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Abstract— Next generation software built for the cloud 
recently has embraced serverless computing platforms that use 
temporary infrastructure to host microservices offering building 
blocks for resilient, loosely coupled systems that are scalable, easy 
to manage, and extend. Serverless architectures enable 
decomposing software into independent components packaged 
and run using isolated containers or microVMs. This 
decomposition approach enables application hosting using very 
fine-grained cloud infrastructure enabling cost savings as 
deployments are billed granularly for resource use.  Adoption of 
serverless platforms promise reduced hosting costs while 
achieving high availability, fault tolerance, and dynamic elasticity. 
These benefits are offset by pricing obfuscation, as performance 
variance from CPU heterogeneity, multitenancy, and provisioning 
variation obscure the true cost of hosting applications with 
serverless platforms. Where determining hosting costs for 
traditional VM-based application deployments simply involves 
accounting for the number of VMs and their uptime, predicting 
hosting costs for serverless applications can be far more complex. 
To address these challenges, we introduce the Serverless 
Application Analytics Framework (SAAF), a tool that allows 
profiling FaaS workload performance, resource utilization, and 
infrastructure to enable accurate performance predictions.  We 
apply Linux CPU time accounting principles and multiple 
regression to estimate FaaS function runtime. We predict runtime 
using a series of increasingly variant compute bound workloads 
that execute across heterogeneous CPUs, different memory 
settings, and to alternate FaaS platforms evaluating our approach 
for 77 different scenarios.  We found that the mean absolute 
percentage error of our runtime predictions for these scenarios 
was just ~3.49% resulting in an average cost error of $6.46 for 1-
million FaaS function workloads averaging $150.45 in price. 

Keywords— Serverless Computing, Function-as-a-Service, 
Performance Evaluation, Performance Modeling, Resource 
Contention, Multitenancy 

I. INTRODUCTION 

Serverless computing recently has emerged as a compelling 
approach for hosting applications in the cloud [1][2][3]. 
Serverless computing platforms promise autonomous fine-
grained scaling of computational resources, high availability 
(24/7), fault tolerance, and billing only for actual compute time 
while requiring minimal setup and configuration. To realize 
these capabilities, serverless platforms leverage ephemeral 
infrastructure such as MicroVMs or application containers.  
The serverless architectural paradigm shift ultimately promises 
better server utilization as cloud providers can more easily 

consolidate user workloads to occupy available capacity, while 
deallocating unused servers, to ultimately save energy [4] [5]. 
Rearchitecting applications for the serverless model promises 
reduced hosting costs as fine-grained resources are provisioned 
on demand and charges reflect only actual compute time.   

Function-as-a-Service (FaaS) platforms leverage serverless 
infrastructure to deploy, host, and scale resources on demand 
for individual functions known as “microservices” [6] [7] [8]. 
With FaaS platforms, applications are decomposed and hosted 
using collections of independent microservices differing from 
application hosting with Infrastructure-as-a-Service (IaaS) or 
Platform-as-a-Service (PaaS) cloud platforms. On FaaS 
platforms, temporary infrastructure containing user code plus 
dependent libraries are created and managed to provide 
granular infrastructure for each service [9]. Cloud providers 
must create, destroy, and load balance service requests across 
available server resources. Users are billed based on the total 
number of service invocations, runtime, and memory utilization 
to the nearest tenth of a second. Serverless platforms have 
arisen to support highly scalable, event-driven applications 
consisting of short-running, stateless functions triggered by 
events generated from middleware, sensors, microservices, or 
users [10].  Use cases include: multimedia processing, data 
processing pipelines, IoT data collection, chatbots, short batch 
jobs/scheduled tasks, REST APIs, mobile backends, and 
continuous integration pipelines [7].   

Serverless computing with its many advantages possesses 
several important challenges.  Unlike IaaS clouds, where cost 
accounting is as simple as tracking the number of VM instances 
and their uptime, serverless billing models are multi-
dimensional. Software deployments consist of many 
microservices which must be individually tracked [11]. FaaS 
platforms exhibit performance variance that directly translates 
to cost variance. Functions execute over heterogeneous CPUs 
that host a variable number of co-located function instances 
causing resource contention. FaaS applications are decomposed 
into many functions that are hosted and scaled separately. The 
aggregation, or decomposition of application code into a 
varying number of FaaS functions can directly impact the 
composite size and cost of cloud infrastructure.  FaaS platform 
complexities including multi-dimensional billing models, 
heterogeneous CPUs, variable function tenancy, and 
microservice composition, leads to considerable pricing 
obfuscation for application hosting. 
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FaaS platforms presently lack tool support to estimate the 
costs of hosting applications. Current cloud pricing calculators 
from public cloud providers (e.g. AWS and Azure), and 
commercial tools (e.g. Intel Cloud Finder, RankCloudz, 
Cloudorado) primarily provide IaaS compute and storage cost 
estimates based on average performance [12][13][14]. 
Recently, FaaS calculators have appeared, but they are limited 
to generating cost estimates based on average runtime and 
memory size [15][16][17].  These calculators do not consider 
how FaaS function runtime scales relative to the memory 
reservation size, a feature coupled to CPU power on several 
FaaS platforms [18][19]. 

