form the basis to create an automated tool to pre-
dict ARM64 serverless function runtime for unseen workloads
based on x86 64 profiling. Our results can help developers
and practitioners prioritize serverless function migrations to
ARM64 processors. Function and modeling code used in our
experiments is available on Github [38].
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