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Abstract— Next generation software built for the cloud 

recently has embraced serverless computing platforms that use 

temporary infrastructure to host microservices offering building 

blocks for resilient, loosely coupled systems that are scalable, easy 

to manage, and extend. Serverless architectures enable 

decomposing software into independent components packaged 

and run using isolated containers or microVMs. This 

decomposition approach enables application hosting using very 

fine-grained cloud infrastructure enabling cost savings as 

deployments are billed granularly for resource use.  Adoption of 

serverless platforms promise reduced hosting costs while 

achieving high availability, fault tolerance, and dynamic elasticity. 

These benefits are offset by pricing obfuscation, as performance 

variance from CPU heterogeneity, multitenancy, and provisioning 

variation obscure the true cost of hosting applications with 

serverless platforms. Where determining hosting costs for 

traditional VM-based application deployments simply involves 

accounting for the number of VMs and their uptime, predicting 

hosting costs for serverless applications can be far more complex. 

To address these challenges, we introduce the Serverless 

Application Analytics Framework (SAAF), a tool that allows 

profiling FaaS workload performance, resource utilization, and 

infrastructure to enable accurate performance predictions.  We 

apply Linux CPU time accounting principles and multiple 

regression to estimate FaaS function runtime. We predict runtime 

using a series of increasingly variant compute bound workloads 

that execute across heterogeneous CPUs, different memory 

settings, and to alternate FaaS platforms evaluating our approach 

for 77 different scenarios.  We found that the mean absolute 

percentage error of our runtime predictions for these scenarios 

was just ~3.49% resulting in an average cost error of $6.46 for 1-

million FaaS function workloads averaging $150.45 in price. 

Keywords— Serverless Computing, Function-as-a-Service, 

Performance Evaluation, Performance Modeling, Resource 

Contention, Multitenancy 

I. INTRODUCTION 

Serverless computing recently has emerged as a compelling 

approach for hosting applications in the cloud [1][2][3]. 

Serverless computing platforms promise autonomous fine-

grained scaling of computational resources, high availability 

(24/7), fault tolerance, and billing only for actual compute time 

while requiring minimal setup and configuration. To realize 

these capabilities, serverless platforms leverage ephemeral 

infrastructure such as MicroVMs or application containers.  

The serverless architectural paradigm shift ultimately promises 

better server utilization as cloud providers can more easily 

consolidate user workloads to occupy available capacity, while 

deallocating unused servers, to ultimately save energy [4] [5]. 

Rearchitecting applications for the serverless model promises 

reduced hosting costs as fine-grained resources are provisioned 

on demand and charges reflect only actual compute time.   

Function-as-a-Service (FaaS) platforms leverage serverless 

infrastructure to deploy, host, and scale resources on demand 

for individual functions known as “microservices” [6] [7] [8]. 

With FaaS platforms, applications are decomposed and hosted 

using collections of independent microservices differing from 

application hosting with Infrastructure-as-a-Service (IaaS) or 

Platform-as-a-Service (PaaS) cloud platforms. On FaaS 

platforms, temporary infrastructure containing user code plus 

dependent libraries are created and managed to provide 

granular infrastructure for each service [9]. Cloud providers 

must create, destroy, and load balance service requests across 

available server resources. Users are billed based on the total 

number of service invocations, runtime, and memory utilization 

to the nearest tenth of a second. Serverless platforms have 

arisen to support highly scalable, event-driven applications 

consisting of short-running, stateless functions triggered by 

events generated from middleware, sensors, microservices, or 

users [10].  Use cases include: multimedia processing, data 

processing pipelines, IoT data collection, chatbots, short batch 

jobs/scheduled tasks, REST APIs, mobile backends, and 

continuous integration pipelines [7].   

Serverless computing with its many advantages possesses 

several important challenges.  Unlike IaaS clouds, where cost 

accounting is as simple as tracking the number of VM instances 

and their uptime, serverless billing models are multi-

dimensional. Software deployments consist of many 

microservices which must be individually tracked [11]. FaaS 

platforms exhibit performance variance that directly translates 

to cost variance. Functions execute over heterogeneous CPUs 

that host a variable number of co-located function instances 

causing resource contention. FaaS applications are decomposed 

into many functions that are hosted and scaled separately. The 

aggregation, or decomposition of application code into a 

varying number of FaaS functions can directly impact the 

composite size and cost of cloud infrastructure.  FaaS platform 

complexities including multi-dimensional billing models, 

heterogeneous CPUs, variable function tenancy, and 

microservice composition, leads to considerable pricing 

obfuscation for application hosting. 
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FaaS platforms presently lack tool support to estimate the 

costs of hosting applications. Current cloud pricing calculators 

from public cloud providers (e.g. AWS and Azure), and 

commercial tools (e.g. Intel Cloud Finder, RankCloudz, 

Cloudorado) primarily provide IaaS compute and storage cost 

estimates based on average performance [12][13][14]. 

Recently, FaaS calculators have appeared, but they are limited 

to generating cost estimates based on average runtime and 

memory size [15][16][17].  These calculators do not consider 

how FaaS function runtime scales relative to the memory 

reservation size, a feature coupled to CPU power on several 

FaaS platforms [18][19]. 

To address pricing obfuscation of FaaS platforms, in this 

paper, we offer a novel approach combining Linux CPU time 

accounting and multiple regression to provide highly accurate 

FaaS function runtime predictions.  Equipped with performance 

predictions, FaaS workload costs can be estimated by applying 

the platform’s pricing policy. Our approach involves profiling 

CPU metrics of multiple FaaS function deployments (e.g. AWS 

Lambda with 256, 512, 1024 MB to Intel Xeon E5-2680v2, E5-

2676v3, E5-2686v4). We build regression models that predict 

how CPU metrics (e.g. CPU user mode time, CPU kernel mode 

time) scale across alternate function deployments with different 

CPUs and memory settings, and even to different cloud 

providers. By applying Linux CPU time accounting principles 

we can then estimate FaaS function runtime on any CPUs (e.g. 

