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Abstract— Deployment of Service Oriented Applications (SOAs) to public infrastructure-as-a-service (IaaS) clouds presents 
challenges to system analysts.  Public clouds offer an increasing array of virtual machine types with qualitatively defined CPU, 
disk, and network I/O capabilities.  Determining cost effective application deployments requires selecting both the quantity and 
type of virtual machine (VM) resources for hosting SOA workloads of interest.  Hosting decisions must utilize sufficient 
infrastructure to meet service level objectives and cope with service demand.  To support these decisions, analysts must: (1) 
understand how their SOA behaves in the cloud; (2) quantify representative workload(s) for execution; and (3) support service 
level objectives regardless of the performance limits of the hosting infrastructure.  In this paper we introduce a workload cost 
prediction methodology which harnesses operating system time accounting principles to support equivalent SOA workload 
performance using alternate virtual machine (VM) types.  We demonstrate how the use of resource utilization checkpointing 
supports capturing the total resource utilization profile for SOA workloads executed across a pool of VMs.  Given these 
workload profiles, we develop and evaluate our cost prediction methodology using six SOAs.  We demonstrate how our 
methodology can support finding alternate infrastructures that afford lower hosting costs while offering equal or better 
performance using any VM type on Amazon’s public elastic compute cloud.   

Index Terms— Service Oriented Application, performance equivalence, predictive models, IaaS cloud, cloud economics 

——————————      —————————— 

1 INTRODUCTION
 
eploying service oriented applications (SOAs) to In-

frastructure-as-a-Service (IaaS) clouds requires selection 
of both the type and quantity of VMs adequate for work-
load hosting.  Public IaaS clouds offer a wide array of VM 
appliance types featuring different hardware configura-
tions.  These VM appliance types provide fixed alloca-
tions of CPU cores, system memory, hard disk capacity 
and type (spindle vs. solid state), and network through-
put.  By focusing on providing a limited number of VM 
types, cloud providers can leverage economies of scale to 
improve performance and availability of VM types in 
hardware procurement and management.  Given the ever 
increasing number of VM types it is increasingly difficult 
to make informed choices for SOA deployment.  In 2014, 
Amazon EC2 and HP Helion offered 34 and 11 prede-
fined VM types respectively, each with different CPU, 
memory, disk, and network bandwidth allocations avail-

able for different costs.   
Quantifying performance expectations of cloud re-

sources is difficult.  Amazon EC2 and HP Helion’s clouds 
use qualitative “compute units” to describe relative pro-
cessing capabilities of VMs.  Amazon EC2 describes VM 
performance using elastic compute units (ECUs), where 
one ECU is stated to provide the equivalent CPU capacity 
of a 1.0-1.2 GHz 2007 AMD Opteron or Intel Xeon proces-
sor  [1].  An HP Cloud Compute Unit (CCU) is advertised 
to be roughly equivalent to the minimum power of 
2/13th of one logical core (a hardware hyper-thread) of 
an Intel 2.6 GHz 2012 Xeon CPU.  Recently, Amazon has 
stopped directly marketing ECUs for 3rd generation VM-
types, though ECUs are still listed in the management 
console interface.  Additionally, Amazon employs ap-
proximate network throughput categories. They include: 
very low, low (250 Mbps), moderate (500 Mbps), high 
(1000 Mbps), and 10 Gigabit.   

Not only do cloud vendors offer a diverse array of 
VM-types, investigations have shown that VM types are 
often implemented using heterogeneous hardware result-
ing in performance variance [2], [3].  Ou et al. identified 
no less than five hardware implementations of the 
m1.large Amazon VM-type in 2011, with performance 
variance up to 28% [2].  Ou also observed the use of dif-
ferent CPU time sharing allotments to implement the 
m1.large VM type.  In some cases, multi-core VMs were 
found to not receive 100% allotments of every core.  Using 
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CPU benchmarking techniques we confirmed this phe-
nomenon.  Timeshare allocations of the 4-core m1.xlarge 
backed by the Intel Xeon E5-2650 v0 @ 2.0 GHz could not 
be made to exceed 100%, 100%, 95%, and 75% CPU for 
each respective core.   

Beyond VM type heterogeneity challenges, previous 
research has demonstrated how resource contention from 
multi-tenancy on VM hosts results in SOA performance 
variance and degradation [4]–[7].  Provisioning variation, 
the uncertainty of the physical location of VMs across 
physical hosts, has been shown to contribute to applica-
tion performance variance and degradation [8], [9].  

Determining the best VM type for SOA hosting is 
complicated by: (1) a plethora of vendor provided VM-
types, (2) vague qualitative descriptions of VM capabili-
ties, (3) heterogeneous vendor hardware and hypervisor 
configurations, and (4) performance variance from re-
source contention and provisioning variation across 
shared hardware.   Given these challenges, a practition-
er’s effectiveness at employing only intuition to make 
architectural choices which account for performance and 
cost tradeoffs is increasingly in doubt. 

1.1 Workload Cost Prediction Methodology 
Making informed choices regarding VM deployments for 
SOA hosting requires (1) characterization of workloads and 
(2) benchmarking performance capabilities of available VM 
types.  In this paper, we present a workload cost predic-
tion methodology that harnesses both to support deter-
mination of infrastructure requirements for achieving 
equivalent performance for SOA workloads.   

To develop our approach we investigate SOA work-
load hosting consisting of a large number of individual 
service requests.  We focus on achieving equivalent total 
execution time for entire workloads using different VM 
types, irrespective of individual service request execution 
times.  Our approach supports prediction of the type 
and quantity of VMs to achieve equivalent workload 
performance providing resource alternatives.  Given 
alternatives the most economical can be chosen for SOA 
hosting.  Infrastructure costs can be calculated by multi-
plying fixed or spot market prices by the predicted quan-
tity of VMs to derive monetary costs.  Cost predictions 
can be compared to determine the most cost effective vir-
tual infrastructure. 

We consider SOA hosting using VM pools consisting 
of a single VM type.  We do not investigate hosting using 
pools with mixed VM types.  The utility of mixing VM 
types could emulate support of vertical scaling in a public 
cloud.  Vertical scaling is useful when an optimal CPU 
core requirement is determined to be 22 cores.  With ver-
tical scaling this workload could be hosted using 5 x 4-
core VMs, and 1 x 2-core VM of similar processing speed.  
We do not consider provisioning separate infrastructure 
for different phases of SOA workloads, rather we provi-
sion infrastructure for the most resource intensive phase.  
When necessary, workload phases could be profiled sepa-
rately and infrastructure provisioned accordingly.   

We consider SOA hosting only on VM types which 
meet or exceed SOA RAM and disk space requirements.  

We do not consider under allocation of VM RAM or disk 
space.  This would likely result in significant performance 
degradation and represents a problem outside the scope 
of our investigation.   

Unlike related work in cost optimization for cloud 
workloads we do not assume that application workloads 
are identical [10]–[12].  We profile representative SOA 
workloads and build predictive resource utilization mod-
els.  Our models convert resource requirements from a 
selected base VM type to alternate VM types needed to 
achieve equivalent performance.  We focus our analysis 
on service oriented application workloads where many 
individual service requests are executed independently in 
parallel.  As our resource utilization based approaches are 
generic, our workload cost prediction methodology is 
extensible to any workload that will run across a distrib-
uted pool of VMs. 

We initially considered cloud application performance 
modeling using resource utilization statistics in [13].  We 
harnessed this approach to predict performance of vari-
ous component compositions across VMs in  [8], [14].  
These efforts demonstrate how intuition is insufficient to 
determine the best performing VM component composi-
tions.  We developed VM-Scaler to easily facilitate re-
source utilization profiling of application deployments in 
private and public cloud settings [15].   

1.2 Research Questions 
This paper investigates the following research questions: 
1. How can equivalent SOA workload performance 

be achieved across different virtual machine types 
by harnessing resource utilization profiles?  
 [Equivalent Performance] 

2. How effectively can we predict independent re-
source utilization variables for SOA workloads 
across VM types?  Specifically, how well can we 
predict: CPU-user-time, CPU-kernel-time, CPU-
idle-time, and CPU-IO-wait-time? [Profile Prediction] 

3. When scaling the number of VMs, how can we ac-
count for changes in the SOA workload resource 
utilization profile variables?  Specifically, what 
changes occur and, how do we accommodate them 
for: CPU-user-time, CPU-kernel-time, CPU-idle-
time, and CPU-IO-wait-time?  [Profile Scaling] 

1.3 Research Contributions 
In this paper we present our workload cost prediction 
methodology to predict hosting costs of SOA workloads 
harnessing resource utilization models.  Our methodology 
provides infrastructure configuration alternatives that 
provide equivalent performance allowing the most eco-
nomical infrastructure to be chosen.  Our methodology 
supports: (1) characterization of workload requirements, 
(2) predicting the required number of VMs of a given type 
required to host workloads, while (3) ensuring equivalent 
performance is achieved.  We additionally contribute: 
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1. A novel resource checkpointing scheme that supports 
profiling SOA workload resource utilization for jobs 
executing across VM pools. 

