
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Predicting Performance and Cost of

Serverless Computing Functions with SAAF

Robert Cordingly

School of Engineering and Technology

University of Washington

Tacoma WA USA

rcording@uw.edu

Wen Shu

School of Engineering and Technology

University of Washington

Tacoma WA USA

shuwen12@uw.edu

Wes J. Lloyd

School of Engineering and Technology

University of Washington

Tacoma WA USA

wlloyd@uw.edu

Abstract— Next generation software built for the cloud

recently has embraced serverless computing platforms that use

temporary infrastructure to host microservices offering building

blocks for resilient, loosely coupled systems that are scalable, easy

to manage, and extend. Serverless architectures enable

decomposing software into independent components packaged

and run using isolated containers or microVMs. This

decomposition approach enables application hosting using very

fine-grained cloud infrastructure enabling cost savings as

deployments are billed granularly for resource use. Adoption of

serverless platforms promise reduced hosting costs while

achieving high availability, fault tolerance, and dynamic elasticity.

These benefits are offset by pricing obfuscation, as performance

variance from CPU heterogeneity, multitenancy, and provisioning

variation obscure the true cost of hosting applications with

serverless platforms. Where determining hosting costs for

traditional VM-based application deployments simply involves

accounting for the number of VMs and their uptime, predicting

hosting costs for serverless applications can be far more complex.

To address these challenges, we introduce the Serverless

Application Analytics Framework (SAAF), a tool that allows

profiling FaaS workload performance, resource utilization, and

infrastructure to enable accurate performance predictions. We

apply Linux CPU time accounting principles and multiple

regression to estimate FaaS function runtime. We predict runtime

using a series of increasingly variant compute bound workloads

that execute across heterogeneous CPUs, different memory

settings, and to alternate FaaS platforms evaluating our approach

for 77 different scenarios. We found that the mean absolute

percentage error of our runtime predictions for these scenarios

was just ~3.49% resulting in an average cost error of $6.46 for 1-

million FaaS function workloads averaging $150.45 in price.

Keywords— Serverless Computing, Function-as-a-Service,

Performance Evaluation, Performance Modeling, Resource

Contention, Multitenancy

I. INTRODUCTION

Serverless computing recently has emerged as a compelling

approach for hosting applications in the cloud [1][2][3].

Serverless computing platforms promise autonomous fine-

grained scaling of computational resources, high availability

(24/7), fault tolerance, and billing only for actual compute time

while requiring minimal setup and configuration. To realize

these capabilities, serverless platforms leverage ephemeral

infrastructure such as MicroVMs or application containers.

The serverless architectural paradigm shift ultimately promises

better server utilization as cloud providers can more easily

consolidate user workloads to occupy available capacity, while

deallocating unused servers, to ultimately save energy [4] [5].

Rearchitecting applications for the serverless model promises

reduced hosting costs as fine-grained resources are provisioned

on demand and charges reflect only actual compute time.

Function-as-a-Service (FaaS) platforms leverage serverless

infrastructure to deploy, host, and scale resources on demand

for individual functions known as “microservices” [6] [7] [8].

With FaaS platforms, applications are decomposed and hosted

using collections of independent microservices differing from

application hosting with Infrastructure-as-a-Service (IaaS) or

Platform-as-a-Service (PaaS) cloud platforms. On FaaS

platforms, temporary infrastructure containing user code plus

dependent libraries are created and managed to provide

granular infrastructure for each service [9]. Cloud providers

must create, destroy, and load balance service requests across

available server resources. Users are billed based on the total

number of service invocations, runtime, and memory utilization

to the nearest tenth of a second. Serverless platforms have

arisen to support highly scalable, event-driven applications

consisting of short-running, stateless functions triggered by

events generated from middleware, sensors, microservices, or

users [10]. Use cases include: multimedia processing, data

processing pipelines, IoT data collection, chatbots, short batch

jobs/scheduled tasks, REST APIs, mobile backends, and

continuous integration pipelines [7].

Serverless computing with its many advantages possesses

several important challenges. Unlike IaaS clouds, where cost

accounting is as simple as tracking the number of VM instances

and their uptime, serverless billing models are multi-

dimensional. Software deployments consist of many

microservices which must be individually tracked [11]. FaaS

platforms exhibit performance variance that directly translates

to cost variance. Functions execute over heterogeneous CPUs

that host a variable number of co-located function instances

causing resource contention. FaaS applications are decomposed

into many functions that are hosted and scaled separately. The

aggregation, or decomposition of application code into a

varying number of FaaS functions can directly impact the

composite size and cost of cloud infrastructure. FaaS platform

complexities including multi-dimensional billing models,

heterogeneous CPUs, variable function tenancy, and

microservice composition, leads to considerable pricing

obfuscation for application hosting.

2

FaaS platforms presently lack tool support to estimate the

costs of hosting applications. Current cloud pricing calculators

from public cloud providers (e.g. AWS and Azure), and

commercial tools (e.g. Intel Cloud Finder, RankCloudz,

Cloudorado) primarily provide IaaS compute and storage cost

estimates based on average performance [12][13][14].

Recently, FaaS calculators have appeared, but they are limited

to generating cost estimates based on average runtime and

memory size [15][16][17]. These calculators do not consider

how FaaS function runtime scales relative to the memory

reservation size, a feature coupled to CPU power on several

FaaS platforms [18][19].

To address pricing obfuscation of FaaS platforms, in this

paper, we offer a novel approach combining Linux CPU time

accounting and multiple regression to provide highly accurate

FaaS function runtime predictions. Equipped with performance

predictions, FaaS workload costs can be estimated by applying

the platform’s pricing policy. Our approach involves profiling

CPU metrics of multiple FaaS function deployments (e.g. AWS

Lambda with 256, 512, 1024 MB to Intel Xeon E5-2680v2, E5-

2676v3, E5-2686v4). We build regression models that predict

how CPU metrics (e.g. CPU user mode time, CPU kernel mode

time) scale across alternate function deployments with different

CPUs and memory settings, and even to different cloud

providers. By applying Linux CPU time accounting principles

we can then estimate FaaS function runtime on any CPUs (e.g.

Intel Xeon E5-2686v4), with any memory size (e.g. 1024 MB),

on any cloud (e.g. IBM Cloud Functions). We note that cloud

providers readily mix multiple CPU types to host FaaS

functions. This CPU heterogeneity increases performance

variance while decreasing performance model accuracy which

we address in this paper. We evaluate our approach with

compute bound functions for 77 different scenarios including

deployments to alternate CPUs (36 cases), with alternate

memory settings (27 cases), and to alternate platforms (14

cases). We found workload cost can be estimated with ~3.49%

mean absolute percentage error (MAPE) by applying FaaS

platform pricing policies, resulting in $6.46 cost error, against

an average workload price of $150.45 for 1-million function

call workloads. Our approach can help a developer predict FaaS

workload costs to make informed deployment decisions. These

advancements can enable developers to better evaluate

deployment and design alternatives, while understanding cost

implications to achieve more efficient serverless software

implementations.

A. Research Questions

This paper investigates the following research questions:

RQ-1: (Performance Variance) What factors are responsible

for performance variance on Function-as-a-Service (FaaS)

platforms? How much do these factors contribute to

performance variance?

RQ-2: (FaaS Runtime Prediction) When leveraging Linux

CPU time accounting principles and regression modeling, what

is the accuracy of FaaS function runtime predictions for

deployments with different memory settings and different

CPUs?