Intel Xeon E5-2686v4), with any memory size (e.g. 1024 MB), 

on any cloud (e.g. IBM Cloud Functions). We note that cloud 

providers readily mix multiple CPU types to host FaaS 

functions. This CPU heterogeneity increases performance 

variance while decreasing performance model accuracy which 

we address in this paper. We evaluate our approach with 

compute bound functions for 77 different scenarios including 

deployments to alternate CPUs (36 cases), with alternate 

memory settings (27 cases), and to alternate platforms (14 

cases).  We found workload cost can be estimated with ~3.49% 

mean absolute percentage error (MAPE) by applying FaaS 

platform pricing policies, resulting in $6.46 cost error, against 

an average workload price of $150.45 for 1-million function 

call workloads. Our approach can help a developer predict FaaS 

workload costs to make informed deployment decisions. These 

advancements can enable developers to better evaluate 

deployment and design alternatives, while understanding cost 

implications to achieve more efficient serverless software 

implementations. 

A. Research Questions 

This paper investigates the following research questions: 

RQ-1: (Performance Variance) What factors are responsible 

for performance variance on Function-as-a-Service (FaaS) 

platforms?  How much do these factors contribute to 

performance variance?   

RQ-2: (FaaS Runtime Prediction) When leveraging Linux 

CPU time accounting principles and regression modeling, what 

is the accuracy of FaaS function runtime predictions for 

deployments with different memory settings and different 

CPUs? 

RQ-3: (Assessing Workload Predictability) How effective 

are system metrics, for example the number of page faults and 

context switches, at evaluating reliability of performance 

predictions? 

B. Research Contributions 

This paper provides the following research contributions: 

1. We introduce the Serverless Application Analytics 

Framework (SAAF), a reusable programming framework 

that supports characterization of performance, resource 

utilization, and infrastructure metrics for software 

deployments to FaaS platforms (AWS Lambda, Azure 

Functions, Google Cloud Functions, and IBM Cloud 

Functions) in popular languages (Java, Python, and 

Node.js).   

2. We detail performance variance of CPU-bound functions 

on AWS Lambda and IBM Cloud Functions. We 

characterize performance variance from heterogeneous 

CPUs, and function multitenancy across different memory 

sizes. (RQ-1) 

3. We evaluate our FaaS function runtime prediction 

approach that combines Linux CPU time accounting and 

multiple regression for deployments across alternate 

CPUs, memory reservation sizes, and platforms. We 

evaluate our predictions to determine root mean squared 

error (RMSE) and MAPE, while identifying factors that 

impact accuracy using successive compute-bound 

workloads each introducing more non-determinism. We 

evaluate our approach for compute-bound functions for 77 

different scenarios producing runtime predictions for: 

alternate CPU types (36), alternate memory settings (27), 

and alternate platforms (14). (RQ-2, RQ-3) 

II. BACKGROUND AND RELATED WORK 

The challenge of performance prediction on serverless 

platforms, including the need to address performance variance 

resulting from hardware heterogeneity is identified in [20].  The 

authors identify how pay-as-you-go pricing models, and the 

complexity of serverless application deployments, leads to the 

key pitfall: “Serverless computing can have unpredictable 

costs”.  In contrast to application hosting with VMs, serverless 

platforms complicate budgeting as organizations must predict 

service utilization to estimate hosting costs. Performance 

variance of serverless workloads and accuracy of runtime 

predictions is invariably linked. We review related work on 

cloud performance variance, performance modeling, and 

performance evaluation of serverless platforms highlighting 

relationships to our research goals. 

A. Performance Variance of Cloud Systems 

In the public cloud, key factors often responsible for 

producing performance variance include hardware 

heterogeneity, provisioning variation, and resource contention.  

Ou and Farley identified the existence of heterogeneous CPUs 

that host identically labeled VM types on Amazon EC2, leading 

to IaaS cloud performance variance [21][22]. Rehman et al. 

identified the problem of “provisioning variation” in IaaS 

clouds in [23].  Provisioning variation is the random nature of 
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VM placements that generates varying multitenancy across 

physical servers producing performance variance from resource 

contention.  Schad et al. showed the unpredictability of Amazon 

EC2 VM performance resulting from provisioning variation 

and resource contention from VM multitenancy in [24].  

Ayodele et al. and Lloyd et al. demonstrated how resource 

contention from multi-tenant VMs can be identified using the 

cpuSteal metric in [25] [26].  

On serverless FaaS platforms Jonas et al. identified 

heterogeneous CPUs and noted their potential to complicate 

performance modeling in [20]. Wang et al. identified 

heterogeneous VM types on FaaS platforms from AWS, Azure, 

and Google in [5].  They observed 4 CPU types and 5 VM 

configurations (AWS Lambda), 3 CPU types x 3 VM 

configurations (Azure functions), and 4 CPU types (Google 

Cloud Functions).  Their efforts did not evaluate the extent of 

performance variance possible from heterogeneous CPUs.   

Previous research has identified how provisioning variation 

results in varying degrees of multitenancy on FaaS platforms  

[4] [5] [27].  We identified how the number of function 

“tenants” on VMs, called “function instances” by Wang, 

increased when scaling up the number of concurrent requests 

on AWS Lambda [4]. Conversely, increasing function memory 

reduced the number of tenants on a VM. Wang observed that 

function instance placement across VMs on AWS Lambda used 

greedy placement, where concurrent requests are packed onto 

individual VMs until available memory (3328MB) is 

exhausted.  Multiple functions from a single user account were 

found to share VMs, but VMs did not appear to be shared with 

other users.  On Azure, the maximum observed tenancy of 

function executions did not exceed 8, while up to 4 user 

accounts shared VMs. While these efforts identified the 

multitenancy, they did not evaluate performance implications 

from resource contention.  

B. Performance Modeling of Cloud Systems 

On IaaS clouds, domain specific approaches have been 
developed to model workload performance by incorporating 
specific metadata regarding the tasks [28][29][30][31].  
Recently, offline and online machine learning approaches have 
been applied to model runtime of multi-stage, batch-oriented, 
scientific workflows. Using task metadata and resource 
utilization metrics as features provided accuracy improvements 
[32][33][34].  