2. A research application of Ou et al.’s trial-and-better 
approach [2] to normalize VM pools to ensure each 
VM has an identical backing CPU to support SOA 
workload profiling. 

Our resource utilization checkpointing scheme sup-
ports profiling application resource utilization across VM 
pools.  Resource utilization data collection is synchro-
nized to the nearest second to accurately benchmark re-
source requirements.  We use a novel application of the 
trial-and-better approach to homogenize public cloud 
infrastructure for all experiments.  We argue that all pub-
lic cloud research should use trial-and-better to reduce 
heterogeneity of tested resources.  Trial-and-better sup-
ports normalization of resources to reduce variance of 
testing in public clouds.  

1.4 Paper Organization 
In Section 2 provides an overview of related research for 
cloud based cost optimization and prediction for work-
load hosting.  Section 3 describes our workload cost pre-
diction methodology that harnesses Linux CPU time ac-
counting principles for workload cost prediction to ad-
dress research-question 1.  Section 4 describes our envi-
ronmental science SOAs used for evaluation and our 
hardware and test configurations.  Section 5 describes 
results of our evaluation while addressing research ques-
tions 2 and 3.  Section 6 summarizes our findings while 
Section 7 discusses future work.   

2 BACKGROUND AND RELATED WORK 
Research on cloud economics and application hosting 
costs can be broken down into efforts focused on demand 
based pricing models (spot markets), and investigations 
on the cost implications of infrastructure management 
and scaling approaches.  

Amazon introduced spot virtual machine instances as 
a method to sell unused datacenter capacity in late 2009.  
Spot instances enable bidding for spare public cloud ca-
pacity by granting resources to users whose bids exceed 
current spot prices.  When demand spikes, user VMs 
whose bid price falls below the current market price are 
terminated instantly, freeing capacity for higher bidders. 
Spot instances are ideal for executing computational 
workloads for scientific modeling where the time of exe-
cution is less important than completing the workloads at 
minimum cost.  Spot instances were harnessed to conduct 
our research. 

A number of efforts have investigated spot instance 
pricing and similar demand based pricing mechanisms 
[11], [12], [16], [17].  These efforts employed modeling to 
predict or set prices.  Yi et al. investigated the use of job 
checkpointing as a mechanism to reduce job costs execut-
ed using spot instances [11].  Their approach was limited 
to supporting jobs with fixed execution times and was 
evaluated by simulation using spot price histories.  An-

drzejak et al. developed a model which supports users by 
providing bid suggestions while considering resource 
availability, reliability, performance, and resource costs 
[12].  Their approach was limited to compute intensive, 
embarrassingly parallel jobs whose computation is easily 
divided. 

Other efforts primarily have focused on infrastructure 
management to minimize hosting costs [2], [3], [10], [18]–
[20].  In [21], Galante and E. de Bona provide a survey of 
recent research on cloud computing elasticity.  They iden-
tify 28 works which consider elasticity for infrastructure, 
platform, and application hosting.  Of these only one 
study [10], focused on cost optimization of application 
hosting and scaling.   

In [10] Sharma et al. describe Kingfisher, a manage-
ment system supporting cost-aware application hosting 
and scaling for IaaS clouds.  Kingfisher determines the 
most cost effective approach to transition existing appli-
cation infrastructures to target infrastructures to meet 
service level agreements (SLAs).  Transitions considered 
include vertical and horizontal scaling, as well as VM live 
migration.  Kingfisher was evaluated using Amazon’s 
public cloud and a local private XEN-based cloud.  King-
fisher assumes that each VM can service a fixed volume 
of incoming requests and that all requests require the 
same resources to process.   

In [18], Leitner et al. developed an SLA-aware client 
side request scheduler which minimizes “aggregate” 
hosting costs by balancing both price and SLA require-
ments.  They evaluated their approach by simulation us-
ing workload archival data to test how their scheduler 
responds.  They compared the aggregate costs of their 
algorithms with: (1) the minimum infrastructure (1 VM 
for all requests), (2) the maximum infrastructure (1 VM 
for each request) and (3) a bin-packing approach which 
fully packs existing resources before allocating additional 
VMs.  Their approach provided the lowest aggregate 
costs but their bin packing approach did not address in-
frastructure launch latency.    

Simarro et al. provide a cost aware VM-placement 
scheduler which seeks to reduce infrastructure costs by 
provisioning VMs across cloud data centers having the 
lowest infrastructure prices [19].  Their schedulers use 
price forecasts to predict pricing trends to support the 
most economical infrastructure placements.  Their ap-
proach reduced infrastructure costs but did not address 
network latency and performance issues resulting when 
application infrastructure is simultaneously provisioned 
across different data centers.  

In [20] Villegas et al. provide a performance and cost 
analysis of provisioning and job scheduling policies in the 
cloud.  They assessed policies from recent literature for 
their analysis using two private clouds and Amazon EC2.  
They found that statically provisioned virtual infrastruc-
ture delivered better performance, but was up to 5Xs 
more costly.   Conversely dynamically provisioned infra-
structure provided lower hosting costs but with perfor-
mance caveats resulting from infrastructure launch laten-
cy similar to [22].  This key cost versus performance 
tradeoff for infrastructure provisioning highlights the 
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need for good hot spot detection and load prediction 
techniques [23]. 

Farley et al. demonstrated that Amazon EC2 instance 
types had heterogeneous hardware implementations in 
[3].  Their investigation focused on the m1.small instance 
type and demonstrated potential for cost savings by dis-
carding VMs with less performant implementations.  Ou 
et al. extended their work by demonstrating that several 
Amazon and Rackspace VM types exhibit heterogeneous 
implementations [2].  They identified four different im-
plementations of the m1.large VM on Amazon EC2 with 
varying performance.  Performance variations were at-
tributed to the use of different backing CPUs and XEN 
scheduler configurations.  They harnessed this heteroge-
neity by developing a “trial-and-better” approach to test 
new instances and discard poor performing instances.  
The authors demonstrated cost savings for long running 
jobs as a result of faster job execution.  For our work we 
adopt Ou’s “trial-and-better” approach to improve ho-
mogeneity of VM profiling.   

Previous research investigating cost implications of 
IaaS clouds has focused on spot market analysis [16], [17], 
pricing/bid support [11], [12], cost-aware VM scheduling 
[10], [19], [20], and job placement schemes [18], [20].  For 
the surveyed approaches workloads were assumed to be 
heterogeneous.  None of the approaches specifically sup-
port diverse workloads with varying resource require-
ments (e.g. CPU and I/O)  [10]–[12].  Conversely, we pro-
vide a workload cost prediction methodology which har-
nesses SOA workload profiles and VM benchmarking to 
capture the unique resource requirements of diverse 
workloads.  Our methodology provides equivalent work-
load performance using different VM types and supports 
cost savings by identifying infrastructure alternatives. 

3 RESOURCE UTILIZATION MODELS FOR COST 
PREDICTION 

Our resource utilization based approach for SOA work-
load cost prediction focuses on achieving equivalent per-
formance for diverse SOA workloads.  For the purposes of 
our evaluation in section 5, we consider equivalent per-
formance to be +/- 2 seconds of the observable wall clock 
time.  This equates to ~2% execution time for our SOA 
workloads.  Our workloads consist of sets of individual 
service requests that execute in parallel across virtual in-
frastructure.  We are not concerned with response time of 
individual service requests, but rather the total workload 
execution time.  In fact, we expect individual requests to 
perform slower on VM-types having slower CPU clock 
speeds. 

3.1 Workload Equivalent Performance 
Given SOA workloads, we predict the workload resource 
utilization requirements for pools of distinct virtual ma-
chine types.  For example, we have 3 pools: one consisting 
of c3.xlarge VMs, another m1.xlarge, and a third 
c1.medium.  Our methodology supports determining the 
required number of virtual machines to provide equiva-
lent workload performance using these different VM 

pools.   
We harness Linux CPU time accounting principles to 

account for available time across the pool of VMs servic-
ing the workload.  Workload wall clock time can be de-
termined by summing CPU resource utilization variables 
across the VM pool and dividing by the total number of 
CPU cores.   