To address pricing obfuscation of FaaS platforms, in this 
paper, we offer a novel approach combining Linux CPU time 
accounting and multiple regression to provide highly accurate 
FaaS function runtime predictions.  Equipped with performance 
predictions, FaaS workload costs can be estimated by applying 
the platform’s pricing policy. Our approach involves profiling 
CPU metrics of multiple FaaS function deployments (e.g. AWS 
Lambda with 256, 512, 1024 MB to Intel Xeon E5-2680v2, E5-
2676v3, E5-2686v4). We build regression models that predict 
how CPU metrics (e.g. CPU user mode time, CPU kernel mode 
time) scale across alternate function deployments with different 
CPUs and memory settings, and even to different cloud 
providers. By applying Linux CPU time accounting principles 
we can then estimate FaaS function runtime on any CPUs (e.g. 
Intel Xeon E5-2686v4), with any memory size (e.g. 1024 MB), 
on any cloud (e.g. IBM Cloud Functions). We note that cloud 
providers readily mix multiple CPU types to host FaaS 
functions. This CPU heterogeneity increases performance 
variance while decreasing performance model accuracy which 
we address in this paper. We evaluate our approach with 
compute bound functions for 77 different scenarios including 
deployments to alternate CPUs (36 cases), with alternate 
memory settings (27 cases), and to alternate platforms (14 
cases).  We found workload cost can be estimated with ~3.49% 
mean absolute percentage error (MAPE) by applying FaaS 
platform pricing policies, resulting in $6.46 cost error, against 
an average workload price of $150.45 for 1-million function 
call workloads. Our approach can help a developer predict FaaS 
workload costs to make informed deployment decisions. These 
advancements can enable developers to better evaluate 
deployment and design alternatives, while understanding cost 
implications to achieve more efficient serverless software 
implementations. 

A. Research Questions 

This paper investigates the following research questions: 
RQ-1: (Performance Variance) What factors are responsible 

for performance variance on Function-as-a-Service (FaaS) 
platforms?  How much do these factors contribute to 
performance variance?   

RQ-2: (FaaS Runtime Prediction) When leveraging Linux 
CPU time accounting principles and regression modeling, what 
is the accuracy of FaaS function runtime predictions for 
deployments with different memory settings and different 
CPUs? 

RQ-3: (Assessing Workload Predictability) How effective 
are system metrics, for example the number of page faults and 
context switches, at evaluating reliability of performance 
predictions? 

B. Research Contributions 

This paper provides the following research contributions: 

1. We introduce the Serverless Application Analytics 
Framework (SAAF), a reusable programming framework 
that supports characterization of performance, resource 
utilization, and infrastructure metrics for software 
deployments to FaaS platforms (AWS Lambda, Azure 
Functions, Google Cloud Functions, and IBM Cloud 
Functions) in popular languages (Java, Python, and 
Node.js).   

2. We detail performance variance of CPU-bound functions 
on AWS Lambda and IBM Cloud Functions. We 
characterize performance variance from heterogeneous 
CPUs, and function multitenancy across different memory 
sizes. (RQ-1) 

3. We evaluate our FaaS function runtime prediction 
approach that combines Linux CPU time accounting and 
multiple regression for deployments across alternate 
CPUs, memory reservation sizes, and platforms. We 
evaluate our predictions to determine root mean squared 
error (RMSE) and MAPE, while identifying factors that 
impact accuracy using successive compute-bound 
workloads each introducing more non-determinism. We 
evaluate our approach for compute-bound functions for 77 
different scenarios producing runtime predictions for: 
alternate CPU types (36), alternate memory settings (27), 
and alternate platforms (14). (RQ-2, RQ-3) 

II. BACKGROUND AND RELATED WORK 

The challenge of performance prediction on serverless 
platforms, including the need to address performance variance 
resulting from hardware heterogeneity is identified in [20].  The 
authors identify how pay-as-you-go pricing models, and the 
complexity of serverless application deployments, leads to the 
key pitfall: “Serverless computing can have unpredictable 
costs”.  In contrast to application hosting with VMs, serverless 
platforms complicate budgeting as organizations must predict 
service utilization to estimate hosting costs. Performance 
variance of serverless workloads and accuracy of runtime 
predictions is invariably linked. We review related work on 
cloud performance variance, performance modeling, and 
performance evaluation of serverless platforms highlighting 
relationships to our research goals. 

A. Performance Variance of Cloud Systems 

In the public cloud, key factors often responsible for 
producing performance variance include hardware 
heterogeneity, provisioning variation, and resource contention.  
Ou and Farley identified the existence of heterogeneous CPUs 
that host identically labeled VM types on Amazon EC2, leading 
to IaaS cloud performance variance [21][22]. Rehman et al. 
identified the problem of “provisioning variation” in IaaS 
clouds in [23].  Provisioning variation is the random nature of 
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VM placements that generates varying multitenancy across 
physical servers producing performance variance from resource 
contention.  Schad et al. showed the unpredictability of Amazon 
EC2 VM performance resulting from provisioning variation 
and resource contention from VM multitenancy in [24].  
Ayodele et al. and Lloyd et al. demonstrated how resource 
contention from multi-tenant VMs can be identified using the 
cpuSteal metric in [25] [26].  

On serverless FaaS platforms Jonas et al. identified 
heterogeneous CPUs and noted their potential to complicate 
performance modeling in [20]. Wang et al. identified 
heterogeneous VM types on FaaS platforms from AWS, Azure, 
and Google in [5].  They observed 4 CPU types and 5 VM 
configurations (AWS Lambda), 3 CPU types x 3 VM 
configurations (Azure functions), and 4 CPU types (Google 
Cloud Functions).  Their efforts did not evaluate the extent of 
performance variance possible from heterogeneous CPUs.   

Previous research has identified how provisioning variation 
results in varying degrees of multitenancy on FaaS platforms  
[4] [5] [27].  We identified how the number of function 
“tenants” on VMs, called “function instances” by Wang, 
increased when scaling up the number of concurrent requests 
on AWS Lambda [4]. Conversely, increasing function memory 
reduced the number of tenants on a VM. Wang observed that 
function instance placement across VMs on AWS Lambda used 
greedy placement, where concurrent requests are packed onto 
individual VMs until available memory (3328MB) is 
exhausted.  Multiple functions from a single user account were 
found to share VMs, but VMs did not appear to be shared with 
other users.  On Azure, the maximum observed tenancy of 
function executions did not exceed 8, while up to 4 user 
accounts shared VMs. While these efforts identified the 
multitenancy, they did not evaluate performance implications 
from resource contention.  

B. Performance Modeling of Cloud Systems 

On IaaS clouds, domain specific approaches have been 
developed to model workload performance by incorporating 
specific metadata regarding the tasks [28][29][30][31].  
Recently, offline and online machine learning approaches have 
been applied to model runtime of multi-stage, batch-oriented, 
scientific workflows. Using task metadata and resource 
utilization metrics as features provided accuracy improvements 
[32][33][34].  