Other efforts at IaaS cloud performance and cost modeling 
have focused on cost-aware VM scheduling to support 
infrastructure management for VM placement [35][36][37][38]. 
Efforts to save costs by leveraging reduced-priced cloud VMs 
available through auction based pricing mechanisms, such as 
Amazon EC2 spot instances, have spurred considerable research 
[39][40][41]. In summary, existing approaches provide runtime 
predictions for batch-oriented workloads that execute across 
homogeneous cloud VMs.  Other efforts focus on performance 
modeling for resource management, to optimize use of auction 
based VMs, or to help select an appropriate VM type.  We are 
unaware of previous research that has focused on performance 
and cost modeling of serverless computing workloads. 

C. Performance and Cost Evaluation of Serverless Platforms  

Prior research on serverless platforms has focused on 

evaluating performance of FaaS platforms for hosting a variety 

of workloads. Several efforts have investigated performance 

implications for hosting scientific computing workflows 

[42][43][44][45]. Other efforts have evaluated FaaS 

performance for machine learning inferencing [46][47], NLP 

inferencing [48], and even neural network training [49].   To 

support cost comparison of serverless computing vs. IaaS 

cloud, Boza et al. developed CloudCal, a tool to estimate 

hosting costs for service-oriented workloads on IaaS (reserved), 

IaaS (On Demand), and FaaS platforms [50]. CloudCal 

determines the minimum number of VMs to maintain a 

specified average request latency to compare hosting costs to 

FaaS deployments.  FaaS resources, however, were assumed to 

provide identical performance as IaaS VMs when functions 

were allocated 128 MB RAM.  Wang et al. identified AWS 

Lambda performance at 128 MB as only ~1/10th of 1-core VM 

performance in [5] suggesting potential inaccuracies with 

CloudCal. Other efforts have conducted case studies to 

compare costs for hosting specific application workloads on 

IaaS vs. FaaS [27][51], and FaaS vs. PaaS [52].  We extend 

previous efforts by characterizing performance variance of 

workloads across FaaS platforms, and demonstrating our novel 

Linux time accounting approach to predict FaaS workload 

runtime and cost. 

III. METHODOLOGY 

In this section, we detail tools and techniques used to 
investigate our research questions (RQ-1, RQ-2, RQ-3).  
Section III.A describes the SAAF, the framework used to profile 
our serverless workloads, and section III.B describes FaaS 
Runner, a tool used to automate profiling experiments. Section 
III.C details our experimental workloads, and section III.D 
describes our approach to leverage Linux CPU time accounting 
principles to generate runtime predictions for FaaS workloads 
deployed with different configurations, or to alternate platforms. 

A. The Serverless Application Analytics Framework (SAAF) 

To support profiling FaaS software deployments we have 
developed the Serverless Application Analytics Framework 
[53].  SAAF supports characterization of performance, resource 
utilization, and infrastructure for FaaS workloads deployed to 
AWS Lambda, Google Cloud Functions, Azure Functions, and 
the IBM Cloud Functions commercial FaaS platforms 
[21][22][61][62].  SAAF supports characterization of workloads 
written in Java, Python, Node.js, Go, and with AWS Lambda 
custom runtimes.  Programmers include the SAAF library and a 
few lines of code to enable profiling.  SAAF collects metrics 
from the Linux /proc filesystem and appends them to the JSON 
payload returned by the function instance. Metrics are then 
processed by FaaS Runner (see section B) our custom client 
application for further analysis. Table I shows a selected set of 
key metrics collected by SAAF.  

Commercial FaaS platforms (e.g. AWS Lambda, IBM Cloud 
Functions) expose or hide different metadata about the 
underlying Linux environments used to host functions. In this 
paper, we focus on AWS Lambda and IBM Cloud Functions 
as both platforms offer production level support of Java. On 
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Azure Functions, Java runs in a Windows environment causing 
Linux time accounting metrics used by our runtime prediction 
approach, described in section IV.B, to be unavailable. Google 
Cloud Functions does not presently support Java. SAAF’s 
approach to data collection is applicable to any FaaS platform 
that exposes Linux CPU time accounting metrics. 

TABLE I.  RUNTIME, RESOURCE UTILIZATION, AND CONFIGURATION 

METRICS COLLECTED BY SAAF WITHIN A FUNCTION INSTANCE.  
‘’ INDICATES RAW AND DELTA VERSIONS ARE PROVIDED 

 
Fig. 1. SAAF profiling overhead percentiles (ms)  

at different memory settings on AWS Lambda 

 To determine function tenancy and potential resource 
contention, SAAF supports uniquely identifying VMs that host 
one or more function instances by implementing platform 
specific mechanisms.  IBM Cloud Functions runs Xen 4.7 
allowing the unique XEN hypervisor ID that is available from 
/sys/hypervisor/uuid [55] to be used as a method of VM 
identification.  VMs can be uniquely identified on AWS Lambda 
with the sandbox-root ID in /proc/$$/cgroup [5].  

 Granularity of SAAF metric collection can controlled to 
specify which metrics to collect: CPU, memory, function 
instance, Linux, and platform metrics.  We profiled the overhead 
of collecting metrics on AWS Lambda using a function only 
containing SAAF at 256MB, 512MB, 1024MB, and 2048MB 
and show the overhead in (ms) by percentile in Figure 1. AWS 
Lambda couples CPU timeshare with function memory 
allocation, reducing performance. Only for functions at 256MB, 
when collecting all metrics, did SAAF overhead exceed 100 ms, 
the billing unit of AWS Lambda in 10% of cases. 

B. FaaS Runner 

FaaS Runner provides a client-side application used in 

conjunction with SAAF. FaaS Runner supports automating 

profiling experiments across many different function 

configurations, while compiling results into a report that 

aggregates data for quick analysis. FaaS Runner combines the 

performance, resource utilization, and configuration metrics 

from many concurrent sessions enabling observations not 

possible when profiling individual FaaS functions calls. FaaS 

Runner is written in Python 3.6 and uses separate threads to host 

up to 1,000 individual, concurrent function invocations. 

Repeatable experiment configurations are defined using JSON 

files. Users define a set of input JSON payloads to distribute 

among function invocations, the number of concurrent or 

sequential calls to make, when to reconfigure FaaS function 

memory settings, and how to display the results. FaaS Runner 

groups results by CPU type, the virtual machine hosting 

function instances, or any other attributes defined in an 

experiment file. By categorizing results, FaaS Runner supports 

inferring the number of function instances sharing the same 

CPU type, VM, or any other unique attribute.  This enables 

performance comparisons based on function tenancy, the 

number of function instances that share a host (VM). 