 

Workload time=

𝑐𝑐𝑐𝑐𝑐𝑐𝑇+𝑐𝑐𝑐𝑐𝑐𝑐𝑇+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇+
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇

𝑉𝑉𝑐𝑐𝑐𝑐𝑐
  (1) 

Eight resource utilization variables contribute to the 
observed wall clock time.  These eight variables described 
in table 1 include: cpuUsr, cpuKrn, cpuIdle, cpuIoWait, 
cpuIntSrvc, cpuSftIntSrvc, cpuNice, and cpuSteal.  In prac-
tice we found it unnecessary to consider all eight varia-
bles.  For our SOA workloads described in section 4.1, 
m1.xlarge wall clock time on average was accounted for 
by cpuUsr (45.26%), cpuKrn (7.52%), and cpuIdle (43.71%).   
CpuIoWait (3.14%) and cpuSftIntSrvc (0.28%) help further 
improve prediction accuracy.  We ignore cpuIntSrvc (0%), 
cpuNice (0%) and cpuSteal (.08%) in practice because the 
time they account for was negligible.  We use resource 
utilization checkpointing, a feature of VM-Scaler cloud to 
capture the workload resource utilization as described in 
section 4.3.   

Of the eight resource utilization variables, cpuUsr and 
cpuIdle account for the majority of the time.  For our SOA 
workload evaluation described in section 5, approximate-
ly 88.97% of m1.xlarge SOA execution time is accounted 
for by cpuUsr or cpuIdle.  CpuUsr represents the total 
amount of computation required by the workload.  
Through extensive testing, we observe that cpuUsr time 
remains generally the same regardless of the number 
VMs used to host the workload.  Introducing additional 
VMs into the VM pool adds to the total overhead from 
background Linux processes. This overhead is relatively 
constant and can easily be accounted for.  CpuIdle repre-
sents the unused time where CPU cores have been provi-
sioned but remain idle.  Workloads exhibiting high 
cpuIdle time demonstrate parallel execution inefficiencies.  
This indicates significant resource waste in the service 
implementation.  Applications concerned about cloud 
hosting costs should be architected to decrease cpuIdle 
time.   

CpuKrn is the time a workload spends executing kernel 
mode instructions.  When executing SOA workloads 
across VMs, we found the ratio of time spent in kernel 
mode is similar, with slightly more cpuKrn time occurring 
on VMs with slower I/O.  CpuKrn is the third greatest 
contributor to workload execution time at approximately 
7.52%.  CpuIntSrvc and cpuSftIntSrvc represent time spent 
servicing system interrupts and is generally small.  
CpuNice is time spent executing prioritized processes in 
user mode.  This is rare, and only occurs when SOAs em-
ploy process prioritization in an attempt to gain a larger 
share of the CPU.     
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CpuSteal is an important, though unusable metric.  
CpuSteal registers processor ticks when a virtual CPU core 
is ready to execute, but the physical core is busy and una-
vailable.  The CPU may be unavailable because the hy-
pervisor is executing native instructions (e.g. XEN Dom0) 
or other co-located VMs are currently “stealing” the CPU.  
The difficulty with this measure is that ticks are only reg-
istered when execution should occur, but is unable to.  
These ticks, unfortunately, do not adequately account for 
the missing time.  When workloads exhibit high cpuSteal 
time error is introduced into the Linux CPU time account-
ing calculations.  On the VM there is essentially “missing 
time”, which is the gap between accounted for time and 
actual time.  There are a number of factors which cause 
CpuSteal time to occur.  These include: 

1. Processors are shared by too many VMs, and those 
VMs are busy 

2. The hypervisor is occupying the CPU 
3. The VM’s CPU core time share allocation is less 

than 100%, though 100% is needed for a CPU inten-
sive workload 

In the case of 3, we observe high cpuSteal time when 
executing workloads on Amazon EC2 VMs which under 
allocate CPU cores as described earlier in section 1.  A 
specific example of this is the m1.small [2] and 
m3.medium VMs.  In 2014, we observed that the 
m3.medium VM type is only allocated 1 core of a 10-core 
2.5 GHz Xeon E5-2670 v2 CPU with an approximate 60% 
timeshare. The m3.medium is advertised to provide 3 
ECUs.  Because of this significant CPU under allocation, 
all workloads executing on m3.medium VMs exhibit high 
cpuSteal time making time accounting inaccurate.  If the 
degree of cpuSteal in these scenarios remains relatively 

constant, it should be possible to buffer time calculations 
to compensate for the missing clock ticks. 

3.2 Workload Cost Prediction Methodology 
The steps of our workload cost prediction methodolo-

gy for cost calculation are outlined in table 2.  As an ex-
ample we consider prediction of the number of m1.xlarge 
VMs (4 CPU cores, 2 ECUs each) required to execute SOA 
workloads with execution time equivalent to a pool of 5 x 
c3.xlarge VMs (4 CPU cores, 3.5 ECUs each).  For the ex-
ample c3.xlarge serves as VMbase. 

Step 0 – Train resource utilization models 
In this initialization step we train resource utilization 

models to convert workload resource utilization from 
VMbase c3.xlarge to m1.xlarge.  SOA workload training 
data is collected using pools of (5) c3.xlarge and (5) 
m1.xlarge VMs.  Training data must always be collected 
using the same number of CPU cores, though not neces-
sarily the same number of VMs for each VM type.  For 
example, if the VMbase is 4 x 8-core c1.xlarge Amazon VMs 
(32 total cores), training data would be collected using 8 x 
4-core m1.xlarge VMs (32 total cores) and 16 x 2-core 
m1.large VMs (32 total cores).   

For our evaluation in section 5, we collect training data 
for our six domain related SOAs and train a single set of 
resource utilization (RU) conversion models (Mall).  This 
increases the range of resource utilization scenarios the 
models are exposed to and offers the potential to predict 
resource requirements for new models with similar re-
source utilization behavior.     

RU models are trained using stepwise multiple linear 
regressions.  One model is trained for each VM type being 
considered.  For our example, our c3.xlargem1.xlarge 
model converts RU data from c3.xlarge (VMbase) to the 
alternate VM type: m1.xlarge.  RU models were trained 
using the R statistical package.   

Step 1 – Profile workload resource utilization 
We next perform a single profiling run of the SOA work-
load on our VMbase type c3.xlarge to capture its resource 
requirements.  For our workloads (W) we collect the total 

TABLE 1 
RESOURCE UTILIZATION VARIABLES TRACKED BY VM-SCALER 

RU variable Description  
cpuUsr CPU time in user mode  
cpuKrn CPU time in kernel mode  
cpuIdle CPU idle time  
cpuIoWait CPU time waiting for I/O to complete 
cpuIntSrvc CPU time servicing interupts 
cpuSftIntSrvc CPU time servicing soft interrupts 
cpuNice CPU time executing prioritized processes (user mode) 
cpuSteal CPU ticks lost to other virtualized guests 
contextsw Number of context switches 
dsr Disk sector reads (1 sector = 512 bytes) 
dsw Disk sector writes (1 sector = 512 bytes) 
nbs Network bytes sent 
nbr Network bytes received 
dsreads Number of completed disk reads 
drm Number of adjacent disk reads merged 
readtime Time in ms spent reading from disk 
dswrites Number of completed disk writes 
dwm Number of adjacent disk writes merged 
writetime Time in ms spent writing to disk 
loadavg Avg # of running processes in last 60 sec 

TABLE 2 
WORKLOAD COST PREDICTION METHODOLOGY 

Step Task 

0 Train RU conversion models: MVMtype1, .. MVMtype-j 

1 Profile workload:  RUw(VM-base)  (W) on n x VMbase 

n=base #VMs 

2 Convert: RUw(VM-base)   (Mall)  RUw{n x VMtype1, .. n x VMtype-j}, 
n=base #VMs, j=number VM types 

3 Scale profiles:  RUw{n x VMtype1, .. n x VMtype-j}, n=n to n+x 
n=base #VMs, x = scale up #VMs 

4 Select profile: perf(VMbase)={perf(n x VMtype1),.. perf(n x VMtype-j)} 
n=#VMs w/ equivalent performance 

5 Minimize cost: Select min{cost(VMtype1), .. cost(VMtype-j)} 
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resource requirements (RUw) across the set of 5 x 
c3.xlarge VMs.  