Other efforts at IaaS cloud performance and cost modeling 
have focused on cost-aware VM scheduling to support 
infrastructure management for VM placement [35][36][37][38]. 
Efforts to save costs by leveraging reduced-priced cloud VMs 
available through auction based pricing mechanisms, such as 
Amazon EC2 spot instances, have spurred considerable research 
[39][40][41]. In summary, existing approaches provide runtime 
predictions for batch-oriented workloads that execute across 
homogeneous cloud VMs.  Other efforts focus on performance 
modeling for resource management, to optimize use of auction 
based VMs, or to help select an appropriate VM type.  We are 
unaware of previous research that has focused on performance 
and cost modeling of serverless computing workloads. 

C. Performance and Cost Evaluation of Serverless Platforms  

Prior research on serverless platforms has focused on 
evaluating performance of FaaS platforms for hosting a variety 
of workloads. Several efforts have investigated performance 
implications for hosting scientific computing workflows 
[42][43][44][45]. Other efforts have evaluated FaaS 
performance for machine learning inferencing [46][47], NLP 
inferencing [48], and even neural network training [49].   To 
support cost comparison of serverless computing vs. IaaS 
cloud, Boza et al. developed CloudCal, a tool to estimate 
hosting costs for service-oriented workloads on IaaS (reserved), 
IaaS (On Demand), and FaaS platforms [50]. CloudCal 
determines the minimum number of VMs to maintain a 
specified average request latency to compare hosting costs to 
FaaS deployments.  FaaS resources, however, were assumed to 
provide identical performance as IaaS VMs when functions 
were allocated 128 MB RAM.  Wang et al. identified AWS 
Lambda performance at 128 MB as only ~1/10th of 1-core VM 
performance in [5] suggesting potential inaccuracies with 
CloudCal. Other efforts have conducted case studies to 
compare costs for hosting specific application workloads on 
IaaS vs. FaaS [27][51], and FaaS vs. PaaS [52].  We extend 
previous efforts by characterizing performance variance of 
workloads across FaaS platforms, and demonstrating our novel 
Linux time accounting approach to predict FaaS workload 
runtime and cost. 

III. METHODOLOGY 

In this section, we detail tools and techniques used to 
investigate our research questions (RQ-1, RQ-2, RQ-3).  
Section III.A describes the SAAF, the framework used to profile 
our serverless workloads, and section III.B describes FaaS 
Runner, a tool used to automate profiling experiments. Section 
III.C details our experimental workloads, and section III.D 
describes our approach to leverage Linux CPU time accounting 
principles to generate runtime predictions for FaaS workloads 
deployed with different configurations, or to alternate platforms. 

A. The Serverless Application Analytics Framework (SAAF) 

To support profiling FaaS software deployments we have 
developed the Serverless Application Analytics Framework 
[53].  SAAF supports characterization of performance, resource 
utilization, and infrastructure for FaaS workloads deployed to 
AWS Lambda, Google Cloud Functions, Azure Functions, and 
the IBM Cloud Functions commercial FaaS platforms 
[21][22][61][62].  SAAF supports characterization of workloads 
written in Java, Python, Node.js, Go, and with AWS Lambda 
custom runtimes.  Programmers include the SAAF library and a 
few lines of code to enable profiling.  SAAF collects metrics 
from the Linux /proc filesystem and appends them to the JSON 
payload returned by the function instance. Metrics are then 
processed by FaaS Runner (see section B) our custom client 
application for further analysis. Table I shows a selected set of 
key metrics collected by SAAF.  

Commercial FaaS platforms (e.g. AWS Lambda, IBM Cloud 
Functions) expose or hide different metadata about the 
underlying Linux environments used to host functions. In this 
paper, we focus on AWS Lambda and IBM Cloud Functions 
as both platforms offer production level support of Java. On 
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Azure Functions, Java runs in a Windows environment causing 
Linux time accounting metrics used by our runtime prediction 
approach, described in section IV.B, to be unavailable. Google 
Cloud Functions does not presently support Java. SAAF’s 
approach to data collection is applicable to any FaaS platform 
that exposes Linux CPU time accounting metrics. 

TABLE I.  RUNTIME, RESOURCE UTILIZATION, AND CONFIGURATION 
METRICS COLLECTED BY SAAF WITHIN A FUNCTION INSTANCE.  

‘’ INDICATES RAW AND DELTA VERSIONS ARE PROVIDED 

 
Fig. 1. SAAF profiling overhead percentiles (ms)  

at different memory settings on AWS Lambda 

 To determine function tenancy and potential resource 
contention, SAAF supports uniquely identifying VMs that host 
one or more function instances by implementing platform 
specific mechanisms.  IBM Cloud Functions runs Xen 4.7 
allowing the unique XEN hypervisor ID that is available from 
/sys/hypervisor/uuid [55] to be used as a method of VM 
identification.  VMs can be uniquely identified on AWS Lambda 
with the sandbox-root ID in /proc/$$/cgroup [5].  

 Granularity of SAAF metric collection can controlled to 
specify which metrics to collect: CPU, memory, function 
instance, Linux, and platform metrics.  We profiled the overhead 
of collecting metrics on AWS Lambda using a function only 
containing SAAF at 256MB, 512MB, 1024MB, and 2048MB 
and show the overhead in (ms) by percentile in Figure 1. AWS 
Lambda couples CPU timeshare with function memory 
allocation, reducing performance. Only for functions at 256MB, 
when collecting all metrics, did SAAF overhead exceed 100 ms, 
the billing unit of AWS Lambda in 10% of cases. 