 
Fig. 2. Workload profiling with FaaS Runner and SAAF 

C. Experimental Workloads 

To evaluate our Linux time accounting and regression 

performance prediction approach, we developed a compute-

bound function known as the “Calcs Service” (https://github 

.com/wlloyduw/CalcsService).  This microservice produces 

workloads where a variable number of calculations are 

performed using the formula (a × b ÷ c) with operands stored 

SAAF Metric Description  Source 

instanceID 
Cloud provider’s unique ID for function 
runtime environment.  On AWS Lambda this 
is the CloudWatch log stream ID. 

environment 
variable 
 

conSwitches Number of context switches /proc/vmstat 

cpuIdle CPU idle time in ms /proc/stat 

cpuIOWait CPU time waiting for I/O to complete /proc/stat 

cpuIrq CPU time servicing HW interrupts /proc/stat 

cpuKrn CPU time in kernel mode in ms /proc/stat 

cpuModel CPU model number /proc/cpuinfo 

cpuNice CPU time executing prioritized processes /proc/stat 

cpuSoftIrq CPU time servicing soft interrupts /proc/stat 

cpuType FaaS function function instance CPU type  /proc/cpuinfo 

cpuUsr CPU time in user mode in ms /proc/stat 

saafRuntime 
Overhead time in (ms) of SAAF metric 
collection 

calculated by 
SAAF 

freeMemory FaaS environment free memory in MB /proc/vmstat 

latency 
Difference between runtime measured by 
FaaS Runner and SAAF runtime metric 

calculated by 
client 

mjrPgFaults VM major pagefaults for function instance /proc/vmstat 

newcontainer 
0=function executes in new function instance 
1=function executes recycled instance 

calulcated by 
SAAF 

pagefaults VM pagefaults for function instance /proc/vmstat 

runtime Server side total FaaS function runtime in ms 
calculated by 
SAAF 

totalMemory FaaS environment total memory in MB /proc/vmstat 

userRuntime Runtime of function minus SAAF time (ms) 
calculated by 
SAAF 

vmcpusteal CPU ticks lost to other VMs or the hypervisor /proc/stat 

vmID Unique id for the VM hosting this function  
/proc/cgroup, 
/sys/hyprvsr 
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in separate large arrays on the heap. For each calculation, a 

random index is chosen into the arrays to store random numbers 

for use as operands. This is in contrast to multiplying operands 

stored using local primitive integers. To vary the degree of 

memory stress, the array size is adjusted from 1 to 1,000,000 

elements.  The calcs function was used in our workloads to 

perform a number of calculations between 30,000,000 to 

60,000,000 to provide a variety of function runtimes to support 

training performance models. To ensure deterministic behavior, 

we used the same random seed for random array indexing to 

produce identical array access sequences for every execution. 

We also used the same random seed to generate identical 

“random” operand values. A child thread was introduced to 

create a multi-threaded workload where the child thread 

performs ½ the number of calcs to finish before the parent. The 

second thread adds CPU contention while the parent thread 

dictates the function’s runtime. To evaluate performance 

predictions we did not use existing CPU benchmark 

applications because their binary executables may not always 

fit in the FaaS package space, and deploying binaries results in 

FaaS functions essentially being wrappers. 

We profiled the alternate function configurations (e.g. CPU, 

memory, platform) described in table II and III to evaluate 

prediction accuracy where subsequent workloads introduce 

additional memory stress. Regression models are trained to 

convert individual CPU metrics from scenario-to-scenario 

using profiling data obtained from representative workloads. 

Developing a one-size fits all generic model to derive runtime 

predictions for any FaaS workload using generalized training 

data, similar to [56] for IaaS clouds, was not our objective for 

this paper. 

TABLE II.  EXPERIMENTAL WORKLOAD ALIAS AND DEFINITIONS 

Name  Definition 

NMT1 Fixed # of Calcs, No Memory Stress, 1 Thread, concurrent calls 

MT1 Fixed # of Calcs, Memory Stress, 1 Thread, concurrent calls 

NMT2-seq Fixed # of Calcs, No Memory stress, 2 Threads, Sequential calls  

NMT2 Fixed # of Calcs, No Memory Stress, 2 Threads, concurrent calls 

MT2 Fixed # of Calcs, Memory Stress, 2 Threads, concurrent calls  

SCNMT1 Scaling Calcs, No Memory Stress, 1 Thread, concurrent calls 

SCMT1 Scaling Calcs, Memory Stress, 1 Thread, concurrent calls 

SCNMT2 Scaling Calcs, No Memory Stress, 2 Threads, concurrent calls 

SCMT2 Scaling Calcs, Memory Stress, 2 Threads, concurrent calls 

SCSMT2 Scaling Calcs, Scaling Memory Stress, 2 Threads, concurr. calls 

TABLE III.  EXPERIMENTAL WORKLOAD CONFIGURATIONS  

Workload Name Calcs Memory Stress Threads Tenancy 

NMT1 40 million No 1 n 

MT1 40 million array=1 million 1 n 

NMT2-seq 40 million No 2 1 

NMT2 40 million No 2 n 

MT2 40 million array=1 million 2 n 

SCNMT1 30→60m step 3m No 1 n 

SCMT1 30→60m step 3m array=1 million 1 n 

SCNMT2 30→60m step 3m No 2 n 

SCMT2 30→60m step 3m array=1 million 2 n 

SCSMT2 30→60m step 3m 1→1m, step 100k 2 n 

The Calcs Service supports generating FaaS workloads 

described in tables II and III. We profiled the total number of 

page faults running the two-thread calcs service (SCSMT2) on 

AWS Lambda at 256MB and observed 15.8x more average 

page faults with array sizes of 1,000,000 vs. 1, and 13.2x at 

2048MB.  More page faults occurred at lower memory settings 

because of higher function tenancy on VMs.  This confirmed 

our memory stress approach successfully generates memory 

contention. Memory stress also significantly reduced 

performance. When comparing NMT1 and MT1 workloads, 

runtimes increased by (3.90x, 3.88x, 3.55x, 2.24x) for 256MB, 

512MB, 1024MB, and 2048MB respectively. Memory stress 

also increased performance variance. The Coefficient of 

Variation (CV), defined as the standard deviation divided by 

the mean, provides a normalized comparison of performance 

variance. CV increased from (11.9→29.7%, 9.6→25.8%, 

9.2→21.7%, 5.5→24.8%) with maximum memory stress for 

256MB, 512MB, 1024MB, and 2048MB respectively. 