RQ-3: (Assessing Workload Predictability) How effective

are system metrics, for example the number of page faults and

context switches, at evaluating reliability of performance

predictions?

B. Research Contributions

This paper provides the following research contributions:

1. We introduce the Serverless Application Analytics

Framework (SAAF), a reusable programming framework

that supports characterization of performance, resource

utilization, and infrastructure metrics for software

deployments to FaaS platforms (AWS Lambda, Azure

Functions, Google Cloud Functions, and IBM Cloud

Functions) in popular languages (Java, Python, and

Node.js).

2. We detail performance variance of CPU-bound functions

on AWS Lambda and IBM Cloud Functions. We

characterize performance variance from heterogeneous

CPUs, and function multitenancy across different memory

sizes. (RQ-1)

3. We evaluate our FaaS function runtime prediction

approach that combines Linux CPU time accounting and

multiple regression for deployments across alternate

CPUs, memory reservation sizes, and platforms. We

evaluate our predictions to determine root mean squared

error (RMSE) and MAPE, while identifying factors that

impact accuracy using successive compute-bound

workloads each introducing more non-determinism. We

evaluate our approach for compute-bound functions for 77

different scenarios producing runtime predictions for:

alternate CPU types (36), alternate memory settings (27),

and alternate platforms (14). (RQ-2, RQ-3)

II. BACKGROUND AND RELATED WORK

The challenge of performance prediction on serverless

platforms, including the need to address performance variance

resulting from hardware heterogeneity is identified in [20]. The

authors identify how pay-as-you-go pricing models, and the

complexity of serverless application deployments, leads to the

key pitfall: “Serverless computing can have unpredictable

costs”. In contrast to application hosting with VMs, serverless

platforms complicate budgeting as organizations must predict

service utilization to estimate hosting costs. Performance

variance of serverless workloads and accuracy of runtime

predictions is invariably linked. We review related work on

cloud performance variance, performance modeling, and

performance evaluation of serverless platforms highlighting

relationships to our research goals.

A. Performance Variance of Cloud Systems

In the public cloud, key factors often responsible for

producing performance variance include hardware

heterogeneity, provisioning variation, and resource contention.

Ou and Farley identified the existence of heterogeneous CPUs

that host identically labeled VM types on Amazon EC2, leading

to IaaS cloud performance variance [21][22]. Rehman et al.

identified the problem of “provisioning variation” in IaaS

clouds in [23]. Provisioning variation is the random nature of

3

VM placements that generates varying multitenancy across

physical servers producing performance variance from resource

contention. Schad et al. showed the unpredictability of Amazon

EC2 VM performance resulting from provisioning variation

and resource contention from VM multitenancy in [24].

Ayodele et al. and Lloyd et al. demonstrated how resource

contention from multi-tenant VMs can be identified using the

cpuSteal metric in [25] [26].

On serverless FaaS platforms Jonas et al. identified

heterogeneous CPUs and noted their potential to complicate

performance modeling in [20]. Wang et al. identified

heterogeneous VM types on FaaS platforms from AWS, Azure,

and Google in [5]. They observed 4 CPU types and 5 VM

configurations (AWS Lambda), 3 CPU types x 3 VM

configurations (Azure functions), and 4 CPU types (Google

Cloud Functions). Their efforts did not evaluate the extent of

performance variance possible from heterogeneous CPUs.

Previous research has identified how provisioning variation

results in varying degrees of multitenancy on FaaS platforms

[4] [5] [27]. We identified how the number of function

“tenants” on VMs, called “function instances” by Wang,

increased when scaling up the number of concurrent requests

on AWS Lambda [4]. Conversely, increasing function memory

reduced the number of tenants on a VM. Wang observed that

function instance placement across VMs on AWS Lambda used

greedy placement, where concurrent requests are packed onto

individual VMs until available memory (3328MB) is

exhausted. Multiple functions from a single user account were

found to share VMs, but VMs did not appear to be shared with

other users. On Azure, the maximum observed tenancy of

function executions did not exceed 8, while up to 4 user

accounts shared VMs. While these efforts identified the

multitenancy, they did not evaluate performance implications

from resource contention.

B. Performance Modeling of Cloud Systems

On IaaS clouds, domain specific approaches have been
developed to model workload performance by incorporating
specific metadata regarding the tasks [28][29][30][31].
Recently, offline and online machine learning approaches have
been applied to model runtime of multi-stage, batch-oriented,
scientific workflows. Using task metadata and resource
utilization metrics as features provided accuracy improvements
[32][33][34].

Other efforts at IaaS cloud performance and cost modeling
have focused on cost-aware VM scheduling to support
infrastructure management for VM placement [35][36][37][38].
Efforts to save costs by leveraging reduced-priced cloud VMs
available through auction based pricing mechanisms, such as
Amazon EC2 spot instances, have spurred considerable research
[39][40][41]. In summary, existing approaches provide runtime
predictions for batch-oriented workloads that execute across
homogeneous cloud VMs. Other efforts focus on performance
modeling for resource management, to optimize use of auction
based VMs, or to help select an appropriate VM type. We are
unaware of previous research that has focused on performance
and cost modeling of serverless computing workloads.

C. Performance and Cost Evaluation of Serverless Platforms

Prior research on serverless platforms has focused on

evaluating performance of FaaS platforms for hosting a variety

of workloads. Several efforts have investigated performance

implications for hosting scientific computing workflows

[42][43][44][45]. Other efforts have evaluated FaaS

performance for machine learning inferencing [46][47], NLP

inferencing [48], and even neural network training [49]. To

support cost comparison of serverless computing vs. IaaS

cloud, Boza et al. developed CloudCal, a tool to estimate

hosting costs for service-oriented workloads on IaaS (reserved),

IaaS (On Demand), and FaaS platforms [50]. CloudCal

determines the minimum number of VMs to maintain a

specified average request latency to compare hosting costs to

FaaS deployments. FaaS resources, however, were assumed to

provide identical performance as IaaS VMs when functions

were allocated 128 MB RAM. Wang et al. identified AWS

Lambda performance at 128 MB as only ~1/10th of 1-core VM

performance in [5] suggesting potential inaccuracies with

CloudCal. Other efforts have conducted case studies to

compare costs for hosting specific application workloads on

IaaS vs. FaaS [27][51], and FaaS vs. PaaS [52]. We extend

previous efforts by characterizing performance variance of

workloads across FaaS platforms, and demonstrating our novel

Linux time accounting approach to predict FaaS workload

runtime and cost.

III. METHODOLOGY

In this section, we detail tools and techniques used to
investigate our research questions (RQ-1, RQ-2, RQ-3).
Section III.A describes the SAAF, the framework used to profile
our serverless workloads, and section III.B describes FaaS
Runner, a tool used to automate profiling experiments. Section
III.C details our experimental workloads, and section III.D
describes our approach to leverage Linux CPU time accounting
principles to generate runtime predictions for FaaS workloads
deployed with different configurations, or to alternate platforms.

A. The Serverless Application Analytics Framework (SAAF)

To support profiling FaaS software deployments we have
developed the Serverless Application Analytics Framework
[53]. SAAF supports characterization of performance, resource
utilization, and infrastructure for FaaS workloads deployed to
AWS Lambda, Google Cloud Functions, Azure Functions, and
the IBM Cloud Functions commercial FaaS platforms
[21][22][61][62]. SAAF supports characterization of workloads
written in Java, Python, Node.js, Go, and with AWS Lambda
custom runtimes. Programmers include the SAAF library and a
few lines of code to enable profiling. SAAF collects metrics
from the Linux /proc filesystem and appends them to the JSON
payload returned by the function instance. Metrics are then
processed by FaaS Runner (see section B) our custom client
application for further analysis. Table I shows a selected set of
key metrics collected by SAAF.