B. FaaS Runner 

FaaS Runner provides a client-side application used in 
conjunction with SAAF. FaaS Runner supports automating 
profiling experiments across many different function 
configurations, while compiling results into a report that 
aggregates data for quick analysis. FaaS Runner combines the 
performance, resource utilization, and configuration metrics 
from many concurrent sessions enabling observations not 
possible when profiling individual FaaS functions calls. FaaS 
Runner is written in Python 3.6 and uses separate threads to host 
up to 1,000 individual, concurrent function invocations. 
Repeatable experiment configurations are defined using JSON 
files. Users define a set of input JSON payloads to distribute 
among function invocations, the number of concurrent or 
sequential calls to make, when to reconfigure FaaS function 
memory settings, and how to display the results. FaaS Runner 
groups results by CPU type, the virtual machine hosting 
function instances, or any other attributes defined in an 
experiment file. By categorizing results, FaaS Runner supports 
inferring the number of function instances sharing the same 
CPU type, VM, or any other unique attribute.  This enables 
performance comparisons based on function tenancy, the 
number of function instances that share a host (VM). 

 
Fig. 2. Workload profiling with FaaS Runner and SAAF 

C. Experimental Workloads 

To evaluate our Linux time accounting and regression 
performance prediction approach, we developed a compute-
bound function known as the “Calcs Service” (https://github 
.com/wlloyduw/CalcsService).  This microservice produces 
workloads where a variable number of calculations are 
performed using the formula (a × b ÷ c) with operands stored 

SAAF Metric Description  Source 

instanceID 
Cloud provider’s unique ID for function 
runtime environment.  On AWS Lambda this 
is the CloudWatch log stream ID. 

environment 
variable 
 

conSwitches Number of context switches /proc/vmstat 

cpuIdle CPU idle time in ms /proc/stat 

cpuIOWait CPU time waiting for I/O to complete /proc/stat 

cpuIrq CPU time servicing HW interrupts /proc/stat 

cpuKrn CPU time in kernel mode in ms /proc/stat 

cpuModel CPU model number /proc/cpuinfo 

cpuNice CPU time executing prioritized processes /proc/stat 

cpuSoftIrq CPU time servicing soft interrupts /proc/stat 

cpuType FaaS function function instance CPU type  /proc/cpuinfo 

cpuUsr CPU time in user mode in ms /proc/stat 

saafRuntime 
Overhead time in (ms) of SAAF metric 
collection 

calculated by 
SAAF 

freeMemory FaaS environment free memory in MB /proc/vmstat 

latency 
Difference between runtime measured by 
FaaS Runner and SAAF runtime metric 

calculated by 
client 

mjrPgFaults VM major pagefaults for function instance /proc/vmstat 

newcontainer 
0=function executes in new function instance 
1=function executes recycled instance 

calulcated by 
SAAF 

pagefaults VM pagefaults for function instance /proc/vmstat 

runtime Server side total FaaS function runtime in ms 
calculated by 
SAAF 

totalMemory FaaS environment total memory in MB /proc/vmstat 

userRuntime Runtime of function minus SAAF time (ms) 
calculated by 
SAAF 

vmcpusteal CPU ticks lost to other VMs or the hypervisor /proc/stat 

vmID Unique id for the VM hosting this function  
/proc/cgroup, 
/sys/hyprvsr 
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in separate large arrays on the heap. For each calculation, a 
random index is chosen into the arrays to store random numbers 
for use as operands. This is in contrast to multiplying operands 
stored using local primitive integers. To vary the degree of 
memory stress, the array size is adjusted from 1 to 1,000,000 
elements.  The calcs function was used in our workloads to 
perform a number of calculations between 30,000,000 to 
60,000,000 to provide a variety of function runtimes to support 
training performance models. To ensure deterministic behavior, 
we used the same random seed for random array indexing to 
produce identical array access sequences for every execution. 
We also used the same random seed to generate identical 
“random” operand values. A child thread was introduced to 
create a multi-threaded workload where the child thread 
performs ½ the number of calcs to finish before the parent. The 
second thread adds CPU contention while the parent thread 
dictates the function’s runtime. To evaluate performance 
predictions we did not use existing CPU benchmark 
applications because their binary executables may not always 
fit in the FaaS package space, and deploying binaries results in 
FaaS functions essentially being wrappers. 

We profiled the alternate function configurations (e.g. CPU, 
memory, platform) described in table II and III to evaluate 
prediction accuracy where subsequent workloads introduce 
additional memory stress. Regression models are trained to 
convert individual CPU metrics from scenario-to-scenario 
using profiling data obtained from representative workloads. 
Developing a one-size fits all generic model to derive runtime 
predictions for any FaaS workload using generalized training 
data, similar to [56] for IaaS clouds, was not our objective for 
this paper. 

TABLE II.  EXPERIMENTAL WORKLOAD ALIAS AND DEFINITIONS 

Name  Definition 

NMT1 Fixed # of Calcs, No Memory Stress, 1 Thread, concurrent calls 

MT1 Fixed # of Calcs, Memory Stress, 1 Thread, concurrent calls 

NMT2-seq Fixed # of Calcs, No Memory stress, 2 Threads, Sequential calls  

NMT2 Fixed # of Calcs, No Memory Stress, 2 Threads, concurrent calls 

MT2 Fixed # of Calcs, Memory Stress, 2 Threads, concurrent calls  

SCNMT1 Scaling Calcs, No Memory Stress, 1 Thread, concurrent calls 

SCMT1 Scaling Calcs, Memory Stress, 1 Thread, concurrent calls 

SCNMT2 Scaling Calcs, No Memory Stress, 2 Threads, concurrent calls 

SCMT2 Scaling Calcs, Memory Stress, 2 Threads, concurrent calls 

SCSMT2 Scaling Calcs, Scaling Memory Stress, 2 Threads, concurr. calls 

TABLE III.  EXPERIMENTAL WORKLOAD CONFIGURATIONS  

Workload Name Calcs Memory Stress Threads Tenancy 

NMT1 40 million No 1 n 

MT1 40 million array=1 million 1 n 

NMT2-seq 40 million No 2 1 

NMT2 40 million No 2 n 

MT2 40 million array=1 million 2 n 

SCNMT1 3060m step 3m No 1 n 

SCMT1 3060m step 3m array=1 million 1 n 

SCNMT2 3060m step 3m No 2 n 

SCMT2 3060m step 3m array=1 million 2 n 

SCSMT2 3060m step 3m 11m, step 100k 2 n 

The Calcs Service supports generating FaaS workloads 
described in tables II and III. We profiled the total number of 
page faults running the two-thread calcs service (SCSMT2) on 