D. Runtime Predictions with Linux Time Accounting  

In this paper, we adapt our IaaS cloud performance 

modeling techniques leveraging Linux CPU time accounting 

for FaaS platforms [57]. Our approach is in contrast to 

traditional performance modeling approaches described in 

section II.B that leverage application metadata or resource 

utilization metrics as features to train models that directly 

predict runtime. Linux provides CPU time accounting by 

providing metrics that detail time spent in different CPU states 

measured in centiseconds (cs).  Summing these metrics and 

dividing by the number of CPU cores provides the wall clock 

time of any profiled workload as in the formula: 

Workloadtime =  

𝑐𝑝𝑢𝑈𝑠𝑟 + cpuKrn + cpuIdle + cpuIOWait +

cpuIntSrvc + cpuSftIntSrvc + cpuNice + cpuSteal

# 𝑜𝑓 𝐶𝑃𝑈𝑐𝑜𝑟𝑒𝑠
 

In contrast to training models to predict runtime, we train 

individual models to predict individual CPU metrics for FaaS 

deployments with different configurations (e.g. memory, 

CPUs, or to alternate platforms).  We then solve for workload 

runtime using the formula.  In this paper, we focus on 

evaluating this approach for CPU-bound workloads.  For these 

workloads, the majority of the variance is explained by CPU 

user mode time (cpuUsr) and CPU idle time (cpuIdle). We 

trained regression models to estimate how individual CPU 

metrics scale across different FaaS deployments to different 

CPUs, with different memory sizes, etc.  Having models for 

specific CPUs allows accurate workload runtime and cost 

predictions for FaaS functions that run across heterogeneous 

CPUs. Table V provides data detailing an example of CPU 

heterogeneity on commercial FaaS platforms.   

For FaaS functions with different memory reservation sizes, 

we observed on platforms that scale CPU power with memory 

(e.g. AWS Lambda and Google Cloud Functions), that cpuIdle 

time scales inversely with memory size. The workload’s 

cpuUsr time remains approximately the same.  In effect, the 

required cpuUsr time to complete the workload does not 

change, but changing the FaaS function memory alters the CPU 

timeshare for function execution, and this is reflected by 

cpuIdle.  

To produce FaaS workload runtime predictions we profiled 

our workloads using a base configuration having a fixed CPU 

and memory setting (e.g. 256MB CPU E5-2680v2). We 
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generated regression models to convert cpuUsr and cpuIdle to 

a variety of target platforms. Deltas of cpuUsr, cpuIdle, CPU 

context switches, and page faults were used as independent 

variables. We did not incorporate application specific 

independent variables to ensure our approach is workload 

agnostic. Multiple regression models were trained and 

evaluated using RStudio [58]. We then applied Linux time 

accounting principles to predict function runtime for 77 

different target configurations (e.g. 256MB CPU E5-2676v3 as 

one example).  

Table IV describes our experiment source and target 

platform configurations. Numbers in parentheses indicate the 

maximum observed number of co-located function instances on 

the VM at different memory configurations. To refer to 

different CPUs we use aliases (e.g. a1, a2, i1, i2, etc.), described 

in Table V.  To address function multitenancy in our models 

and normalize predictions, we filtered runs that did not exhibit 

maximum tenancy. Due to greedy function placement, the vast 

majority of concurrent function invocations were observed to 

exhibit maximum tenancy on AWS Lambda. 

TABLE IV.  RUNTIME PREDICTION SOURCE AND TARGET PLATFORM 

CONFIGURATIONS INCLUDING INTEL XEON E5 CPU, MEMORY, AND FUNCTION 

TENANCY PER VM IN PARENTHESES  

Source Platform Target Platform(s) 

CPU Configurations: 

AWS 256MB 2680v2 (13) AWS 2676v3:256(13), 512(6), 1024(3), 2048MB(1) 

AWS 256MB 2680v2 (13) AWS 2686v4:256(13), 512(6), 1024(3), 2048MB(1) 

AWS 256MB 2676v3 (13) AWS 2686v4:256(13), 512(6), 1024(3), 2048MB(1) 

Memory Configurations: 

AWS 256MB 2680v2 (13) AWS 512MB (6) v2, 1024MB (3) v2, 2048MB (1) v2 

AWS 256MB 2676v3 (13) AWS 512MB (6) v3, 1024MB (3) v3, 2048MB (1) v3 

AWS 256MB 2686v4 (13) AWS 512MB (6) v4, 1024MB (3) v4, 2048MB (1) v4 

IBM Configurations: 

AWS 2048MB 2680v2 (1) IBM 2048MB (4): 2683v3, 2683v4, 2650v4, 2690v4 

TABLE V.  OBSERVED RATIOS OF CPU TYPES ON AWS LAMBDA AND  
IBM CLOUD FUNCTIONS FAAS PLATFORMS  

Platform Intel Xeon CPU  VM Alias % 

AWS E5-2680v2 @ 2.8 GHz, 10 core c3 a1 67.5 

AWS E5-2676v3 @ 2.4 GHz, 12 core m4 a2 19.9 

AWS E5-2686v4 @ 2.3 GHz, 18 core r4 a3 12.5 

IBM  E5-2683v3 @ 2.0 GHz, 14 core unseen i1 18.4 

IBM E5-2683v4 @ 2.1 GHz, 16 core bl2/b1/m1 i2 66.1 

IBM E5-2650v4 @ 2.2 GHz, 12 core u1 i3 3.8 

IBM E5-2690v4 @ 2.6 GHz, 14 core c1 i4 7.2 

IBM Gold 6140 @ 2.3 GHz, 18 core unseen i5 4.5 

IV. EXPERIMENTAL RESULTS 

To evaluate our research questions, we profiled the 
workloads described in Tables II & III on source and target 
platforms described in Table IV.  We deployed AWS Lambda 
functions in the Virginia region. We pinned all Lambda 
functions to execute within in the same availability zone (e.g. 
us-east-1b) using a VPC to reduce hardware heterogeneity and 
increase the likelihood that experiments run with identical 
conditions.  IBM Cloud Functions were deployed to the us-south 
Dallas datacenter.  We identify the prevalence of heterogeneous 
CPUs found on both AWS Lambda-VPC (us-east-1b, 350 runs) 
and IBM Cloud Functions (south, 1000 runs) as observed in 
August/September 2019 in Table V. Our statistics illustrate one 

example of possible CPU variance on commercial FaaS 
platforms. 