Step 2 – Convert resource utilization profile 
The c3.xlarge workload resource utilization profile for 
RUw(VM-base) is then converted to our target VM-type 
m1.xlarge using the resource utilization conversion model 
trained in step 0 (Mm1.xlarge).  Mall models from step 0 gen-
erate “predicted” resource utilization profiles, (RUw(VM-

type(1..j))), for each possible VM type (1..j).  For our example, 
we are only interested in 5 x m1.xlarge VMs.  We generate 
(RUw(m1.xlarge)) which represents the resource utilization to 
execute the workload (W) with 5 x m1.xlarge VMs.  How-
ever, we know based on m1.xlarge’s 2 ECU performance 
rating that 5 VMs are insufficient for equivalent perfor-
mance to 5 x c3.xlarge VMs.  We address scaling up from 
n to n+x VMs in step 3. 

To simplify the cost prediction methodology, it is best 
to select the profiling VMbase type for Step 1 to be either a 
very fast or slow offering so resource utilization is scaled 
in the same direction for all predicted VM types.  The 
required number of VMs (n), should be scaled up (or 
down) for equivalent performance depending on the 
VMbase’s VM type relative to VMtypei. 

Step 3 – Scale resource utilization profile 
To identify infrastructure configurations that provide 
equivalent workload performance to VMbase, we scale re-
source utilization profiles RUw{n x VMtype1, ..., n x VMtype-j} 
from n to n+x VMs, where x is the maximum quantity of 
VMs over n required for equivalent performance.  In table 
3 we show scaling from 5 to 10 m1.xlarge VMs.  For SOA 
workloads consisting of individual service requests, the 
maximum number of VMs to ever consider is equal to the 
number of workload service requests divided by the 
number of CPU cores.  For a workload of 100 requests for 
example, 25 x m1.xlarge VMs would be the worst case 
infrastructure to consider for equivalent performance.  
This infrastructure enables every request to run in paral-
lel.  A complete SOA workload can never execute faster 
than its longest service request.   

To scale our resource utilization profiles 
RUw{m1.xlarge} from 5 to 10 VMs, we address how indi-
vidual profile variables change when VM resources are 
added to execute the workload.  This is research question 
3 from section 1.  We investigate two different scaling 
approaches: Resource Scaling Approach 1 (RS-1) and Re-
source Scaling Approach 2 (RS-2).  For scaling CPU-
bound SOA workloads we focus on scaling up cpuUsr 
and cpuKrn time.  For RS-1, we only scale cpuUsr and 
cpuKrn because they account for most of the system time 
(98.94%).  If scaling workloads are I/O bound, it becomes 
important to address scaling of cpuIoWait.   For RS-2, we 
incorporate additionally cpuIoWait scaling.  These ap-
proaches exhibit an effort vs. accuracy tradeoff.  More 
accuracy can be obtained with greater effort.  From a re-
search perspective, we investigate how much accuracy is 
required (Research question 3). 

RS-1: APPLICATION AGNOSTIC 
Resource Scaling Approach 1 (RS-1) is agnostic to the 
SOA being scaled.  For RS-1, idle m1.xlarge VMs are 
benchmarked to determine their background resource 
consumption.  Observed idle resource utilization consists 
of typical background Linux server processes.  Observed 
cpuUsr time represents overhead incurred for adding 
these VMs to the pool.  Each VM type being considered 
should be tested separately to determine its background 
resource consumption.  The average number of back-
ground cpuUsr ticks per second is determined.  This 
background overhead/VM rate is used to scale cpuUsr for 
Step 3.  For RS-1, remaining parameters are converted 
using the c3.xlargem1.xlarge model from step 0, but not 
scaled up: cpuKrn, cpuIoWait, and cpuSftIntSrvc.  These 
parameters account for only a small fraction of the total 
time, and represent background activity not directly re-
lated to the SOA workload.  Table 3 shows RS-1 scaling of 
cpuUsr with cpuKrn conversion but no scaling for the 
WEPS SOA (described in 4.1) for c3.xlargem1.xlarge. 

RS-2: APPLICATION AWARE HEURISTIC 
Resource Scaling Approach 2 (RS-2) addresses how appli-
cation specific characteristics of how resource utilization 
profiles change when VMs are added to the pool.  A set of 
scaling runs is used for sample workloads for each SOA 
scaling from n to n+x, in our case 5 to 10.  The average 
percentage change for scaling up by 1 VM is calculated 
for cpuUsr, cpuKrn, and cpuIoWait.  Use of this average 
percentage change supports scaling resource utilization 
profiles to better account for changes based on specific 
SOAs.  This approach helps incorporate application spe-
cific information into resource predictions. 

Step 4 – Select resource utilization profile 
Once SOA workload resource utilization profiles have 
been converted to alternate VM types (step 2), and scaled 
(step 3), the final step is to determine the number of VMs 
required for equivalent SOA performance. An illustration 
of this selection problem appears in table 3.  The first row 
represents converted profile output from step 2: 5 x 
c3.xlarge VMs to 5 x m1.xlarge VMs.  Harnessing equa-
tion 1 allows us to solve for cpuIdle time.  With only 5 
VMs cpuIdle is negative!  With the specified “wall-time 
goal” for equivalent performance, there is not enough 
physical time to execute the workload.  Each additional 
VM increases the total available clock ticks.  However, it 
is insufficient to simply select the first line where 
cpuIdle is positive.  To achieve equivalent performance 
for SOA workloads there has to be extra cpuIdle time to 
account for overhead, context switching, I/O, etc.  
We need an approach which estimates when enough 
cpuIdle time is available to provide equivalent perfor-
mance to VMbase.  We describe two alternative profile se-
lection approaches: Profile Scaling Approach 1 (PS-1) and 
Profile Scaling Approach 2 (PS-2) to estimate the required 
cpuIdle time for equivalent performance. 
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PS-1: APPLICATION AGNOSTIC 
Profile Selection Approach 1 (PS-1) is agnostic to the SOA 
being scaled.  For PS-1 we convert the cpuIdle time from n 
x VMbase to n x VMtype-j, in our case 5 x c3.xlarge to 5 x 
m1.xlarge.  We know there must be more than 5 x 
m1.xlarge cpuIdle time after scaling to achieve equivalent 
performance.  We also expect more cpuIdle to be required 
than the value from our Step 2 conversion 
(c3.xlargem1.xlarge) value for 5 VMs.  We need to 
know cpuIdle time with 5 + x VMs.  For PS-1 we use a 
simple linear function to determine a percentage to in-
crease cpuIdle time for each additional VM.  Our equation 
is derived by calculating the average observed % growth 
in cpuIdle time for all SOAs when scaling up with 
m1.xlarge VMs.  We then assumed 0% growth for the 
VMbase of c3.xlarge (3.5 ECUs), and linear growth based 
on the VM’s ECU rating to derive the linear scaling equa-
tion:  

𝑐𝑐𝑐𝑐𝑐𝑐𝑐%𝑔𝑐𝑐𝑔𝑐ℎ =  −6.5715 𝐸𝐸𝐸𝐸 + 23                         (2) 
 
Our equation expresses percentage growth as a num-

ber from 1 to 100, and supports increasing cpuIdle time 
faster for slower VM types.  From SOA workload testing 
we observe that slower VMs require more cpuIdle to 
achieve equivalent performance.  This approach to scale 
cpuIdle for profile selection is application agnostic.  We 
take advantage of ECUs already being a normalized 
measure of CPU performance.  If ECUs were unavailable 
a similar approach using CPU clock speed could be de-
rived though we would need to compensate for genera-
tional improvements in CPU performance.  For example a 
2012 Intel Xeon CPU at 2.5 GHz is somewhat faster than a 
2007 Xeon at the same clock rate.  Table 3 shows PS-1 se-
lection as the dark grey row.  PS-1 and PS-2 identify the 
same row in the scaling profile example. 

PS-2: APPLICATION AWARE HEURISTIC 
Our second Profile Selection Approach (PS-2) attempts to 
address application specific characteristics relating to 

cpuIdle time when infrastructure is scaled up.  We convert 
cpuIdle time from c3.xlarge to m1.xlarge.  After conver-
sion, we scale the required cpuIdle time for selection using 
the SOA specific average percentage change in cpuIdle 
derived from application scaling test observations.  This 
approach does not assume cpuIdle scales the same for all 
SOAs, but applies an application specific scaling factor to 
support prediction of required cpuIdle time.  Table 3 
shows PS-2 selection as the dark grey row.   