AWS Lambda at 256MB and observed 15.8x more average 
page faults with array sizes of 1,000,000 vs. 1, and 13.2x at 
2048MB.  More page faults occurred at lower memory settings 
because of higher function tenancy on VMs.  This confirmed 
our memory stress approach successfully generates memory 
contention. Memory stress also significantly reduced 
performance. When comparing NMT1 and MT1 workloads, 
runtimes increased by (3.90x, 3.88x, 3.55x, 2.24x) for 256MB, 
512MB, 1024MB, and 2048MB respectively. Memory stress 
also increased performance variance. The Coefficient of 
Variation (CV), defined as the standard deviation divided by 
the mean, provides a normalized comparison of performance 
variance. CV increased from (11.9→29.7%, 9.6→25.8%, 
9.2→21.7%, 5.5→24.8%) with maximum memory stress for 
256MB, 512MB, 1024MB, and 2048MB respectively. 

D. Runtime Predictions with Linux Time Accounting  

In this paper, we adapt our IaaS cloud performance 
modeling techniques leveraging Linux CPU time accounting 
for FaaS platforms [57]. Our approach is in contrast to 
traditional performance modeling approaches described in 
section II.B that leverage application metadata or resource 
utilization metrics as features to train models that directly 
predict runtime. Linux provides CPU time accounting by 
providing metrics that detail time spent in different CPU states 
measured in centiseconds (cs).  Summing these metrics and 
dividing by the number of CPU cores provides the wall clock 
time of any profiled workload as in the formula: 

Workloadtime =  

௨௦ ା ୡ୮୳୰୬ ା ୡ୮୳୍ୢ୪ୣ ା ୡ୮୳୍ୟ୧୲ ା

ୡ୮୳୍୬୲ୗ୰୴ୡ ା ୡ୮୳ୗ୲୍୬୲ୗ୰୴ୡ ା ୡ୮୳୧ୡୣ ା ୡ୮୳ୗ୲ୣୟ୪

#  ೝೞ
 

In contrast to training models to predict runtime, we train 
individual models to predict individual CPU metrics for FaaS 
deployments with different configurations (e.g. memory, 
CPUs, or to alternate platforms).  We then solve for workload 
runtime using the formula.  In this paper, we focus on 
evaluating this approach for CPU-bound workloads.  For these 
workloads, the majority of the variance is explained by CPU 
user mode time (cpuUsr) and CPU idle time (cpuIdle). We 
trained regression models to estimate how individual CPU 
metrics scale across different FaaS deployments to different 
CPUs, with different memory sizes, etc.  Having models for 
specific CPUs allows accurate workload runtime and cost 
predictions for FaaS functions that run across heterogeneous 
CPUs. Table V provides data detailing an example of CPU 
heterogeneity on commercial FaaS platforms.   

For FaaS functions with different memory reservation sizes, 
we observed on platforms that scale CPU power with memory 
(e.g. AWS Lambda and Google Cloud Functions), that cpuIdle 
time scales inversely with memory size. The workload’s 
cpuUsr time remains approximately the same.  In effect, the 
required cpuUsr time to complete the workload does not 
change, but changing the FaaS function memory alters the CPU 
timeshare for function execution, and this is reflected by 
cpuIdle.  

To produce FaaS workload runtime predictions we profiled 
our workloads using a base configuration having a fixed CPU 
and memory setting (e.g. 256MB CPU E5-2680v2). We 



6 
 

generated regression models to convert cpuUsr and cpuIdle to 
a variety of target platforms. Deltas of cpuUsr, cpuIdle, CPU 
context switches, and page faults were used as independent 
variables. We did not incorporate application specific 
independent variables to ensure our approach is workload 
agnostic. Multiple regression models were trained and 
evaluated using RStudio [58]. We then applied Linux time 
accounting principles to predict function runtime for 77 
different target configurations (e.g. 256MB CPU E5-2676v3 as 
one example).  

Table IV describes our experiment source and target 
platform configurations. Numbers in parentheses indicate the 
maximum observed number of co-located function instances on 
the VM at different memory configurations. To refer to 
different CPUs we use aliases (e.g. a1, a2, i1, i2, etc.), described 
in Table V.  To address function multitenancy in our models 
and normalize predictions, we filtered runs that did not exhibit 
maximum tenancy. Due to greedy function placement, the vast 
majority of concurrent function invocations were observed to 
exhibit maximum tenancy on AWS Lambda. 

TABLE IV.  RUNTIME PREDICTION SOURCE AND TARGET PLATFORM 
CONFIGURATIONS INCLUDING INTEL XEON E5 CPU, MEMORY, AND FUNCTION 

TENANCY PER VM IN PARENTHESES  

Source Platform Target Platform(s) 

CPU Configurations: 

AWS 256MB 2680v2 (13) AWS 2676v3:256(13), 512(6), 1024(3), 2048MB(1) 

AWS 256MB 2680v2 (13) AWS 2686v4:256(13), 512(6), 1024(3), 2048MB(1) 

AWS 256MB 2676v3 (13) AWS 2686v4:256(13), 512(6), 1024(3), 2048MB(1) 

Memory Configurations: 

AWS 256MB 2680v2 (13) AWS 512MB (6) v2, 1024MB (3) v2, 2048MB (1) v2 

AWS 256MB 2676v3 (13) AWS 512MB (6) v3, 1024MB (3) v3, 2048MB (1) v3 

AWS 256MB 2686v4 (13) AWS 512MB (6) v4, 1024MB (3) v4, 2048MB (1) v4 

IBM Configurations: 