Commercial FaaS platforms (e.g. AWS Lambda, IBM Cloud
Functions) expose or hide different metadata about the
underlying Linux environments used to host functions. In this
paper, we focus on AWS Lambda and IBM Cloud Functions
as both platforms offer production level support of Java. On

4

Azure Functions, Java runs in a Windows environment causing
Linux time accounting metrics used by our runtime prediction
approach, described in section IV.B, to be unavailable. Google
Cloud Functions does not presently support Java. SAAF’s
approach to data collection is applicable to any FaaS platform
that exposes Linux CPU time accounting metrics.

TABLE I. RUNTIME, RESOURCE UTILIZATION, AND CONFIGURATION

METRICS COLLECTED BY SAAF WITHIN A FUNCTION INSTANCE.
‘’ INDICATES RAW AND DELTA VERSIONS ARE PROVIDED

Fig. 1. SAAF profiling overhead percentiles (ms)

at different memory settings on AWS Lambda

 To determine function tenancy and potential resource
contention, SAAF supports uniquely identifying VMs that host
one or more function instances by implementing platform
specific mechanisms. IBM Cloud Functions runs Xen 4.7
allowing the unique XEN hypervisor ID that is available from
/sys/hypervisor/uuid [55] to be used as a method of VM
identification. VMs can be uniquely identified on AWS Lambda
with the sandbox-root ID in /proc/$$/cgroup [5].

 Granularity of SAAF metric collection can controlled to
specify which metrics to collect: CPU, memory, function
instance, Linux, and platform metrics. We profiled the overhead
of collecting metrics on AWS Lambda using a function only
containing SAAF at 256MB, 512MB, 1024MB, and 2048MB
and show the overhead in (ms) by percentile in Figure 1. AWS
Lambda couples CPU timeshare with function memory
allocation, reducing performance. Only for functions at 256MB,
when collecting all metrics, did SAAF overhead exceed 100 ms,
the billing unit of AWS Lambda in 10% of cases.

B. FaaS Runner

FaaS Runner provides a client-side application used in

conjunction with SAAF. FaaS Runner supports automating

profiling experiments across many different function

configurations, while compiling results into a report that

aggregates data for quick analysis. FaaS Runner combines the

performance, resource utilization, and configuration metrics

from many concurrent sessions enabling observations not

possible when profiling individual FaaS functions calls. FaaS

Runner is written in Python 3.6 and uses separate threads to host

up to 1,000 individual, concurrent function invocations.

Repeatable experiment configurations are defined using JSON

files. Users define a set of input JSON payloads to distribute

among function invocations, the number of concurrent or

sequential calls to make, when to reconfigure FaaS function

memory settings, and how to display the results. FaaS Runner

groups results by CPU type, the virtual machine hosting

function instances, or any other attributes defined in an

experiment file. By categorizing results, FaaS Runner supports

inferring the number of function instances sharing the same

CPU type, VM, or any other unique attribute. This enables

performance comparisons based on function tenancy, the

number of function instances that share a host (VM).

Fig. 2. Workload profiling with FaaS Runner and SAAF

C. Experimental Workloads

To evaluate our Linux time accounting and regression

performance prediction approach, we developed a compute-

bound function known as the “Calcs Service” (https://github

.com/wlloyduw/CalcsService). This microservice produces

workloads where a variable number of calculations are

performed using the formula (a × b ÷ c) with operands stored

SAAF Metric Description Source

instanceID
Cloud provider’s unique ID for function
runtime environment. On AWS Lambda this
is the CloudWatch log stream ID.

environment
variable

conSwitches Number of context switches /proc/vmstat

cpuIdle CPU idle time in ms /proc/stat

cpuIOWait CPU time waiting for I/O to complete /proc/stat

cpuIrq CPU time servicing HW interrupts /proc/stat

cpuKrn CPU time in kernel mode in ms /proc/stat

cpuModel CPU model number /proc/cpuinfo

cpuNice CPU time executing prioritized processes /proc/stat

cpuSoftIrq CPU time servicing soft interrupts /proc/stat

cpuType FaaS function function instance CPU type /proc/cpuinfo

cpuUsr CPU time in user mode in ms /proc/stat

saafRuntime
Overhead time in (ms) of SAAF metric
collection

calculated by
SAAF

freeMemory FaaS environment free memory in MB /proc/vmstat

latency
Difference between runtime measured by
FaaS Runner and SAAF runtime metric

calculated by
client

mjrPgFaults VM major pagefaults for function instance /proc/vmstat

newcontainer
0=function executes in new function instance
1=function executes recycled instance

calulcated by
SAAF

pagefaults VM pagefaults for function instance /proc/vmstat

runtime Server side total FaaS function runtime in ms
calculated by
SAAF

totalMemory FaaS environment total memory in MB /proc/vmstat

userRuntime Runtime of function minus SAAF time (ms)
calculated by
SAAF

vmcpusteal CPU ticks lost to other VMs or the hypervisor /proc/stat

vmID Unique id for the VM hosting this function
/proc/cgroup,
/sys/hyprvsr

5

in separate large arrays on the heap. For each calculation, a

random index is chosen into the arrays to store random numbers

for use as operands. This is in contrast to multiplying operands

stored using local primitive integers. To vary the degree of

memory stress, the array size is adjusted from 1 to 1,000,000

elements. The calcs function was used in our workloads to

perform a number of calculations between 30,000,000 to

60,000,000 to provide a variety of function runtimes to support

training performance models. To ensure deterministic behavior,

we used the same random seed for random array indexing to

produce identical array access sequences for every execution.

We also used the same random seed to generate identical

“random” operand values. A child thread was introduced to

create a multi-threaded workload where the child thread

performs ½ the number of calcs to finish before the parent. The

second thread adds CPU contention while the parent thread

dictates the function’s runtime. To evaluate performance

predictions we did not use existing CPU benchmark

applications because their binary executables may not always

fit in the FaaS package space, and deploying binaries results in

FaaS functions essentially being wrappers.

We profiled the alternate function configurations (e.g. CPU,

memory, platform) described in table II and III to evaluate

prediction accuracy where subsequent workloads introduce

additional memory stress. Regression models are trained to

convert individual CPU metrics from scenario-to-scenario

using profiling data obtained from representative workloads.

Developing a one-size fits all generic model to derive runtime

predictions for any FaaS workload using generalized training

data, similar to [56] for IaaS clouds, was not our objective for

this paper.