Step 5 – Minimize cost 
Once profile selection has identified the number of VMs 
for equivalent performance using alternate VM types, 
infrastructure costs can be calculated.  Cost is determined 
by multiplying the required number of VMs by fixed or 
spot market VMtype prices to determine deployment costs.  
The lowest priced infrastructure can be selected for SOA 
hosting while ensuring equivalent performance. 

4 EXPERIMENTAL INVESTIGATION 
4.1 Environmental Modeling Services 
To evaluate our workload cost prediction methodology 
and investigate the research questions presented in sec-
tion 1, we harness six environmental science SOAs from 
the Cloud Services Innovation Platform (CSIP) [24], [25].  
These six SOAs represent a diverse array of applications 
with varying computational requirements and architec-
tures.  CSIP has been developed by Colorado State Uni-
versity with the US Department of Agriculture (USDA) to 
provide environmental modeling services.  CSIP provides 
a common Java-based framework for REST/JSON based 
service development.  CSIP services are deployed using 
the Apache Tomcat web container [26].  Our six SOAs 
include:  the Revised Universal Soil Loss Equation – Ver-
sion 2 (RUSLE2) [27], the Wind Erosion Prediction System 
(WEPS) [28], two versions of the Soil Water Assessment 
Tool for modeling interactive channel degradation 
(SWAT-DEG) [29], [30], the Comprehensive Flow Analy-
sis LOAD ESTimator (CFA-LOADEST) [31], [32], and the 
Comprehensive Flow Analysis Load Duration Curve 
(CFA-LDC) [33].   

RUSLE2 and WEPS are the USDA–Natural Resource 
Conservation Service standard models for soil erosion 
used by over 3,000 county level field offices.  RUSLE2 
(Windows/MS Visual C++) contains empirical and pro-
cess-based science that predicts rill and interrill soil ero-
sion by rainfall and runoff.  The Wind Erosion Prediction 
System (WEPS) is a daily simulation model which out-
puts average soil loss and deposition values to predict 
soil erosion due to wind. WEPS (Linux/Java/Fortran) 
consists of seven sub models for weather, crop growth, 
decomposition, hydrology, soil, erosion, and tillage.  M, 
D, F, and L components used by RUSLE2 and WEPS are 
described in table 4.  All other tested SOA workloads 
used only M and L components.  Resource profiling oc-
curred only on M VMs.  One VM was statically allocated 
for D, F, and L components. 

Two variants of SWAT-DEG (Fortran/Linux) were 
used.  A deterministic version simulates stream down-

TABLE 3 
SCALING PROFILE: RS-1 (WEPS - C3.XLARGE->M1.XLARGE) 

VMs / 
cores 

wall time-
goal 

available 
clock ticks cpuUsr cpuKrn cpuIdle 

5 / 20 96.774s 193548 219561 10642 -38536 
6 / 24 96.774s 232258 220622 10642 -888 
7 / 28 96.774s 270967 221684 10642 36760 
8 / 32 96.774s 309677 222745 10642 74409 
9 / 36 96.774s 348386 223807 10642 112057 
10 /40 96.774s 387096 224868 10642 149705 

SCALING PROFILE: RS-2 (WEPS - C3.XLARGE -> M1.XLARGE) 

VMs / 
cores 

wall 
time-
goal 

available 
clock ticks cpuUsr cpuKrn cpu 

IoWait cpuIdle 

5 / 20 96.774s 193548 219561 10642 1867 -38536 
6 / 24 96.774s 232258 221822 10856 2005 -2440 
7 / 28 96.774s 270967 224107 11074 2153 33619 
8 / 32 96.774s 309677 226416 11297 2312 69638 
9 / 36 96.774s 348386 228748 11524 2483 105618 
10 /40 96.774s 387096 231104 11755 2667 141556 
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cutting and widening while also outputting a flow dura-
tion curve and cumulative stream power.  A stochastic 
version supports Monte Carlo model calibration for 
model uncertainty encountered within nature for river 
restoration/rehabilitation projects. SWAT-DEG stochastic 
invokes SWAT-DEG deterministic repeatedly to perform 
calibration runs and performs Map-Reduce operations.  
Individual runs are distributed to M worker VMs to per-
form local computations which are later reduced.  The 
reduce phase was largely sequential, resulting in a heavy 
parallel computation phase followed by a largely sequen-
tial reduction phase. 

CFA-LOADEST (Windows/FORTRAN) estimates the 
amount of constituent loads in streams and rivers given a 
time series of stream flows and constituent concentra-
tions.  Estimation of constituent loads occurs in two steps, 
the calibration procedure and the estimation procedure 
based on statistical methods.  CFA-LDC (java) graphs 
Weibull plotting position ranks of river flows on a scale of 
percent exceedance. Graphing flow values in this way 
allows for a quick visualization of the variability of flow 
for different flow regimes.   

4.2 The Virtual Machine (VM) Scaler 
To facilitate performance profiling of virtual infrastruc-
tures for hosting SOA workloads we developed the Vir-
tual Machine (VM) Scaler, a REST/JSON-based web ser-
vices application [15].  VM-Scaler harnesses the Amazon 
EC2 API to support application profiling and cloud infra-
structure management and currently supports Amazon’s 
public cloud (EC2) and private clouds running Eucalyp-
tus.  VM-Scaler provides cloud control while abstracting 
the underlying IaaS cloud and can be extended to support 
any EC2 compatible virtual infrastructure manager.  Key 
features are provided to support workload management 
and IaaS cloud research.  Features include: hotspot detec-
tion, dynamic scaling, VM management and placement, 
job scheduling and proxy services, VM workload profil-
ing, and VM worker pools. 

Upon initialization VM-Scaler probes the host cloud 
and collects metadata including location and state infor-
mation for all VMs and physical hosts (private IaaS only).  
An agent installed on each VM sends resource utilization 
data to VM-Scaler at fixed intervals.  Collected resource 
utilization variables are described previously in table 1.  

Application and load balancer configuration is performed 
automatically as needed to support workload execution 
and profiling tasks.  VM-Scaler builds on previous re-
search investigating the use of resource utilization varia-
bles for guiding cloud application deployment [8], [13]. 

VM-Scaler supports group management of VMs using 
a construct known as a “VM pool”.  Common operations 
can be applied to pools in parallel to support flushing 
memory caches, restarting the web container, checkpoint-
ing resource utilization and running scripts.  Pools sup-
port reuse of VMs for multiple workloads as VMs can be 
returned to the pool after job assignment.  For Amazon’s 
public cloud, VMs are billed for a minimum of one hour.  
This coarse-grained billing cycle makes it advantageous 
to retain VMs for at least one hour for potential reuse.  
Pools maintain a minimum number of members and can 
be instructed to spawn new VMs in anticipation of future 
demand to help alleviate VM launch latency.  

4.3 Resource Utilization Checkpointing 
VM-Scaler supports collection of resource utilization data 
across a pool of worker VMs providing SOA workload 
execution.  A simple script installed on each VM sends 
VM-Scaler resource utilization data at preconfigured in-
tervals.  VM-Scaler’s checkpoint service is called to mark 
the start time for workload execution.  Resource utiliza-
tion deltas can be calculated from any checkpoint to the 
present to capture total resource utilization across a pool 
of VMs.  All VMs run Linux’s Network Time Protocol 
daemon (ntpd) to synchronize clock times.  VM-Scaler 
ensures resource utilization data collection is synchro-
nized to within one second.  Resource utilization check-
pointing in VM-Scaler has been tested using pools >100 
VMs. 

Resource utilization checkpoints allow for a composite 
view of the total resource consumption of an SOA work-
load.  This novel feature helps characterize diverse SOA 
workloads whose execution is distributed across an array 
of VMs. Composite resource utilization profiles can be 
harnessed to examine SOA workload characteristics, re-
source use efficiency, perform analysis, and to build 

TABLE 4 
RUSLE2/WEPS SOA COMPONENTS 

Component RUSLE2 WEPS 

M Model Apache Tomcat 6, Wine, 
OMS3 [34], [35] Apache Tomcat 6 

D Database 

Postgresql-8.4, PostGIS 
1.4: soils (4.3m shapes), 
mgmt (98k shapes), 
climate (31k shapes), 4.6 
GB total (Tennessee) 

Postgresql-8.4, PostGIS 
1.4, soils (4.3m shapes), 
climate/wind (850 
shapes), 17 GB total 
(western US data) 

F File server 

nginx file server, 
57k XML files (305MB), 
parameterizes RUSLE2 
model runs.  

nginx file server, 291k 
files (1.4 GB), 
parameterizes WEPS 
model runs.   