A. Performance Variance of FaaS Platforms 

To quantify performance variance for RQ-1, we leveraged 

our calcs service with the NMT2-seq and NMT2 workloads. 

These workloads were designed to minimize non-deterministic 

performance behavior. Functions performed a static number of 

calculations, using the same operand values, without memory 

stress. Our goal was to quantify performance variance on AWS 

Lambda and IBM Cloud Functions.  

 
Fig. 3. FaaS workload performance variance resulting from heterogeneity in 

CPU type and the number of co-located function executions on host VMs 

based on the experiment, platform, and memory reservation size 

We compared function runtime for NMT2-seq workloads 
performing 40,000,000 calcs (a × b ÷ c) using the same random 
seed to select operands. We ran this workload sequentially to 
force single tenant function execution to enable measuring 
performance across isolated VMs dedicated to individual 
requests on both platforms.  We measured performance at 256, 
512, 1024, and 2048MB and group results by CPU type.  CV on 
AWS Lambda was 4.54% (256MB), 4.46% (512MB), 4.82% 
(1024MB), and 1.03% (2048MB) for function executions 
across heterogeneous CPUs as shown in Figure 3. Grouping 
runtime by CPU type reduced performance variance to only 
0.64%, 0.42%, and 0.45% CV for the a1, a2, and a3 CPUs. On 
IBM CV was 16.88% (256MB), 5.78% (512MB), 4.82% 
(1024MB), and 9.04% (2048MB) for function executions 
across heterogeneous CPUs. Characterizing runtime by CPU 
type on IBM did not substantially improve CV: 10.79% (i2 
CPU) and 4.07% (i3 CPU). Performance on AWS Lambda a3 
CPUs outperformed a1 CPUs by 14.6% (256MB), 16.1% 
(512MB), and 16.4% (1024MB), while a3 was about 3.6% faster 
than a2.  Despite the faster clock speed of the a1 CPU, it only 
outperformed a2 and a4 with maximum memory (3008MB), 
where the a1 CPU produced runtimes 19.8% less than a2, and 
16.5% less than a3.  This behavior reflects better single core 
performance with the a1 CPU, and better multi-core 
performance with the a2 and a3 CPUs which coincides with the 
evolution of Intel Xeon processors from v2→v3→v4. CV 
increased as a result of CPU heterogeneity ~7.4x on AWS 
Lambda, but only ~1.2x on IBM Cloud Functions. Single 
tenant performance variance for function execution with 
identical CPUs on IBM was more than 10x that of AWS Lambda 
as most of the NMT2-seq workload variance on IBM appeared 
to be not related to CPU heterogeneity. We explain key 
differences with IBM’s FaaS platform at the end of section IV.B. 
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We next compared performance of the multithreaded NMT2 
workload to investigate performance variance for multitenant 
function executions on FaaS platforms. Here many, but not all 
functions execute with identical tenancy due to greedy function 
placement on AWS, e.g. 256MB (commonly 13 tenants), 
512MB (6 tenants), 1024MB (3 tenants), and 2048MB & 
3008MB (1 tenant) for all CPUs.  Here CV increased to 10.31% 
(256MB), 9.61% (512MB), and 10% (1024MB) across all CPUs 
as shown in Figure 3. On IBM, CV values from multitenancy 
were 24.54% (256MB), 17.31% (512MB), 16.57% (1024MB), 
and 20.28% (2048MB), nearly 2x more than AWS Lambda. 
Moving from single tenant to multitenant function 
executions, CV increased ~2.7x on AWS Lambda, and ~2.5x 
on IBM Cloud Functions. Given that Lambda employs greedy 
function placement across VMs, most executions occur at the 
same tenancy level. IBM Cloud Functions had higher CV for the 
single tenant NMT2-seq workload producing a lower increase 
with multitenancy (NMT2). We illustrate estimated hosting 
costs for 1,000,000 function calls in Figure 4, demonstrating 
how CPU heterogeneity translates to price volatility. The 
“combined” column projects the total cost based on observed 
CPU ratios. FaaS CPU heterogeneity results in a lottery, 
where lucky users reap lower hosting costs. 

 
Fig. 4. Lambda hosting cost variation, NMT2 with CPU heterogeneity 

B. FaaS Runtime Prediction 

To investigate RQ-2, we estimate workload runtime with 

Linux CPU time accounting, by training individual regression 

models to predict specific CPU metrics (e.g. cpuUsr, cpuIdle) 

for FaaS deployments with alternate configurations (e.g. CPUs, 

memory, commercial FaaS platform). We convert a workload’s 

resource utilization profile from one configuration to another 

and apply Linux CPU time accounting to generate runtime 

predictions. On FaaS platforms, resource utilization metrics 

obtained by SAAF originate from containers (IBM) or 

MicroVMs (AWS) and are generally isolated to report resource 

utilization of individual function executions. Linear regression 

and multiple regression can convert individual CPU metrics 

with high accuracy. We demonstrate linear regression of 

cpuUsr and cpuIdle from AWS Lambda in Figure 5. We 

captured CPU resource utilization metrics for single tenant, 

single thread invocations of our calcs service at different 

memory settings (256MB, 512MB, and 2048MB) on two 

different CPUs (Intel Xeon E5-2680v2 @ 2.8 GHz and E5-

2686v4 @ 2.3 GHz). We scaled calculations from 80 to 120 

million stepping by 400,000 without memory stress. Linear 

regression of cpuIdle time between the 256MB and 512MB 

deployments had a coefficient of determination of R2=.988. 

Linear regression of cpuUsr time between the E5-2680v2 and 

E5-2686v4 CPUs at 2048MB had R2=.974. The high 

predictability of individual CPU metrics enables high accuracy 

with our Linux time accounting approach to predict runtime. 