TABLE II. EXPERIMENTAL WORKLOAD ALIAS AND DEFINITIONS

Name Definition

NMT1 Fixed # of Calcs, No Memory Stress, 1 Thread, concurrent calls

MT1 Fixed # of Calcs, Memory Stress, 1 Thread, concurrent calls

NMT2-seq Fixed # of Calcs, No Memory stress, 2 Threads, Sequential calls

NMT2 Fixed # of Calcs, No Memory Stress, 2 Threads, concurrent calls

MT2 Fixed # of Calcs, Memory Stress, 2 Threads, concurrent calls

SCNMT1 Scaling Calcs, No Memory Stress, 1 Thread, concurrent calls

SCMT1 Scaling Calcs, Memory Stress, 1 Thread, concurrent calls

SCNMT2 Scaling Calcs, No Memory Stress, 2 Threads, concurrent calls

SCMT2 Scaling Calcs, Memory Stress, 2 Threads, concurrent calls

SCSMT2 Scaling Calcs, Scaling Memory Stress, 2 Threads, concurr. calls

TABLE III. EXPERIMENTAL WORKLOAD CONFIGURATIONS

Workload Name Calcs Memory Stress Threads Tenancy

NMT1 40 million No 1 n

MT1 40 million array=1 million 1 n

NMT2-seq 40 million No 2 1

NMT2 40 million No 2 n

MT2 40 million array=1 million 2 n

SCNMT1 30→60m step 3m No 1 n

SCMT1 30→60m step 3m array=1 million 1 n

SCNMT2 30→60m step 3m No 2 n

SCMT2 30→60m step 3m array=1 million 2 n

SCSMT2 30→60m step 3m 1→1m, step 100k 2 n

The Calcs Service supports generating FaaS workloads

described in tables II and III. We profiled the total number of

page faults running the two-thread calcs service (SCSMT2) on

AWS Lambda at 256MB and observed 15.8x more average

page faults with array sizes of 1,000,000 vs. 1, and 13.2x at

2048MB. More page faults occurred at lower memory settings

because of higher function tenancy on VMs. This confirmed

our memory stress approach successfully generates memory

contention. Memory stress also significantly reduced

performance. When comparing NMT1 and MT1 workloads,

runtimes increased by (3.90x, 3.88x, 3.55x, 2.24x) for 256MB,

512MB, 1024MB, and 2048MB respectively. Memory stress

also increased performance variance. The Coefficient of

Variation (CV), defined as the standard deviation divided by

the mean, provides a normalized comparison of performance

variance. CV increased from (11.9→29.7%, 9.6→25.8%,

9.2→21.7%, 5.5→24.8%) with maximum memory stress for

256MB, 512MB, 1024MB, and 2048MB respectively.

D. Runtime Predictions with Linux Time Accounting

In this paper, we adapt our IaaS cloud performance

modeling techniques leveraging Linux CPU time accounting

for FaaS platforms [57]. Our approach is in contrast to

traditional performance modeling approaches described in

section II.B that leverage application metadata or resource

utilization metrics as features to train models that directly

predict runtime. Linux provides CPU time accounting by

providing metrics that detail time spent in different CPU states

measured in centiseconds (cs). Summing these metrics and

dividing by the number of CPU cores provides the wall clock

time of any profiled workload as in the formula:

Workloadtime =

𝑐𝑝𝑢𝑈𝑠𝑟 + cpuKrn + cpuIdle + cpuIOWait +

cpuIntSrvc + cpuSftIntSrvc + cpuNice + cpuSteal

𝑜𝑓 𝐶𝑃𝑈𝑐𝑜𝑟𝑒𝑠

In contrast to training models to predict runtime, we train

individual models to predict individual CPU metrics for FaaS

deployments with different configurations (e.g. memory,

CPUs, or to alternate platforms). We then solve for workload

runtime using the formula. In this paper, we focus on

evaluating this approach for CPU-bound workloads. For these

workloads, the majority of the variance is explained by CPU

user mode time (cpuUsr) and CPU idle time (cpuIdle). We

trained regression models to estimate how individual CPU

metrics scale across different FaaS deployments to different

CPUs, with different memory sizes, etc. Having models for

specific CPUs allows accurate workload runtime and cost

predictions for FaaS functions that run across heterogeneous

CPUs. Table V provides data detailing an example of CPU

heterogeneity on commercial FaaS platforms.

For FaaS functions with different memory reservation sizes,

we observed on platforms that scale CPU power with memory

(e.g. AWS Lambda and Google Cloud Functions), that cpuIdle

time scales inversely with memory size. The workload’s

cpuUsr time remains approximately the same. In effect, the

required cpuUsr time to complete the workload does not

change, but changing the FaaS function memory alters the CPU

timeshare for function execution, and this is reflected by

cpuIdle.

To produce FaaS workload runtime predictions we profiled

our workloads using a base configuration having a fixed CPU

and memory setting (e.g. 256MB CPU E5-2680v2). We

6

generated regression models to convert cpuUsr and cpuIdle to

a variety of target platforms. Deltas of cpuUsr, cpuIdle, CPU

context switches, and page faults were used as independent

variables. We did not incorporate application specific

independent variables to ensure our approach is workload

agnostic. Multiple regression models were trained and

evaluated using RStudio [58]. We then applied Linux time

accounting principles to predict function runtime for 77

different target configurations (e.g. 256MB CPU E5-2676v3 as

one example).

Table IV describes our experiment source and target

platform configurations. Numbers in parentheses indicate the

maximum observed number of co-located function instances on

the VM at different memory configurations. To refer to

different CPUs we use aliases (e.g. a1, a2, i1, i2, etc.), described

in Table V. To address function multitenancy in our models

and normalize predictions, we filtered runs that did not exhibit

maximum tenancy. Due to greedy function placement, the vast

majority of concurrent function invocations were observed to

exhibit maximum tenancy on AWS Lambda.

TABLE IV. RUNTIME PREDICTION SOURCE AND TARGET PLATFORM

CONFIGURATIONS INCLUDING INTEL XEON E5 CPU, MEMORY, AND FUNCTION

TENANCY PER VM IN PARENTHESES

Source Platform Target Platform(s)

CPU Configurations:

AWS 256MB 2680v2 (13) AWS 2676v3:256(13), 512(6), 1024(3), 2048MB(1)

AWS 256MB 2680v2 (13) AWS 2686v4:256(13), 512(6), 1024(3), 2048MB(1)

AWS 256MB 2676v3 (13) AWS 2686v4:256(13), 512(6), 1024(3), 2048MB(1)

Memory Configurations:

AWS 256MB 2680v2 (13) AWS 512MB (6) v2, 1024MB (3) v2, 2048MB (1) v2

AWS 256MB 2676v3 (13) AWS 512MB (6) v3, 1024MB (3) v3, 2048MB (1) v3

AWS 256MB 2686v4 (13) AWS 512MB (6) v4, 1024MB (3) v4, 2048MB (1) v4

IBM Configurations:

AWS 2048MB 2680v2 (1) IBM 2048MB (4): 2683v3, 2683v4, 2650v4, 2690v4

TABLE V. OBSERVED RATIOS OF CPU TYPES ON AWS LAMBDA AND
IBM CLOUD FUNCTIONS FAAS PLATFORMS

Platform Intel Xeon CPU VM Alias %

AWS E5-2680v2 @ 2.8 GHz, 10 core c3 a1 67.5

AWS E5-2676v3 @ 2.4 GHz, 12 core m4 a2 19.9

AWS E5-2686v4 @ 2.3 GHz, 18 core r4 a3 12.5

IBM E5-2683v3 @ 2.0 GHz, 14 core unseen i1 18.4

IBM E5-2683v4 @ 2.1 GHz, 16 core bl2/b1/m1 i2 66.1

IBM E5-2650v4 @ 2.2 GHz, 12 core u1 i3 3.8

IBM E5-2690v4 @ 2.6 GHz, 14 core c1 i4 7.2

IBM Gold 6140 @ 2.3 GHz, 18 core unseen i5 4.5

IV. EXPERIMENTAL RESULTS

To evaluate our research questions, we profiled the
workloads described in Tables II & III on source and target
platforms described in Table IV. We deployed AWS Lambda
functions in the Virginia region. We pinned all Lambda
functions to execute within in the same availability zone (e.g.
us-east-1b) using a VPC to reduce hardware heterogeneity and
increase the likelihood that experiments run with identical
conditions. IBM Cloud Functions were deployed to the us-south
Dallas datacenter. We identify the prevalence of heterogeneous
CPUs found on both AWS Lambda-VPC (us-east-1b, 350 runs)
and IBM Cloud Functions (south, 1000 runs) as observed in
August/September 2019 in Table V. Our statistics illustrate one

example of possible CPU variance on commercial FaaS
platforms.