AWS 2048MB 2680v2 (1) IBM 2048MB (4): 2683v3, 2683v4, 2650v4, 2690v4 

TABLE V.  OBSERVED RATIOS OF CPU TYPES ON AWS LAMBDA AND  
IBM CLOUD FUNCTIONS FAAS PLATFORMS  

Platform Intel Xeon CPU  VM Alias % 

AWS E5-2680v2 @ 2.8 GHz, 10 core c3 a1 67.5 

AWS E5-2676v3 @ 2.4 GHz, 12 core m4 a2 19.9 

AWS E5-2686v4 @ 2.3 GHz, 18 core r4 a3 12.5 

IBM  E5-2683v3 @ 2.0 GHz, 14 core unseen i1 18.4 

IBM E5-2683v4 @ 2.1 GHz, 16 core bl2/b1/m1 i2 66.1 

IBM E5-2650v4 @ 2.2 GHz, 12 core u1 i3 3.8 

IBM E5-2690v4 @ 2.6 GHz, 14 core c1 i4 7.2 

IBM Gold 6140 @ 2.3 GHz, 18 core unseen i5 4.5 

IV. EXPERIMENTAL RESULTS 

To evaluate our research questions, we profiled the 
workloads described in Tables II & III on source and target 
platforms described in Table IV.  We deployed AWS Lambda 
functions in the Virginia region. We pinned all Lambda 
functions to execute within in the same availability zone (e.g. 
us-east-1b) to reduce hardware heterogeneity and increase the 
likelihood that experiments run with identical conditions.  IBM 
Cloud Functions were deployed to the us-south Dallas 
datacenter.  We identify the prevalence of heterogeneous CPUs 
found on both AWS Lambda-VPC (us-east-1b, 350 runs) and 
IBM Cloud Functions (south, 1000 runs) in Table V. Our 

statistics illustrate one example of possible CPU variance on 
commercial FaaS platforms. 

A. Performance Variance of FaaS Platforms 

To quantify performance variance for RQ-1, we leveraged 
our calcs service with the NMT2-seq and NMT2 workloads. 
These workloads were designed to minimize non-deterministic 
performance behavior. Functions performed a static number of 
calculations, using the same operand values, without memory 
stress. Our goal was to quantify performance variance on AWS 
Lambda and IBM Cloud Functions.  

 
Fig. 3. FaaS workload performance variance resulting from heterogeneity in 

CPU type and the number of co-located function executions on host VMs 
based on the experiment, platform, and memory reservation size 

We compared function runtime for NMT2-seq workloads 
performing 40,000,000 calcs (a × b ÷ c) using the same random 
seed to select operands. We ran this workload sequentially to 
force single tenant function execution to enable measuring 
performance across isolated VMs dedicated to individual 
requests on both platforms.  We measured performance at 256, 
512, 1024, and 2048MB and group results by CPU type.  CV on 
AWS Lambda was 4.54% (256MB), 4.46% (512MB), 4.82% 
(1024MB), and 1.03% (2048MB) for function executions 
across heterogeneous CPUs as shown in Figure 3. Grouping 
runtime by CPU type reduced performance variance to only 
0.64%, 0.42%, and 0.45% CV for the a1, a2, and a3 CPUs. On 
IBM CV was 16.88% (256MB), 5.78% (512MB), 4.82% 
(1024MB), and 9.04% (2048MB) for function executions 
across heterogeneous CPUs. Characterizing runtime by CPU 
type on IBM did not substantially improve CV: 10.79% (i2 
CPU) and 4.07% (i3 CPU). Performance on AWS Lambda a3 
CPUs outperformed a1 CPUs by 14.6% (256MB), 16.1% 
(512MB), and 16.4% (1024MB), while a3 was about 3.6% faster 
than a2.  Despite the faster clock speed of the a1 CPU, it only 
outperformed a2 and a4 with maximum memory (3008MB), 
where the a1 CPU produced runtimes 19.8% less than a2, and 
16.5% less than a3.  This behavior reflects better single core 
performance with the a1 CPU, and better multi-core 
performance with the a2 and a3 CPUs which coincides with the 
evolution of Intel Xeon processors from v2v3v4. CV 
increased as a result of CPU heterogeneity ~7.4x on AWS 
Lambda, but only ~1.2x on IBM Cloud Functions. Single 
tenant performance variance for function execution with 
identical CPUs on IBM was more than 10x that of AWS Lambda 
as most of the NMT2-seq workload variance on IBM appeared 
to be not related to CPU heterogeneity. We explain key 
differences with IBM’s FaaS platform at the end of section IV.B. 
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We next compared performance of the multithreaded NMT2 
workload to investigate performance variance for multitenant 
function executions on FaaS platforms. Here many, but not all 
functions execute with identical tenancy due to greedy function 
placement on AWS, e.g. 256MB (commonly 13 tenants), 
512MB (6 tenants), 1024MB (3 tenants), and 2048MB & 
3008MB (1 tenant) for all CPUs.  Here CV increased to 10.31% 
(256MB), 9.61% (512MB), and 10% (1024MB) across all CPUs 
as shown in Figure 3. On IBM, CV values from multitenancy 
were 24.54% (256MB), 17.31% (512MB), 16.57% (1024MB), 
and 20.28% (2048MB), nearly 2x more than AWS Lambda. 
Moving from single tenant to multitenant function 
executions, CV increased ~2.7x on AWS Lambda, and ~2.5x 
on IBM Cloud Functions. Given that Lambda employs greedy 
function placement across VMs, most executions occur at the 
same tenancy level. IBM Cloud Functions had higher CV for the 
single tenant NMT2-seq workload producing a lower increase 
with multitenancy (NMT2). We illustrate estimated hosting 
costs for 1,000,000 function calls in Figure 4, demonstrating 
how CPU heterogeneity translates to price volatility. The 
“combined” column projects the total cost based on observed 
CPU ratios. FaaS CPU heterogeneity results in a lottery, 
where lucky users reap lower hosting costs. 