We trained cpuUsr and cpuIdle models for source and target 

platforms described in Table IV and applied Linux time 

accounting to generate runtime predictions. The FaaS Runner 

automated data collection. Samples matching the desired 

source and targets were filtered using R scripts. We investigated 

the accuracy of our approach using successive workloads each 

introducing additional performance variance (SCNMT2→ 

SCMT2→SCSMT2). The CV for workload runtime across all 

CPU and memory configurations was 87.8%, 104.8%, and 

114.9% for the respective workloads. Our objective is that each 

successive workload introduces more performance variance 

providing a greater challenge for performance prediction. 

 
Fig. 5. cpuIdle & cpuUsr linear regression AWS Lambda 

SCNMT2 provides a CPU-bound workload with a scaled 

number of random calculations from 30 to 60 million, 

leveraging 2 threads without memory stress.  SCMT2 performs 

the same calculations, but adds fixed memory stress using large 

arrays for math operands as described in section III.C.  Finally, 

SCSMT2 scales the array size from 1 to 1 million in steps of 

100,000 to produce 10 different memory stress scenarios. As 

Lambda uses greedy function placement across VMs, most 

functions execute with the same VM function tenancy. For a 

workload of 100 concurrent function executions, approximately 

91%, 96%, and 99% had identical tenancy of 256MB (13 

tenants/VM), 512MB (6 tenants/VM), and 1024MB (3 

tenants/VM). To simplify modeling, we used profiling data 

from function executions with maximum tenancy.  

In total, we consider 77 different workload/configuration 

scenarios generating runtime predictions for: alternate CPU 

types (36), alternate memory settings (27), and alternate 

platforms (14).  For all evaluations we associate source 

observations with actual target observations to establish ground 

truth by pairing samples in the same order function responses 

were returned by the FaaS platforms. This differs from sorting 

and pairing observations by runtime. An alternative is to obtain 

ground truth using Z-score normalization to compute a target 

value by projecting the source observation into the target 

distribution. This approach allows surrogate workloads to be 

substituted in performance models by eliminating the need to 

pair actual source and target observations, and we plan to adopt 
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this approach henceforth. Detailed prediction statistics for all 

workload/configuration scenarios, including average runtime 

of workloads, CV, RMSE, MAPE, mean absolute error (MAE), 

and degrees of freedom are available online at: [59].  

Figures 6 and 7 depict the average % error of our runtime 

predictions for each workload and configuration.  Degrees of 

freedom varied across tests because of the variable 

infrastructure received when executing FaaS workloads.  For 

example, when executing a workload, we may randomly 

receive 70 a1 CPUs in one trial, and 47 a1 CPUs in another, 

resulting in different quantities of training data for different 

configurations. The average error for SCNMT2 runtime 

predictions on different CPUs was just 0.51%, and with 

different memory settings 0.59%. Predictions from the a1 to 

a3 CPU at 1024MBs had the highest average error at 1.53% and 

MAE of 62ms, less than the smallest FaaS billing increment. 

 
Fig. 6. Mean absolute percent error (MAPE) of memory to memory  

FaaS runtime prediction models. 

 
Fig. 7. Mean absolute percent error (MAPE) of CPU to CPU  

FaaS runtime prediction models. 

For SCMT2 workloads that add memory stress, the average 

error for runtime predictions for all configurations to 

different CPUs was 2.52%. Adding memory stress increased 

runtime prediction errors ~5x. The average error for SCMT2 

runtime predictions to different memory settings was 

3.83%, an increase of ~6.5x over the SCNMT2 workload 

without memory stress. Predictions between the a1 and a3 to 

512MB, 1024MB, and 2048MB had the highest MAPE at 

7.29% producing MAE of 1.81s, 929ms, and 485ms for 

respective memory values. All other SCMT2 CPU predictions 

had far less error averaging just 0.96% MAPE. One million 

function invocations of our SCMT2 workload at 2048MB 

memory cost approximately $232.81. To put our runtime 

predictions into perspective for the SCMT2 workload, our 

worst case runtime error for a1→a3 CPU at 2048MB results in 

overestimating cost by $16.18, compared to average cost error 

of just $5.15 for all SCMT2 runtime predictions. 
SCSMT2 workloads introduce variable memory stress 

resulting in an average error for SCSMT2 runtime 
predictions to different CPUs of 5.10%. With increasing 
memory stress, runtime predictions for SCSMT2 had about 2x 
more error than SCMT2 workloads. SCSMT2 has a higher CV 
than SCMT2 and SCNMT2. Additional memory stress made the 
SCSMT2 workload non-deterministic, increasing performance 
variance leading to more difficult runtime predictions, and less 
accuracy. We project our performance prediction error for the 
SCSMT2 runtime predictions to different CPUs with 1,000,000 
functions calls in Figure 8. The average error for SCSMT2 
runtime predictions to different memory settings was 
10.48%. Test data for predicting SCSMT2 workload runtime to 
different memory settings also had the highest CV at 36%. 
Correspondingly, we observed a decrease in R2 for our 
regression models from ~ .98 to .85.   

 
Fig. 8. Percent error of cost predictions for SCSMT2  

derived from FaaS runtime prediction models 

We evaluated our runtime predictions for SCNMT2 
workloads without memory stress deployed on IBM Cloud 
Functions [55]. The average error for IBM SCNMT2 
runtime predictions to four different CPUs was 3.55%. The 
occurrence rates for obtaining different IBM CPUs is described 
in Table V. Our prediction error equated to an average of 1.09s, 
717ms, 287ms, and 120ms with 256, 512, 1024, and 2048MB. 
Average cost error of one million function invocations on IBM 
was $4.24 vs. an average workload cost of $119.38.  