L Logger Redis - distributed cache 
server 

Redis - distributed cache 
server 

TABLE 5 
EQUIVALENT PERFORMANCE INVESTIGATION VM TYPES 

VM type CPU 
cores ECUs/core RAM Disk Cost/hr. 

c3.xlarge 4 3.5 7.5 GB 2x40 GB SSD 30¢ 
m1.xlarge 4 2 15 GB 4x420 GB 48¢ 
c1.medium 2 2.5 1.7 GB 1x350 GB 14¢ 
m2.xlarge 2 3.25 17.1 GB 1x420 GB 41¢ 
m3.xlarge 4 3.25 15 GB 2x40 GB SSD 45¢ 

 
NETWORKING AND BACKING CPUS 

VM type Network I/O Backing CPU 
c3.xlarge High-1000 Mbps Intel Xeon E5-2680 v2 @ 2.8 GHz 
m1.xlarge Moderate-500 Mbps Intel Xeon E5-2650 v0 @ 2.0 GHz 
c1.medium Moderate-500 Mbps Intel Xeon E5-2650 v0 @ 2.0 GHz 
m2.xlarge Moderate-500Mbps Intel Xeon E5-2665 v0 @ 2.4 GHz 
m3.xlarge High-1000 Mbps Intel Xeon E5-2670 v2 @ 2.5 GHz 
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models to support infrastructure and cost prediction.  

4.4 Hardware Configuration 
We develop and evaluate our methodology to achieve 
equivalent SOA workload performance using different 
VM types using Amazon’s public elastic compute cloud 
(EC2).  Amazon offers a diverse array of VM types, as 
well as spot instances which enabled this research to be 
conducted at a low cost in a public cloud environment 
with real world multi-tenancy challenges. VM types used 
in the evaluation of our workload cost prediction meth-
odology are described in table 5.  Trial-and-better was 
used to normalize the backing CPUs of all VM pools to 
those described in the table.  We selected VMbase to be the 
c3.xlarge.  This third generation VM from Amazon pro-
vides 4 cores at 3.5 ECUs per core.  The c3 VMs are 
known as “compute” optimized instances, as they are 
configured with better CPUs but less memory and disk 
storage capacity.  Third generation VMs are all equipped 
with solid state storage disks, though most are smaller in 
capacity than previous first and second generation spin-
dle disks.  For our investigation we benchmark all SOA 
workloads using a pool of 5 x c3.xlarge VMs.  Using our 
workload cost prediction methodology we investigate 
what is required to achieve equivalent SOA performance 
using m1.xlarge, c1.medium, m2.xlarge, and m3.xlarge 
VMs.   

4.5 Test Configurations 
We train our VM-type resource utilization models 
(MVMtype1, .. MVMtype-j) using workloads from six CSIP ap-
plications as described in table 6.  Distinct training work-
loads were used to train models, while other unique 
workloads were used for validation.  These models sup-
port conversion of resource utilization profiles from one 
VM-type to another.  We train models to convert cpuUsr, 
cpuKrn, cpuIdle, and cpuIoWait resource utilization be-
tween VM types.  We could also construct models to con-
vert cpuIntSrvc, cspuSftIntSrvc, cpuNice, and cpuSteal.  
However, for our SOA workloads, these resource utiliza-
tion variables are shown to have very little impact on to-
tal wall clock time.   

In section 3.1, we discussed the challenges cpuSteal 
presents in accounting for wall clock time.  We have cho-
sen to avoid these challenges by selecting SOA workloads 
and VM type configurations which exhibit very low 
cpuSteal time.  It should be noted that it was not difficult 
to avoid these cpuSteal challenges for this work.  Account-
ing for cpuSteal time may be possible by investigating the 
use of offset values to account for missing clock ticks in 
the presence of relatively constant cpuSteal. 

Figure 1 illustrates the resource utilization of our CSIP 
SOA workloads on 5 x c3.xlarge 4-core VMs.  25% cpuUsr 
is equivalent to exercising one core at 100% for the dura-
tion of the SOA workload.  The figure demonstrates that 
these six workloads are primarily CPU bound but vary 
widely as to how effectively they exercise available cores.  
WEPS and SWATDEG-deterministic were most effective 
at using available cores.  RUSLE2 and SWATDEG-
stochastic appear to continuously exercise from 1 to 2 

CPU cores. CFA-LOADEST and CFA-LDC appear to uti-
lize less than one CPU core.  The balance between cpuUsr 
time and cpuIdle time illustrates how well a given work-
load performs computations in parallel.  Adding increas-
ingly more resources to largely sequential workloads 
provides little performance benefit as described by 
Amdahl’s Law.  VM-Scaler’s resource utilization check-
pointing supports profiling the parallel efficiency of SOA 
workloads.  Figure 1 illustrates the range of efficiencies 
we observed for our 6 modeling SOAs. 

Between individual training and validation SOA work-
loads, all application services were stopped, caches 
cleared, and services restarted.  The Linux virtual 
memory drop_caches function was used to clear caches, 
dentries, and inodes.  Clearing caches served to negate 
training effects resulting from reusing test cases.   

5 EXPERIMENTAL RESULTS 
5.1 Resource Utilization Profile Prediction  
Training resource utilization models which convert SOA 
workload profiles between VM types requires execution 
of SOA training workloads.  We executed these work-
loads using isolated dedicated M VMs.  Resource utiliza-
tion checkpointing enabled profiling data to be collected 
with minimum overhead.  The effectiveness of our meth-
odology is confirmed by the high statistical predictably of 
key resource utilization variables using linear regression.  
A linear regression of cpuUsr for m1.xlarge vs. c3.xlarge 
provides R2 of .9924 when trained with our 6 CSIP 
SOAs.  This relationship is shown in figure 2.  Clusters of 
data can be seen in groups which represents our distinct 
SOA workloads.  

Using linear regression we tested if the same approach 
was viable to predict cpuKrn, cpuIdle, and cpuIoWait, the 
most important variables which account for wall clock 
time.  We observed good, though lower, R2 values for 
these predictions.  To refine our predictions we then ap-
plied stepwise multiple linear regressions (MLR).  We fed 
stepwise-MLR every available resource utilization varia-
ble from table 1 to construct MLR models for cpuUsr, 
cpuKrn, cpuIdle, and cpuIoWait.  Stepwise MLR begins by 
modeling the dependent variable using the complete set 
of independent variables and iterates by dropping the 
least powerful predictor based on significance for each 
step.  This enables testing various combinations until the 
best fit model which explains the most variance (R2) is 
found.  The resulting MLR models had either 7 or 8 inde-
pendent variables.  The independent variables having the 

TABLE 6 
SOA WORKLOADS 

CSIP SOA Test cases 
per workload 

# training 
workloads 

Avg. duration 
5 x c3.xlarge 

WEPS  100 10  96.6 s 
RUSLE2  800 10 104.6 s 

SwatDeg-Stoc  10 users x 150 sims 10 133.6 s 
SwatDeg-Det 500 10 13.5 s 

CFA-LOADEST 500 10 99.6 s 
CFA-LDC 500 10 103.7 s 
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highest significance and use for these models besides the 
variable being predicted include (in decreasing order): 
dsw, cpuCtxtSw, dskWrts, cpuSteal, and cpuKrn.  R2 values 
for our resource utilization variable conversion models 
are shown in table 7. 

To test the effectiveness of combining six different 
SOAs into a single MLR model to convert resource utili-
zation variables across VM-types we inspected regression 
residual plots.  A regression residual plot for the cpuUsr 
c3.xlarge  m1.xlarge model is shown in Figure 3.  Good 
residual plots show points randomly dispersed around 
the horizontal X axis.  This indicates linear regression is 
appropriate for the data; otherwise, a non-linear model is 
more appropriate.  Figure 3 shows a nice random distri-
bution of predictions.  We do note on the tails of our re-
sidual plot cpuUsr is more often under or over predicted.  
This effect causes poor cpuIdle predictions for SWATDEG-
det discussed later in section 5.3.  This behavior suggests 
creating separate resource utilization prediction models 
for different workload types.  SWATDEG-det workloads 
were only 1/10 as long in duration as the majority of our 
SOAs explaining reduced quality in model output. 