 
Fig. 4. Lambda hosting cost variation, NMT2 with CPU heterogeneity 

B. FaaS Runtime Prediction 

To investigate RQ-2, we estimate workload runtime with 
Linux CPU time accounting, by training individual regression 
models to predict specific CPU metrics (e.g. cpuUsr, cpuIdle) 
for FaaS deployments with alternate configurations (e.g. CPUs, 
memory, commercial FaaS platform). We convert a workload’s 
resource utilization profile from one configuration to another 
and apply Linux CPU time accounting to generate runtime 
predictions. On FaaS platforms, resource utilization metrics 
obtained by SAAF originate from containers (IBM) or 
MicroVMs (AWS) and are generally isolated to report resource 
utilization of individual function executions. Linear regression 
and multiple regression can convert individual CPU metrics 
with high accuracy. We demonstrate linear regression of 
cpuUsr and cpuIdle from AWS Lambda in Figure 5. We 
captured CPU resource utilization metrics for single tenant, 
single thread invocations of our calcs service at different 
memory settings (256MB, 512MB, and 2048MB) on two 
different CPUs (Intel Xeon E5-2680v2 @ 2.8 GHz and E5-
2686v4 @ 2.3 GHz). We scaled calculations from 80 to 120 
million stepping by 400,000 without memory stress. Linear 

regression of cpuIdle time between the 256MB and 512MB 
deployments had a coefficient of determination of R2=.988. 
Linear regression of cpuUsr time between the E5-2680v2 and 
E5-2686v4 CPUs at 2048MB had R2=.974. The high 
predictability of individual CPU metrics enables high accuracy 
with our Linux time accounting approach to predict runtime. 
We trained cpuUsr and cpuIdle models for source and target 
platforms described in Table IV and applied Linux time 
accounting to generate runtime predictions. The FaaS Runner 
automated data collection. Samples matching the desired 
source and targets were filtered using R scripts. We investigated 
the accuracy of our runtime predictions using successive 
workloads each introducing additional performance variance 
from SCNMT2SCMT2SCSMT2. The CV for workload 
runtime across all CPU and memory configurations was 87.8%, 
104.8%, and 114.9% for the respective workloads. Our 
objective is that each successive workload introduces more 
performance variance providing a greater challenge for 
performance prediction. 

 
Fig. 5. cpuIdle & cpuUsr linear regression AWS Lambda 

SCNMT2 provides a CPU-bound workload with a scaled 
number of random calculations from 30 to 60 million, 
leveraging 2 threads without memory stress.  SCMT2 performs 
the same calculations, but adds fixed memory stress using large 
arrays for math operands as described in section III.C.  Finally, 
SCSMT2 scales the array size from 1 to 1 million in steps of 
100,000 to produce 10 different memory stress scenarios. As 
Lambda uses greedy function placement across VMs, most 
functions execute with the same VM function tenancy. For a 
workload of 100 concurrent function executions, approximately 
91%, 96%, and 99% execute with identical VM-function 
tenancy of 256MB (13 tenants), 512MB (6 tenants), and 
1024MB (3 tenants). To simplify performance predictions, we 
used profiling data from function executions with maximum 
tenancy.  

In total, we consider 77 different workload/configuration 
scenarios generating runtime predictions for: alternate CPU 
types (36), alternate memory settings (27), and alternate 
platforms (14).  For brevity, detailed prediction statistics for all 
workload/configuration scenarios, including average runtime 
of workloads, CV, RMSE, MAPE, mean absolute error (MAE), 
and degrees of freedom are available online at: [59].  

In Figures 6 and 7 we depict the average % error of our 
runtime predictions for each workload for every configuration.  
Degrees of freedom varied across our tests because of the 
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variable infrastructure received when executing FaaS 
workloads.  For example, when executing a workload, we may 
randomly receive 70 a1 CPUs in one trial, and 47 a1 CPUs in 
another.  This results in different quantities of training data for 
different configurations. The average error for SCNMT2 
runtime predictions on different CPUs was just 0.51%, and 
with different memory settings 0.59%. Predictions between 
the a1 and a3 CPU at 1024MBs had the highest average error at 
1.53% and MAE of 62ms, less than the smallest billing 
increment of a serverless platform. 

 
Fig. 6. Mean absolute percent error (MAPE) of memory to memory  

FaaS runtime prediction models. 

 
Fig. 7. Mean absolute percent error (MAPE) of CPU to CPU  

FaaS runtime prediction models. 

For SCMT2 workloads that add memory stress, the average 
error for runtime predictions for all configurations to 
different CPUs was 2.52%. Adding memory stress increased 
runtime prediction errors ~5x. The average error for SCMT2 
runtime predictions to different memory settings was 
3.83%, an increase of ~6.5x over the SCNMT2 workload 
without memory stress. Predictions between the a1 and a3 to 
512MB, 1024MB, and 2048MB had the highest MAPE at 
7.29% producing MAE of 1.81s, 929ms, and 485ms for 
respective memory values. All other SCMT2 CPU predictions 
had far less error averaging just 0.96% MAPE. One million 
function invocations of our SCMT2 workload at 2048MB 
memory cost approximately $232.81. To put our runtime 
predictions into perspective for the SCMT2 workload, our 
worst case runtime error for a1a3 CPU at 2048MB results in 
overestimating cost by $16.18, compared to average cost error 
of just $5.15 for all SCMT2 runtime predictions. 

SCSMT2 workloads introduce variable memory stress 
resulting in an average error for SCSMT2 runtime 

predictions to different CPUs of 5.10%. With increasing 
memory stress, runtime predictions for SCSMT2 had about 2x 
more error than SCMT2 workloads. SCSMT2 has a higher CV 
than SCMT2 and SCNMT2. Additional memory stress made the 
SCSMT2 workload non-deterministic, increasing performance 
variance leading to more difficult runtime predictions, and less 
accuracy. We project our performance prediction error for the 
SCSMT2 runtime predictions to different CPUs with 1,000,000 
functions calls in Figure 8. The average error for SCSMT2 
runtime predictions to different memory settings was 
10.48%. Test data for predicting SCSMT2 workload runtime to 
different memory settings also had the highest CV at 36%. 
Correspondingly, we observed a decrease in R2 for our 
regression models from ~ .98 to .85.   

 
Fig. 8. Percent error of cost predictions for SCSMT2  

derived from FaaS runtime prediction models 

We evaluated our runtime predictions for SCNMT2 
workloads without memory stress deployed on IBM Cloud 
Functions [55]. The average error for IBM SCNMT2 
runtime predictions to four different CPUs was 3.55%. The 
occurrence rates for obtaining different IBM CPUs is described 
in Table V. Our prediction error equated to an average of 1.09s, 
717ms, 287ms, and 120ms with 256, 512, 1024, and 2048MB. 
Average cost error of one million function invocations on IBM 
was $4.24 vs. an average workload cost of $119.38.  