We observed that IBM shares VMs differently than AWS 
Lambda. Where AWS Lambda explicitly couples CPU 
timeshare to the memory reservation size, IBM does not adapt 
the CPU timeshare based on memory reservation size. IBM 
allows co-located function instances to compete for available 
CPU time on the VM. This allows users to obtain the best 
possible performance based on available resources, resulting in 
much higher performance variance. IBM Cloud Functions 
differed from AWS Lambda in that host VMs had 4 vCPUs and 
16GB of RAM each.  IBM function tenancy on each VM maxed 
out at: 32x256MB, 16x512MB, 8x1024MB, and 4x2048MB.  
This is in contrast to AWS Lambda max tenancy of: 13x256MB, 
6x512MB, 3x1024MB, and 1x2048MB. On IBM, single tenant 
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executions of our NMT2 calcs service at 256MB required just 
2091ms, where with full multitenancy performance slowed to 
26,816ms, a slowdown of 12.82x. We observed performance 
degradation from multitenancy of 5.86x, 3.42x, and 1.69x at 
512, 1024, and 2048MB.  As configured, we estimate IBM 
Cloud Functions to be 63% more expensive than AWS Lambda 
to execute one million calcs functions with maximum VM 
function tenancy resulting from high concurrency. If functions 
execute sequentially however, IBM Cloud Functions completes 
the workload for just 13.4% the price of Lambda ($8.89) at 
256MB.  The same workload on IBM can cost anywhere 
from $8.89 to $113.97 at 256MB depending on the tenancy 
of function executions across VMs driven by the 
concurrency of client requests. On IBM, users benefit when 
FaaS workloads execute with low concurrency, and pay more 
when demand spikes. This provides an excellent example of 
pricing obfuscation on serverless platforms.  

Table VI summarizes results of our model evaluations where 
each row summarizes all workload predictions to different target 
configurations (e.g. CPU, memory, or platform) we tested. 
Supported by SAAF, our models were trained to specifically 
account for CPU heterogeneity and function multi-tenancy to 
improve overall accuracy. Across all scenarios, we calculated 
a MAPE of 3.49%, equaling a cost error of $6.46 for 
1,000,000 function workloads costing an average of $150.45.  

TABLE VI.  RUNTIME PREDICTION MODEL EVALUATION SUMMARY 

Workload  
Prediction Type 

Number of 
Models 

Workload 
CV 

MAPE 
Average 

Cost Error 
Average 

Workload Cost 

SCNMT2 – CPU 12 21% 0.51% $0.36 $70.27 

SCMT2 – CPU 12 23% 2.52% $5.15 $204.23 

SCSMT2 – CPU 12 32% 5.10% $8.86 $173.64 

SCNMT2 – Memory 9 20% 0.59% $0.45 $76.30 

SCMT2 – Memory 9 22% 3.83% $9.07 $236.88 

SCSMT2 – Memory 9 36% 10.5% $19.99 $190.80 

SCNMT2 - IBM 14 18% 3.55% $4.24 $119.38 

Overall Average 77 (sum) -- 3.49% $6.46 $150.45 

C. Assessing Workload Predictions 

To investigate heuristics for RQ-3 we assessed statistical 
correlations between resource utilization metrics and absolute 
error of our runtime predictions. Our objective is to identify 
heuristics for different types of workloads that employ metric 
thresholds to signal when runtime predictions are likely to be 
error prone. We evaluated Pearson correlation coefficients 
between the absolute error of our runtime predictions and 
resource utilization metrics for our SCSMT2 workload tests. We 
evaluated correlations for configurations with minimum 
(CPU:a2→a3 1024MB, memory:256→1024 a3), median 
(CPU:a2→a3 512MB, memory:256→512 a1), and maximum 
(CPU:a1→a3 512MB, 256→2048, a1) prediction error. We 
ignored metric correlations that were expected to correlate with 
runtime: cpuUsr, cpuIdle, conswitches, # calcs, and array size.  

For CPU predictions, a significant positive correlation was 
between cpuSteal and prediction absolute error (max: r=.18 
p<.0001 df=506, median: r=.25 p<.05 df=70, min: r= n.s.).  
CpuSteal ticks are registered when a VM is ready to execute, but 
the physical CPU is busy servicing work from other co-located 
VMs sharing the physical host, or from the hypervisor itself [27]. 
CpuSteal introduces performance variance as workloads 
underperform for no apparent reason when the CPU is “stolen” 
by another VM. For the 12 SCSMT2 CPU and memory 

configurations in Figure 7, 4 had a statistically significant 
correlation between prediction error and cpuSteal. 

For memory predictions, a significant negative correlation 
was between freeMemory and prediction absolute error (max: 
r=-.154 p<.01 df=324, median: r=-.19 p<.0001 df=506, min: r=-
.25 p<.001 df=177). When VMs had less free memory, our 
predictions tended to be less accurate. Runtime predictions from 
256→2048MB produced on average 4.3x more error than 
256→512MB or 256→1024MB predictions. VM freeMemory 
also decreased with function memory size: at 256MB VMs had 
approximately ½ the freeMemory of VMs at 2048MB. We 
suspect that lower VM freeMemory results from co-located 
function instances. In conclusion, 9 memory configurations of 
SCSMT2 depicted in Figure, 5 had a statistically significant 
correlation between prediction error and VM freeMemory. 

V. CONCLUSIONS 

In this paper, we demonstrated how the Serverless 
Application Analytics Framework (SAAF) supported by the 
FaaS Runner tool can profile performance, resource utilization, 
and infrastructure of concurrent FaaS workloads. To dispel 
pricing obfuscation of serverless platforms, we leveraged Linux 
CPU time accounting principles and multiple regression to 
generate accurate FaaS function runtime predictions. FaaS 
hosting costs were then estimated by applying platform specific 
pricing policies. Research findings include: RQ-1: We 
characterized performance variance for identical CPU bound 
workloads on AWS Lambda and measured a 0.5% coefficient of 
variance (CV) for single tenant runs on identical CPUs.  CV 
increased ~7.4x as a result of CPU heterogeneity, and another 
~2.7x from multitenancy when function instances ran 
concurrently on the same host. RQ-2: Leveraging Linux time 
accounting, we predicted FaaS workload runtime across 
different CPUs, with different memory settings, and to different 
platforms using successive workloads that introduce additional 
performance variance. Mean absolute percentage error for 
predictions of 77 scenarios was 3.49%, equating to an average 
cost error of $6.46 against an average cost of $150.45 for one 
million function workloads. Prediction error for workloads 
without memory stress was approximately ~0.5%, with fixed 
memory stress ~3%, with variable memory stress ~7%, and for 
deployments to IBM Cloud Functions ~3.5%.  RQ-3: CpuSteal 
was found to correlate with prediction error, while host VM 
freeMemory had a negative correlation.  
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