Using linear and multiple regression we achieve signif-
icantly positive results at resource variable conversion 
across VM-types enabling us to harness this approach for 
SOA workload VM-type profile prediction (Research 
question 2). 

5.2 Resource Utilization Profile Scaling 
In section 3.2 we proposed our workload cost prediction 
methodology.  After profiles are converted, we must scale 
up the profiles to determine the required number of VMs 
for an alternative type to achieve equivalent performance.  
We have designed two methods to support resource scal-
ing referred to as RS-1 (application agnostic) and RS-2 
(application aware heuristic).  We evaluate their effec-
tiveness by scaling 2 validation workloads for each of our 
6 SOAs.  We predict the required number of VMs to host 
our workloads with performance equivalent to 5 x 
c3.xlarge VMs using m1.xlarge, c1.medium, m2.xlarge, 

and m3.xlarge VM pools.  
We discovered that our CFA-LOADEST and CFA-LDC 

workloads did not scale properly.  When additional VMs 
were added to their VM pools, total workload execution 
time either remained the same or increased!  This explains 
why these SOAs exhibit very high cpuIdle time as shown 
in figure 1.  Consequently, our workload cost prediction 
methodology predicted equivalent performance with 5 or 
6 alternate typed VMs.  This was an accurate prediction 
because indeed there was no improvement in workload 
execution time when the VM pools were scaled.  We used 
CFA-LOADEST and CFA-LDC resource utilization data 
for training our RU (MVMtype1, .. MVMtype-j) models for Re-
search question 2, but not for validation. 

For our evaluations, we assume equivalent SOA work-
load performance as the ability to execute the workload 
within ± 2 seconds total wall clock time of the alternate 
infrastructure.   

For RS-1 we profiled idle CSIP M VMs in isolation to 
determine their background CPU usage.  We observed 
the cpuUsr overhead per wall clock second and added the 
relative amount to cpuUsr to scale SOA workload profiles 
in an application agnostic way.  For RS-1, we do not scale 

 
Figure 1. CSIP SOA Workload Resource Utilization: This figure shows 
the diversity of resource utilization of the SOA workloads used to 
evaluate our workload cost prediction methodology. 

 
Figure 2. CpuUsr c3.xlarge  m1.xlarge linear regression: This figure 
shows how linear regression nicely fits cpuUsr data explaining most 
variance observed in our data demonstrated by the high R2 value. 

TABLE 7 
LINEAR REGRESSION MODELS FOR                                               

VM-TYPE RESOURCE VARIABLE CONVERSION  

RU variable adjusted R2 
m1.xlarge LR 

adjusted R2 
m1.xlarge MLR 

adjusted R2 
c1.medium MLR 

cpuUsr .9924 .9993 .9983 
cpuKrn .9464 .989 .9784 
cpuIdle .7103 .9674 .9498 

cpuIoWait .9205 .9584 .9725 

  adjusted R2 
m2.xlarge MLR 

adjusted R2 
m3.xlarge MLR 

cpuUsr .9987 .9992 
cpuKrn .967 .9831 
cpuIdle .9235 .9554 

cpuIoWait .9472 .9831 
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cpuKrn, cpuIoWait, and cpuSftIntSrvc.  We use VM-type 
converted values but do not scale them further.  We make 
64 evaluations, 8 each for scaling with m1.xlarge, 
c1.medium, m2.xlarge, and m3.xlarge profiles, with one 
evaluation each with PS-1 and PS-2.  RS-1 supported VM 
prediction with a mean absolute error of .391 VMs per 
prediction.  RS-1 led to scaling profiles that produced 20 
under predictions and only 4 over predictions.  Of the 
prediction errors only 1 had a prediction error of 2 VMs.  
All other predictions were off by only 1 VM. 

For RS-2 we conducted two workload scaling tests for 
each SOA and averaged the percentage increase for 
cpuUsr, cpuKrn, and cpuIoWait resulting from scaling the 
number of M VMs.  To generate scaled profiles we in-
crease these resource utilization variables by this percent-
age for each VM added.  For 2-core VMs we always scale 
using 2 VMs at a time since our VMbase c3.xlarge has 4 
cores.  For RS-2 we made the same 64 evaluations, 8 for 
scaling with m1.xlarge, c1.medium, m2.xlarge, and 
m3.xlarge, twice with PS-1 and PS-2 respectively.  RS-2 
supported VM prediction with a mean absolute error of 
.328 VMs per prediction.  RS-2 led to scaling profiles that 
produced 17 under predictions and only 4 over predic-
tions.  All prediction errors were off by one VM only.   

RS-1 and RS-2 represent heuristic-based approaches to 
scaling the resource utilization profile and provide poten-
tial solutions to (Research question 3).  RS-1 has the ad-
vantage of being SOA agnostic and very simple to im-
plement.  SOA specific scaling data is not required to 
scale resource profiles.  However, predictions were about 
~17% less accurate. 

5.3 Profile Selection for Equivalent Performance 
In addition to scaling converted resource utilization pro-
files, determining equivalent infrastructure performance 
requires a method to select the resource utilization profile 

from the set of scaled profiles.  It is not sufficient to simp-
ly select the first profile that has positive cpuIdle time.  A 
healthy surplus of cpuIdle time is necessary for most SOAs 
to achieve equivalent performance.  In section 3.2, we 
proposed two heuristic based approaches to resource uti-
lization profile selection for equivalent performance: PS-1 
(application agnostic) and PS-2 (application aware).   

For SWATDEG-det m1.xlarge evaluations, we ob-
served that our multiple linear regression model over 
predicted cpuIdle time.  We believe this prediction error 
occurred because the average SWATDEG-det workload 
execution time was only 1/10th of the other SOAs.  This 
caused our regression model to over predict cpuIdle time 
which prevented profile selection.  In this case, to correct 
the SWATDEG-det cpuIdle prediction error we used raw 
c3.xlarge cpuIdle values for profile selection.   

PS-1 uses a simple linear equation to scale cpuIdle time 
as the VM pool is scaled.  The initial cpuIdle value is taken 
from the VM-type resource utilization conversion.  Equa-
tion 2 (section 3.2, PS-1) is then used to grow cpuIdle for 
each additional VM added.  The output value represents 
the cpuIdle threshold for profile selection.  Linux CPU 
time accounting principles are used to calculate the avail-
able cpuIdle time.  The first profile which exceeds the 
threshold is selected to determine the minimum number 
of VMs required for equivalent performance.  PS-1 sup-
ported VM prediction with a mean absolute error of .375 
VMs per prediction.  PS-1 led to profile selections that 
produced 19 under predictions and only 4 over predic-
tions.  Of the prediction errors only 1 had a prediction 
error off by 2 VMs.  All other predictions were off by only 
1 VM. 

For PS-2 we conducted two SOA specific scaling tests 
and averaged the observed percentage increase in cpuIdle 
time.  The initial cpuIdle value is taken from the VM-type 
resource utilization conversion.  The required cpuIdle time 
is increased by the SOA specific percentage to establish a 
threshold for profile selection.    The first profile that ex-
ceeds the threshold is selected to determine the minimum 
number of VMs required for equivalent performance.  PS-
2 supported VM prediction with a mean absolute error 
of .344 VMs per prediction.  PS-2 led to profile selections 
that produced 18 under predictions and only 4 over pre-
dictions.  All prediction errors were off by one VM only.   

PS-1 and PS-2 represent heuristic-based approaches to 

TABLE 8 
EQUIVALENT INFRASTRUCTURE PREDICTIONS                        

MEAN ABSOLUTE ERROR (# VMS)  

SOA / VM-type PS-1 (RS-1) PS-2 (RS-1) PS-1 (RS-2) PS-2 (RS-2) 
WEPS .5 .5 .5 .5 

RUSLE2 .25 0 .125 .125 
SWATDEG-STOC .75 .5 .5 .625 
SWATDEG-DET .25 .375 .125 .125 

m1.xlarge .375 .25 .25 .25 
c1.medium .875 .625 .5 .625 
m2.xlarge .25 .25 .25 .25 
m3.xlarge .25 .25 .25 .25 
Average .4375 .34375 .3125 .34375 

 
Figure 3. CpuUsr c3.xlarge  m1.xlarge residuals plot: This figure 
shows the residual plot of our cpuUsr linear regression model.  Predic-
tions are randomly distributed around the X-axis indicating that linear 
regression is appropriate for dataset. 
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selecting the correct resource utilization profile which 
will provide equivalent SOA workload performance and 
provide potential solutions to (Research question 1).  PS-
1 has the advantage of being SOA agnostic and very sim-
ple to implement.  SOA specific scaling data is not re-
quired.  Predictions supported by our application agnos-
tic approach PS-1 were ~9% less accurate, which is to be 
expected.   