A. Performance Variance of FaaS Platforms

To quantify performance variance for RQ-1, we leveraged

our calcs service with the NMT2-seq and NMT2 workloads.

These workloads were designed to minimize non-deterministic

performance behavior. Functions performed a static number of

calculations, using the same operand values, without memory

stress. Our goal was to quantify performance variance on AWS

Lambda and IBM Cloud Functions.

Fig. 3. FaaS workload performance variance resulting from heterogeneity in

CPU type and the number of co-located function executions on host VMs

based on the experiment, platform, and memory reservation size

We compared function runtime for NMT2-seq workloads
performing 40,000,000 calcs (a × b ÷ c) using the same random
seed to select operands. We ran this workload sequentially to
force single tenant function execution to enable measuring
performance across isolated VMs dedicated to individual
requests on both platforms. We measured performance at 256,
512, 1024, and 2048MB and group results by CPU type. CV on
AWS Lambda was 4.54% (256MB), 4.46% (512MB), 4.82%
(1024MB), and 1.03% (2048MB) for function executions
across heterogeneous CPUs as shown in Figure 3. Grouping
runtime by CPU type reduced performance variance to only
0.64%, 0.42%, and 0.45% CV for the a1, a2, and a3 CPUs. On
IBM CV was 16.88% (256MB), 5.78% (512MB), 4.82%
(1024MB), and 9.04% (2048MB) for function executions
across heterogeneous CPUs. Characterizing runtime by CPU
type on IBM did not substantially improve CV: 10.79% (i2
CPU) and 4.07% (i3 CPU). Performance on AWS Lambda a3
CPUs outperformed a1 CPUs by 14.6% (256MB), 16.1%
(512MB), and 16.4% (1024MB), while a3 was about 3.6% faster
than a2. Despite the faster clock speed of the a1 CPU, it only
outperformed a2 and a4 with maximum memory (3008MB),
where the a1 CPU produced runtimes 19.8% less than a2, and
16.5% less than a3. This behavior reflects better single core
performance with the a1 CPU, and better multi-core
performance with the a2 and a3 CPUs which coincides with the
evolution of Intel Xeon processors from v2→v3→v4. CV
increased as a result of CPU heterogeneity ~7.4x on AWS
Lambda, but only ~1.2x on IBM Cloud Functions. Single
tenant performance variance for function execution with
identical CPUs on IBM was more than 10x that of AWS Lambda
as most of the NMT2-seq workload variance on IBM appeared
to be not related to CPU heterogeneity. We explain key
differences with IBM’s FaaS platform at the end of section IV.B.

7

We next compared performance of the multithreaded NMT2
workload to investigate performance variance for multitenant
function executions on FaaS platforms. Here many, but not all
functions execute with identical tenancy due to greedy function
placement on AWS, e.g. 256MB (commonly 13 tenants),
512MB (6 tenants), 1024MB (3 tenants), and 2048MB &
3008MB (1 tenant) for all CPUs. Here CV increased to 10.31%
(256MB), 9.61% (512MB), and 10% (1024MB) across all CPUs
as shown in Figure 3. On IBM, CV values from multitenancy
were 24.54% (256MB), 17.31% (512MB), 16.57% (1024MB),
and 20.28% (2048MB), nearly 2x more than AWS Lambda.
Moving from single tenant to multitenant function
executions, CV increased ~2.7x on AWS Lambda, and ~2.5x
on IBM Cloud Functions. Given that Lambda employs greedy
function placement across VMs, most executions occur at the
same tenancy level. IBM Cloud Functions had higher CV for the
single tenant NMT2-seq workload producing a lower increase
with multitenancy (NMT2). We illustrate estimated hosting
costs for 1,000,000 function calls in Figure 4, demonstrating
how CPU heterogeneity translates to price volatility. The
“combined” column projects the total cost based on observed
CPU ratios. FaaS CPU heterogeneity results in a lottery,
where lucky users reap lower hosting costs.

Fig. 4. Lambda hosting cost variation, NMT2 with CPU heterogeneity

B. FaaS Runtime Prediction

To investigate RQ-2, we estimate workload runtime with

Linux CPU time accounting, by training individual regression

models to predict specific CPU metrics (e.g. cpuUsr, cpuIdle)

for FaaS deployments with alternate configurations (e.g. CPUs,

memory, commercial FaaS platform). We convert a workload’s

resource utilization profile from one configuration to another

and apply Linux CPU time accounting to generate runtime

predictions. On FaaS platforms, resource utilization metrics

obtained by SAAF originate from containers (IBM) or

MicroVMs (AWS) and are generally isolated to report resource

utilization of individual function executions. Linear regression

and multiple regression can convert individual CPU metrics

with high accuracy. We demonstrate linear regression of

cpuUsr and cpuIdle from AWS Lambda in Figure 5. We

captured CPU resource utilization metrics for single tenant,

single thread invocations of our calcs service at different

memory settings (256MB, 512MB, and 2048MB) on two

different CPUs (Intel Xeon E5-2680v2 @ 2.8 GHz and E5-

2686v4 @ 2.3 GHz). We scaled calculations from 80 to 120

million stepping by 400,000 without memory stress. Linear

regression of cpuIdle time between the 256MB and 512MB

deployments had a coefficient of determination of R2=.988.

Linear regression of cpuUsr time between the E5-2680v2 and

E5-2686v4 CPUs at 2048MB had R2=.974. The high

predictability of individual CPU metrics enables high accuracy

with our Linux time accounting approach to predict runtime.

We trained cpuUsr and cpuIdle models for source and target

platforms described in Table IV and applied Linux time

accounting to generate runtime predictions. The FaaS Runner

automated data collection. Samples matching the desired

source and targets were filtered using R scripts. We investigated

the accuracy of our approach using successive workloads each

introducing additional performance variance (SCNMT2→

SCMT2→SCSMT2). The CV for workload runtime across all

CPU and memory configurations was 87.8%, 104.8%, and

114.9% for the respective workloads. Our objective is that each

successive workload introduces more performance variance

providing a greater challenge for performance prediction.

Fig. 5. cpuIdle & cpuUsr linear regression AWS Lambda

SCNMT2 provides a CPU-bound workload with a scaled

number of random calculations from 30 to 60 million,

leveraging 2 threads without memory stress. SCMT2 performs

the same calculations, but adds fixed memory stress using large

arrays for math operands as described in section III.C. Finally,

SCSMT2 scales the array size from 1 to 1 million in steps of

100,000 to produce 10 different memory stress scenarios. As

Lambda uses greedy function placement across VMs, most

functions execute with the same VM function tenancy. For a

workload of 100 concurrent function executions, approximately

91%, 96%, and 99% had identical tenancy of 256MB (13

tenants/VM), 512MB (6 tenants/VM), and 1024MB (3

tenants/VM). To simplify modeling, we used profiling data

from function executions with maximum tenancy.