In Section 3.2 we proposed three alternatives for re-
source scaling and profile selection each with increasing 
implementation costs though offering improved accuracy.  
Mean absolute error (# VMs) for our SOA infrastructure 
predictions using our resource scaling and profile selec-
tion heuristics is summarized in table 8.  The combina-
tion of PS-1 and RS-2 together provided the most accu-
rate predictions with a mean absolute error of only .3125 
VMs per prediction.  For resource scaling and profile 
selection, the application agnostic approaches had slight-
ly more error but were easy and fast to implement with 
no scaling tests required.  Our evaluation demonstrates 
improvement with an application specific approach.  We 
posit that training regression models proposed for RS-3 
and PS-3 will provide even greater accuracy in exchange 
for the effort.  

5.4 Cost Prediction 
We evaluated our workload cost prediction methodolo-
gy’s ability to predict workload costs for infrastructure 
alternatives that provide equivalent performance.  For 
this evaluation we considered 10,000 compute hours of 
concurrent SOA workload execution (<10 VMs) using 
m1.xlarge VMs for WEPS, Rusle2, and SwatDeg-det, and 
10,000 compute hours of workload execution using 
c1.medium, m2.xlarge, and m3.xlarge VMs for WEPS, 
Rusle2, SWATDEG-stoc, and SWATDEG-det.  We identi-
fied the number of VMs required to achieve equivalent 
workload performance relative to VMbase=c3.xlarge for 1 
compute hour using brute force testing.  We omit 
m1.xlarge SWATDEG-stoc testing because our models 
predicted c3.xlarge equivalent performance could not be 
achieved and testing verified this outcome.  We apply the 
fixed instance prices from table 5.  Using the allocation 
required for 1 compute hour we multiply by 10,000 to 
estimate cost requirements for 10,000 compute hours.   

The results of this evaluation appear in table 9.  These 
cost predictions use our application specific PS-2/RS-2 
approach.  The total error column represents the cost pre-
diction error.  Observed error was caused by under pre-
dicting the number of VMs required for equivalent SOA 
performance.   A perfect cost prediction methodology 
accurately predicts hosting costs for alternate VM types 
with no error.  Our workload cost prediction methodol-
ogy produces a cost estimate only 3.59% below the actu-
al hosting cost for equivalent performance using alter-
nate VM types.  Our results demonstrate how different 
VM-types offer a range of economic outcomes for SOA 
workload hosting.  For 10,000 hours of scientific model 
execution our predictions support a maximum potential 
cost savings of $25,600 (c1.medium vs. m1.xlarge) nearly 
a 25% cost variance. 

6 CONCLUSIONS 
This paper describes our workload cost prediction meth-
odology to support hosting SOAs using any virtual ma-
chine type to provide equivalent performance.  Our cost 
prediction methodology provides architecture alternatives 
to minimize hosting costs for diverse SOA workloads.  
Armed with infrastructure decision support, system ana-
lysts are better able to make informed decisions that bal-
ance cost and performance tradeoffs for SOA deploy-
ments.   

Harnessing Linux time accounting principles and VM-
type resource predictions, our approach predicts the re-
quired infrastructure to achieve equal or better workload 
performance using any VM type (Research question 1).  
Multiple linear regression is shown to support prediction 
of key resource utilization variables required for Linux 
time accounting.  Strong predictability is found with coef-
ficients of determination of R2=.9993, .989, .9674, .9585 for 
cpuUsr, cpuKrn, cpuIdle, and cpuIOWait respectively when 
converting Amazon EC2 VM resource utilization from the 
c3.xlarge VM-type to m1.xlarge (Research question 2).  A 
series of resource scaling heuristics were tested to support 
resource utilization predictions from n to n+x VMs.  Pro-
file selection heuristics were evaluated to support deter-
mining infrastructure required to provide equivalent or 
better performance.  The efficacy of these heuristics to 
predict the required number of VMs to host SOA work-
loads while providing equivalent performance was shown 
to be as low as .3125 VMs (PS-1 / RS-2) (Research ques-
tion 3). 

We implement a novel resource utilization checkpoint-
ing technique which enables capturing composite resource 
utilization profiles for SOA workloads executed across 
VM pools.  We applied the Trial-and-Better approach [2] 
to normalize the CPUs backing VMs in our study to re-
duce resource profile variance from VM implementation 
heterogeneity.   Given these profiles we demonstrate the 
use of stepwise multiple linear regression to convert SOA 
resource utilization profiles to alternative VM types.  We 
offer heuristics to scale our predicted profiles and support 
infrastructure decisions for equivalent SOA workload per-
formance.   Our workload cost prediction methodology 
provides mean absolute error as low as .3125 VMs, and 
hosting cost estimates to within 3.59% of actual. 

TABLE 9 
HOURLY SOA HOSTING COST PREDICTIONS                          

WITH ALTERNATE VM-TYPES  

SOA m1.xlarge c1.medium m2.xlarge 
WEPS $38,400 $22,400 $24,600 

RUSLE2 $38,400 $22,400 $24,600 
SWATDEG-Stoc n/a $19,600 $24,600 
SWATDEG-Det $38,400 $25,200 $28,700 

Total $115,200 $89,600 $102,500 
 m3.xlarge Total error 

WEPS $27,000 -$7,600 
RUSLE2 $27,000 $0 

SWATDEG-Stoc $27,000 -$8,600 
SWATDEG-Det $27,000 +$1,300 

Total $108,000 -$1,490 (3.59%) 
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In closing we predict all of the following will change: 
(1) VM-types offered by public cloud providers, (2) price 
for these VMs, and (3) the performance levels they pro-
vide.  Our workload cost prediction methodology helps 
demystify the plethora of VM types offered by cloud ven-
dors and supports future changes.  Our approach is gen-
eralizable to any VM-type and helps to clarify ambiguous 
performance rankings (e.g. ECUs, CCUs) with a quantita-
tive statistically backed approach which combines both 
application profiling and VM benchmarking.    

7 FUTURE WORK 
As future work we propose Resource Scaling Approach 3 
(RS-3), and Profile Selection Approach 3 (PS-3).  Both ap-
proaches should provide additional accuracy by training 
SOA workload specific models beyond the heuristics pre-
sent in section 3.2   

RS-3: SCALING MODELS 
Resource scaling approach (RS-3) involves training a 

set of models, one each for cpuUsr, cpuKrn, cpuIoWait, and 
cpuSftIntSrvc using resource utilization data collected 
when scaling infrastructure for SOA workloads.  Scaling 
models incorporate resource utilization parameters and 
the number of CPU cores as dependent variables.  One set 
of models is required for each VM type.  The models can 
then be trained using multiple linear regressions or an 
alternate machine learning technique.  This approach 
should provide high accuracy with more testing effort.  

PS-3: CPUIDLE SCALING MODELS 
Our third profile selection approach (PS-3) involves 

training a set of models with scaling runs to predict how 
cpuIdle time increases as infrastructure is scaled up.  
These cpuIdle models incorporate all resource utilization 
variables from table 1 and the number of CPU cores for 
scaled deployments as dependent variables.  One cpuIdle 
model is required for each VM type.  These models can 
then be trained using multiple linear regressions or an 
alternate machine learning technique.  This approach 
should provide high accuracy with more testing effort.   

An interesting extension for this work involves devel-
oping an approach to predict resource requirements (CPU 
time, disk I/O, etc.) for SOA workloads based on scien-
tific model service parameterization.  It is possible to ana-
lyze the model parameterizations to characterize the ex-
pected duration and computing requirements for service 
quests before they execute.  We have attempted initial 
trials using the WEPS model and have achieved R2=~.5 
using multiple linear regression using only a subset of the 
model parameters.  This white box approach to predict 
workload resource requirements would enable initial 
workload profiling (Step 1) to be eliminated.  Service re-
quests could be analyzed, not run, to predict workload 
execution costs and deployment infrastructure.  Develop-
ing this approach requires harnessing domain specific 
characteristics of service requests and there will likely be 
limitations to the ability when training models to accu-
rately predict model service behavior.   
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