In total, we consider 77 different workload/configuration

scenarios generating runtime predictions for: alternate CPU

types (36), alternate memory settings (27), and alternate

platforms (14). For all evaluations we associate source

observations with actual target observations to establish ground

truth by pairing samples in the same order function responses

were returned by the FaaS platforms. This differs from sorting

and pairing observations by runtime. An alternative is to obtain

ground truth using Z-score normalization to compute a target

value by projecting the source observation into the target

distribution. This approach allows surrogate workloads to be

substituted in performance models by eliminating the need to

pair actual source and target observations, and we plan to adopt

8

this approach henceforth. Detailed prediction statistics for all

workload/configuration scenarios, including average runtime

of workloads, CV, RMSE, MAPE, mean absolute error (MAE),

and degrees of freedom are available online at: [59].

Figures 6 and 7 depict the average % error of our runtime

predictions for each workload and configuration. Degrees of

freedom varied across tests because of the variable

infrastructure received when executing FaaS workloads. For

example, when executing a workload, we may randomly

receive 70 a1 CPUs in one trial, and 47 a1 CPUs in another,

resulting in different quantities of training data for different

configurations. The average error for SCNMT2 runtime

predictions on different CPUs was just 0.51%, and with

different memory settings 0.59%. Predictions from the a1 to

a3 CPU at 1024MBs had the highest average error at 1.53% and

MAE of 62ms, less than the smallest FaaS billing increment.

Fig. 6. Mean absolute percent error (MAPE) of memory to memory

FaaS runtime prediction models.

Fig. 7. Mean absolute percent error (MAPE) of CPU to CPU

FaaS runtime prediction models.

For SCMT2 workloads that add memory stress, the average

error for runtime predictions for all configurations to

different CPUs was 2.52%. Adding memory stress increased

runtime prediction errors ~5x. The average error for SCMT2

runtime predictions to different memory settings was

3.83%, an increase of ~6.5x over the SCNMT2 workload

without memory stress. Predictions between the a1 and a3 to

512MB, 1024MB, and 2048MB had the highest MAPE at

7.29% producing MAE of 1.81s, 929ms, and 485ms for

respective memory values. All other SCMT2 CPU predictions

had far less error averaging just 0.96% MAPE. One million

function invocations of our SCMT2 workload at 2048MB

memory cost approximately $232.81. To put our runtime

predictions into perspective for the SCMT2 workload, our

worst case runtime error for a1→a3 CPU at 2048MB results in

overestimating cost by $16.18, compared to average cost error

of just $5.15 for all SCMT2 runtime predictions.
SCSMT2 workloads introduce variable memory stress

resulting in an average error for SCSMT2 runtime
predictions to different CPUs of 5.10%. With increasing
memory stress, runtime predictions for SCSMT2 had about 2x
more error than SCMT2 workloads. SCSMT2 has a higher CV
than SCMT2 and SCNMT2. Additional memory stress made the
SCSMT2 workload non-deterministic, increasing performance
variance leading to more difficult runtime predictions, and less
accuracy. We project our performance prediction error for the
SCSMT2 runtime predictions to different CPUs with 1,000,000
functions calls in Figure 8. The average error for SCSMT2
runtime predictions to different memory settings was
10.48%. Test data for predicting SCSMT2 workload runtime to
different memory settings also had the highest CV at 36%.
Correspondingly, we observed a decrease in R2 for our
regression models from ~ .98 to .85.

Fig. 8. Percent error of cost predictions for SCSMT2

derived from FaaS runtime prediction models

We evaluated our runtime predictions for SCNMT2
workloads without memory stress deployed on IBM Cloud
Functions [55]. The average error for IBM SCNMT2
runtime predictions to four different CPUs was 3.55%. The
occurrence rates for obtaining different IBM CPUs is described
in Table V. Our prediction error equated to an average of 1.09s,
717ms, 287ms, and 120ms with 256, 512, 1024, and 2048MB.
Average cost error of one million function invocations on IBM
was $4.24 vs. an average workload cost of $119.38.

We observed that IBM shares VMs differently than AWS
Lambda. Where AWS Lambda explicitly couples CPU
timeshare to the memory reservation size, IBM does not adapt
the CPU timeshare based on memory reservation size. IBM
allows co-located function instances to compete for available
CPU time on the VM. This allows users to obtain the best
possible performance based on available resources, resulting in
much higher performance variance. IBM Cloud Functions
differed from AWS Lambda in that host VMs had 4 vCPUs and
16GB of RAM each. IBM function tenancy on each VM maxed
out at: 32x256MB, 16x512MB, 8x1024MB, and 4x2048MB.
This is in contrast to AWS Lambda max tenancy of: 13x256MB,
6x512MB, 3x1024MB, and 1x2048MB. On IBM, single tenant

9

executions of our NMT2 calcs service at 256MB required just
2091ms, where with full multitenancy performance slowed to
26,816ms, a slowdown of 12.82x. We observed performance
degradation from multitenancy of 5.86x, 3.42x, and 1.69x at
512, 1024, and 2048MB. As configured, we estimate IBM
Cloud Functions to be 63% more expensive than AWS Lambda
to execute one million calcs functions with maximum VM
function tenancy resulting from high concurrency. If functions
execute sequentially however, IBM Cloud Functions completes
the workload for just 13.4% the price of Lambda ($8.89) at
256MB. The same workload on IBM can cost anywhere
from $8.89 to $113.97 at 256MB depending on the tenancy
of function executions across VMs driven by the
concurrency of client requests. On IBM, users benefit when
FaaS workloads execute with low concurrency, and pay more
when demand spikes. This provides an excellent example of
pricing obfuscation on serverless platforms.

Table VI summarizes results of our model evaluations where
each row summarizes all workload predictions to different target
configurations (e.g. CPU, memory, or platform) we tested.
Supported by SAAF, our models were trained to specifically
account for CPU heterogeneity and function multi-tenancy to
improve overall accuracy. Across all scenarios, we calculated
a MAPE of 3.49%, equaling a cost error of $6.46 for
1,000,000 function workloads costing an average of $150.45.

TABLE VI. RUNTIME PREDICTION MODEL EVALUATION SUMMARY

Workload
Prediction Type

Number of
Models

Workload
CV

MAPE
Average

Cost Error
Average

Workload Cost

SCNMT2 – CPU 12 21% 0.51% $0.36 $70.27

SCMT2 – CPU 12 23% 2.52% $5.15 $204.23

SCSMT2 – CPU 12 32% 5.10% $8.86 $173.64

SCNMT2 – Memory 9 20% 0.59% $0.45 $76.30

SCMT2 – Memory 9 22% 3.83% $9.07 $236.88

SCSMT2 – Memory 9 36% 10.5% $19.99 $190.80

SCNMT2 - IBM 14 18% 3.55% $4.24 $119.38

Overall Average 77 (sum) -- 3.49% $6.46 $150.45

C. Assessing Workload Predictions

To investigate heuristics for RQ-3 we assessed statistical
correlations between resource utilization metrics and absolute
error of our runtime predictions. Our objective is to identify
heuristics for different types of workloads that employ metric
thresholds to signal when runtime predictions are likely to be
error prone. We evaluated Pearson correlation coefficients
between the absolute error of our runtime predictions and
resource utilization metrics for our SCSMT2 workload tests. We
evaluated correlations for configurations with minimum
(CPU:a2→a3 1024MB, memory:256→1024 a3), median
(CPU:a2→a3 512MB, memory:256→512 a1), and maximum
(CPU:a1→a3 512MB, 256→2048, a1) prediction error. We
ignored metric correlations that were expected to correlate with
runtime: cpuUsr, cpuIdle, conswitches, # calcs, and array size.

For CPU predictions, a significant positive correlation was
between cpuSteal and prediction absolute error (max: r=.18
p<.0001 df=506, median: r=.25 p<.05 df=70, min: r= n.s.).
CpuSteal ticks are registered when a VM is ready to execute, but
the physical CPU is busy servicing work from other co-located
VMs sharing the physical host, or from the hypervisor itself [27].
CpuSteal introduces performance variance as workloads
underperform for no apparent reason when the CPU is “stolen”
by another VM. For the 12 SCSMT2 CPU and memory

configurations in Figure 7, 4 had a statistically significant
correlation between prediction error and cpuSteal.

For memory predictions, a significant negative correlation
was between freeMemory and prediction absolute error (max:
r=-.154 p<.01 df=324, median: r=-.19 p<.0001 df=506, min: r=-
.25 p<.001 df=177). When VMs had less free memory, our
predictions tended to be less accurate. Runtime predictions from
256→2048MB produced on average 4.3x more error than
256→512MB or 256→1024MB predictions. VM freeMemory
also decreased with function memory size: at 256MB VMs had
approximately ½ the freeMemory of VMs at 2048MB. We
suspect that lower VM freeMemory results from co-located
function instances. In conclusion, 9 memory configurations of
SCSMT2 depicted in Figure, 5 had a statistically significant
correlation between prediction error and VM freeMemory.

V. CONCLUSIONS

In this paper, we demonstrated how the Serverless
Application Analytics Framework (SAAF) supported by the
FaaS Runner tool can profile performance, resource utilization,
and infrastructure of concurrent FaaS workloads. To dispel
pricing obfuscation of serverless platforms, we leveraged Linux
CPU time accounting principles and multiple regression to
generate accurate FaaS function runtime predictions. FaaS
hosting costs were then estimated by applying platform specific
pricing policies. Research findings include: RQ-1: We
characterized performance variance for identical CPU bound
workloads on AWS Lambda and measured a 0.5% coefficient of
variance (CV) for single tenant runs on identical CPUs. CV
increased ~7.4x as a result of CPU heterogeneity, and another
~2.7x from multitenancy when function instances ran
concurrently on the same host. RQ-2: Leveraging Linux time
accounting, we predicted FaaS workload runtime across
different CPUs, with different memory settings, and to different
platforms using successive workloads that introduce additional
performance variance. Mean absolute percentage error for
predictions of 77 scenarios was 3.49%, equating to an average
cost error of $6.46 against an average cost of $150.45 for one
million function workloads. Prediction error for workloads
without memory stress was approximately ~0.5%, with fixed
memory stress ~3%, with variable memory stress ~7%, and for
deployments to IBM Cloud Functions ~3.5%. RQ-3: CpuSteal
was found to correlate with prediction error, while host VM
freeMemory had a negative correlation.

ACKNOWLEDGMENTS

This research is supported by the NSF Advanced

Cyberinfrastructure Research Program (OAC-1849970), NIH grant

R01GM126019, and the AWS Cloud Credits for Research program.

REFERENCES
[1] M. Yan, P. Castro, P. Cheng, and V. Ishakian, “Building a chatbot with

serverless computing,” in Proceedings of the 1st International Workshop on
Mashups of Things and APIs, 2016, p. 5.

[2] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation with
openlambda,” in 8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16), 2016.

[3] I. Baldini et al., “Serverless Computing: Current Trends and Open
Problems,” in Research Advances in Cloud Computing, 2017.

[4] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Serverless
computing: An investigation of factors influencing microservice
performance,” in Proceedings - 2018 IEEE International Conference on
Cloud Engineering, IC2E 2018, 2018.

[5] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking Behind the
Curtains of Serverless Platforms,” 2018 USENIX Annu. Tech. Conf.

10

(USENIX ATC 18), 2018.
[6] A. Sill, “The Design and Architecture of Microservices,” IEEE Cloud Comput., 2016.

[7] “Openwhisk common use cases.” [Online]. Available:
https://console.bluemix.net/docs/openwhisk/
openwhisk_use_cases.html#openwhisk_common_use_cases.

[8] “Fn Project – The Container Native Serverless Framework.” [Online]. Available:

https://fnproject.io/.
[9] E. Oakes, L. Yang, K. Houck, T. Harter, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau, “Pipsqueak: Lean Lambdas with Large Libraries,” in
Proceedings - IEEE 37th International Conference on Distributed
Computing Systems Workshops, ICDCSW 2017, 2017.

[10] I. Baldini et al., “The serverless trilemma: Function composition for
serverless computing,” in Onward! 2017 - Proceedings of the 2017 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, co-located with SPLASH 2017, 2017.

[11] A. Eivy, “Be Wary of the Economics of ‘Serverless’ Cloud Computing,”
IEEE Cloud Comput., 2017.

[12] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari, “Open Issues
in Scheduling Microservices in the Cloud,” IEEE Cloud Comput., 2016.

[13] M. Eisa, M. Younas, K. Basu, and H. Zhu, “Trends and directions in cloud
service selection,” in Proceedings - 2016 IEEE Symposium on Service-
Oriented System Engineering, SOSE 2016, 2016.

[14] M. Eisa, M. Younas, and K. Basu, “Analysis and representation of QoS
attributes in cloud service selection,” in Proceedings - International Conference
on Advanced Information Networking and Applications, AINA, 2018.

[15] “AWS Lambda Pricing Calculator.” [Online]. Available:
https://s3.amazonaws.com/lambda-tools/pricing-calculator.html.

[16] “Serverless Cost Calculator.” [Online]. Available: http://serverlesscalc.com/.
[17] “[20] Servers.LOL – Serverless Cost Calculator for AWS Lambda – IOPipe.”

[Online]. Available: https://servers.lol/.
[18] “AWS Lambda - Serverless Compute.” [Online]. Available:

https://aws.amazon.com/lambda/.
[19] “Cloud Functions - Event-driven Serverless Computing.” [Online].

Available: https://cloud.google.com/functions/.
[20] E. Jonas et al., “Cloud programming simplified: a berkeley view on

serverless computing,” arXiv Prepr. arXiv1902.03383, 2019.
[21] Z. Ou et al., “Is the Same Instance Type Created Equal? Exploiting

Heterogeneity of Public Clouds,” IEEE Trans. Cloud Comput., vol. 1, pp.
201–214, 2013.

[22] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bowers, and M. M.
Swift, “More for your money: Exploiting Performance Heterogeneity in
Public Clouds,” in Proceedings of the Third ACM Symposium on Cloud
Computing - SoCC ’12, 2012, pp. 1–14.

[23] M. S. Rehman and M. F. Sakr, “Initial findings for provisioning variation in
cloud computing,” in Proceedings - 2nd IEEE International Conference on
Cloud Computing Technology and Science, CloudCom 2010, 2010, pp. 473–479.

[24] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in the
cloud: observing, analyzing, and reducing variance,” Proc. VLDB Endow.,
vol. 3, pp. 460–471, 2010.

[25] A. O. Ayodele, J. Rao, and T. E. Boult, “Performance Measurement and
Interference Profiling in Multi-tenant Clouds,” in Proceedings - 2015 IEEE
8th International Conference on Cloud Computing, CLOUD 2015, 2015.

[26] W. Lloyd, S. Pallickara, O. David, M. Arabi, and K. Rojas, “Mitigating
resource contention and heterogeneity in public clouds for scientific
modeling services,” in Proceedings - 2017 IEEE International Conference
on Cloud Engineering, IC2E 2017, 2017.

[27] W. Lloyd, M. Vu, B. Zhang, O. David, and G. Leavesley, “Improving application
migration to serverless computing platforms: Latency mitigation with keep-
Alive workloads,” in Proceedings - 11th IEEE/ACM International Conference
on Utility and Cloud Computing Companion, UCC Companion 2018, 2019.

[28] K. Wang and M. M. H. Khan, “Performance prediction for apache spark
platform,” in Proceedings - 2015 IEEE 17th International Conference on
High Performance Computing and Communications, 2015 IEEE 7th
International Symposium on Cyberspace Safety and Security and 2015 IEEE
12th International Conference on Embedded Software and Systems, H, 2015.

[29] J. White, M. Matalka, W. F. Fricke, and S. Angiuoli, “Cunningham: a
BLAST Runtime Estimator,” Nat. Preced., 2011.

[30] A. Ganapathi et al., “Predicting multiple metrics for queries: Better decisions
enabled by machine learning,” in Proceedings - International Conference on
Data Engineering, 2009.

[31] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson, “Statistics-driven
workload modeling for the cloud,” in Proceedings - International Conference
on Data Engineering, 2010.

[32] M. Hafizhuddin Hilman, M. A. Rodriguez, and R. Buyya, “Task runtime
prediction in scientific workflows using an online incremental learning
approach,” in Proceedings - 11th IEEE/ACM International Conference on
Utility and Cloud Computing, UCC 2018, 2019.

[33] R. F. Da Silva, G. Juve, M. Rynge, E. Deelman, and M. Livny, “Online Task
Resource Consumption Prediction for Scientific Workflows,” in Parallel
Processing Letters, 2015.

[34] T. P. Pham, J. J. Durillo, and T. Fahringer, “Predicting Workflow Task
Execution Time in the Cloud using A Two-Stage Machine Learning
Approach,” IEEE Transactions on Cloud Computing, 2017.

[35] R. Ghosh, F. Longo, V. K. Naik, and K. S. Trivedi, “Modeling and
performance analysis of large scale IaaS clouds,” Futur. Gener. Comput.
Syst., 2013.

[36] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elasticity
provisioning system for the cloud,” in Proceedings - International
Conference on Distributed Computing Systems, 2011, pp. 559–570.

[37] J. L. L. Simarro, R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente,
“Dynamic placement of virtual machines for cost optimization in multi-cloud
environments,” in Proceedings of the 2011 International Conference on High
Performance Computing and Simulation, HPCS 2011, 2011, pp. 1–7.

[38] D. Villegas, A. Antoniou, S. M. Sadjadi, and A. Iosup, “An analysis of
provisioning and allocation policies for infrastructure-as-a-service clouds,”
in Proceedings - 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGrid 2012, 2012, pp. 612–619.

[39] S. Yi, D. Kondo, and A. Andrzejak, “Reducing costs of spot instances via
checkpointing in the Amazon Elastic Compute Cloud,” in Proceedings -
2010 IEEE 3rd International Conference on Cloud Computing, CLOUD
2010, 2010, pp. 236–243.

[40] A. Andrzejak, D. Kondo, and S. Yi, “Decision Model for Cloud Computing
under SLA Constraints,” in IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, 2010,
pp. 257–266.

[41] Q. Zhang, Q. Zhu, and R. Boutaba, “Dynamic Resource Allocation for Spot
Markets in Cloud Computing Environments,” 2011 Fourth IEEE Int. Conf.
Util. Cloud Comput., pp. 178–185, 2011.

[42] J. Spillner, C. Mateos, and D. A. Monge, “Faaster, better, cheaper: the
prospect of serverless scientific computing and HPC,” in Communications in
Computer and Information Science, 2018.

[43] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless
execution of scientific workflows: Experiments with HyperFlow, AWS
Lambda and Google Cloud Functions,” Future Generation Computer
Systems, 2017.

[44] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “Serverless execution of scientific
workflows,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2017.

[45] M. Malawski, K. Figiela, A. Gajek, and A. Zima, “Benchmarking
heterogeneous cloud functions,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2018.

[46] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning
models in a serverless platform,” in Proceedings - 2018 IEEE International
Conference on Cloud Engineering, IC2E 2018, 2018.

[47] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and G.
Karsai, “BARISTA: Efficient and Scalable Serverless Serving System for
Deep Learning Prediction Services,” in 2019 IEEE International Conference
on Cloud Engineering (IC2E), 2019, pp. 23–33.

[48] M. Fotouhi, D. Chen, and W. J. Lloyd, “Function-as-a-Service Application
Service Composition: Implications for a Natural Language Processing
Application,” in Proceedings of the 5th International Workshop on
Serverless Computing, 2019, pp. 49–54.

[49] L. Feng, P. Kudva, D. Da Silva, and J. Hu, “Exploring Serverless Computing
for Neural Network Training,” in IEEE International Conference on Cloud
Computing, CLOUD, 2018.

[50] E. F. Boza, C. L. Abad, M. Villavicencio, S. Quimba, and J. A. Plaza,
“Reserved, on demand or serverless: Model-based simulations for cloud
budget planning,” in 2017 IEEE 2nd Ecuador Technical Chapters Meeting,
ETCM 2017, 2018.

[51] M. Villamizar et al., “Infrastructure Cost Comparison of Running Web
Applications in the Cloud Using AWS Lambda and Monolithic and
Microservice Architectures,” in Proceedings - 2016 16th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing, CCGrid
2016, 2016.

[52] L. F. A. Jr, F. S. Ferraz, R. F. A. P. Oliveira, and S. M. L. Galdino, “Function-
as-a-Service X Platform-as-a-Service : Towards a Comparative Study on
FaaS and PaaS,” Twelfth Int. Conf. Softw. Eng. Adv. Funct., 2017.

[53] “SAAF: Serverless Application Analytics Framework.” [Online]. Available:
https://github.com/wlloyduw/SAAF.

[54] “Azure Functions - Develop Faster with Serverless Compute.” [Online].
Available: https://azure.microsoft.com/en-us/services/functions/.

[55] “IBM Cloud Functions.” [Online]. Available: https://cloud.ibm.com/functions/.
[56] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H. Katz,

“Selecting the best VM across multiple public clouds: A data-driven
performance modeling approach,” in SoCC 2017 - Proceedings of the 2017
Symposium on Cloud Computing, 2017.

[57] W. J. Lloyd et al., “Demystifying the Clouds: Harnessing Resource
Utilization Models for Cost Effective Infrastructure Alternatives,” IEEE
Trans. Cloud Comput., vol. 5, no. 4, pp. 667–680, 2015.

[58] “Open source and enterprise-ready professional software for data science -
RStudio.” [Online]. Available: https://www.rstudio.com/.

[59] “The Serverless Application Analytics Framework: Performance Modeling.”
[Online]. Available: https://github.com/wlloyduw/SAAF/blob/master/perfmodel.pdf.