We observed that IBM shares VMs differently than AWS 
Lambda. Where AWS Lambda explicitly couples CPU 
timeshare to the memory reservation size, IBM does not adapt 
the CPU timeshare based on memory reservation size. IBM 
allows co-located function instances to compete for available 
CPU time on the VM. This allows users to obtain the best 
possible performance based on available resources, resulting in 
much higher performance variance. IBM Cloud Functions 
differed from AWS Lambda in that host VMs had 4 vCPUs and 
16GB of RAM each.  IBM function tenancy on each VM maxed 
out at: 32x256MB, 16x512MB, 8x1024MB, and 4x2048MB.  
This is in contrast to AWS Lambda max tenancy of: 13x256MB, 
6x512MB, 3x1024MB, and 1x2048MB. On IBM, single tenant 
executions of our NMT2 calcs service at 256MB required just 
2091ms, where with full multitenancy performance slowed to 
26,816ms, a slowdown of 12.82x. We observed performance 
degradation from multitenancy of 5.86x, 3.42x, and 1.69x at 
512, 1024, and 2048MB.  As configured, we estimate IBM 
Cloud Functions to be 63% more expensive than AWS Lambda 
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to execute one million calcs functions with maximum VM 
function tenancy resulting from high concurrency. If functions 
execute sequentially however, IBM Cloud Functions completes 
the workload for just 13.4% the price of Lambda ($8.89) at 
256MB.  The same workload on IBM can cost anywhere 
from $8.89 to $113.97 at 256MB depending on the tenancy 
of function executions across VMs driven by the 
concurrency of client requests. On IBM, users benefit when 
FaaS workloads execute with low concurrency, and pay more 
when demand spikes. This provides an excellent example of 
pricing obfuscation on serverless platforms.  

Table VI shows the CV for FaaS workload runtime for each 
of our FaaS workloads contrasted with prediction error. Each 
row summarizes model error for predictions to a different target 
configuration (e.g. CPU, memory, or platform). Our prediction 
error is much lower than CV because we have addressed key 
factors responsible for performance variance in our 
approach: CPU heterogeneity and function multi-tenancy. 
Across all 77 scenarios, we calculated a MAPE of 3.49%, 
equaling a cost error of $6.46 for 1,000,000 function workloads 
costing an average of $150.45.  

TABLE VI.  RUNTIME PREDICTION MODEL EVALUATION SUMMARY 

Workload  
Prediction Type 

Number of 
Models 

Workload 
CV 

MAPE 
Average 

Cost Error 
Average 

Workload Cost 
SCNMT2 – CPU 12 21% 0.51% $0.36 $70.27 

SCMT2 – CPU 12 23% 2.52% $5.15 $204.23 

SCSMT2 – CPU 12 32% 5.10% $8.86 $173.64 

SCNMT2 – Memory 9 20% 0.59% $0.45 $76.30 

SCMT2 – Memory 9 22% 3.83% $9.07 $236.88 

SCSMT2 – Memory 9 36% 10.5% $19.99 $190.80 

SCNMT2 - IBM 14 18% 3.55% $4.24 $119.38 

Overall Average 77 (sum) -- 3.49% $6.46 $150.45 

C. Assessing Workload Predictions 

To investigate heuristics for RQ-3 we assessed statistical 
correlations between resource utilization metrics and absolute 
error of our runtime predictions. Our objective is to identify 
heuristics for different types of workloads that employ metric 
thresholds to signal when runtime predictions are likely to be 
error prone. We evaluated Pearson correlation coefficients 
between the absolute error of our runtime predictions and 
resource utilization metrics for our SCSMT2 workload tests. We 
evaluated correlations for configurations with minimum 
(CPU:a2a3 1024MB, memory:2561024 a3), median 
(CPU:a2a3 512MB, memory:256512 a1), and maximum 
(CPU:a1a3 512MB, 2562048, a1) prediction error. We 
ignored metric correlations collinear with runtime: cpuUsr, 
cpuIdle, context switches, # of calcs, and the operand array size.  

For CPU predictions, a significant positive correlation was 
between cpuSteal and prediction absolute error (max: r=.18 
p<.0001 df=506, median: r=.25 p<.05 df=70, min: r= n.s.).  
CpuSteal ticks are registered when a VM is ready to execute, but 
the physical CPU is busy servicing work from other co-located 
VMs sharing the physical host, or from the hypervisor itself [27]. 
CpuSteal introduces performance variance as workloads 
underperform for no apparent reason when the CPU is “stolen” 
by another VM. For the 12 SCSMT2 CPU and memory 
configurations in Figure 7, 4 had a statistically significant 
correlation between prediction error and cpuSteal. 

For memory predictions, a significant negative correlation 
was between freeMemory and prediction absolute error (max: 
r=-.154 p<.01 df=324, median: r=-.19 p<.0001 df=506, min: r=-
.25 p<.001 df=177). When VMs had less free memory, our 
predictions tended to be less accurate. Runtime predictions from 
2562048MB produced on average 4.3x more error than 
256512MB or 2561024MB predictions. VM freeMemory 
also decreased with function memory size: at 256MB VMs had 
approximately ½ the freeMemory of VMs at 2048MB. We 
suspect that lower VM freeMemory results from co-located 
function instances. In conclusion, 9 memory configurations of 
SCSMT2 depicted in Figure, 5 had a statistically significant 
correlation between prediction error and VM freeMemory. 

V. CONCLUSIONS 

In this paper, we introduced the Serverless Application 
Analytics Framework (SAAF) and demonstrated how SAAF 
supported by the FaaS Runner tool can profile performance, 
resource utilization, and infrastructure of concurrent FaaS 
workloads. To alleviate pricing obfuscation of software 
deployments to serverless platforms, we leveraged Linux CPU 
time accounting principles and multiple regression to generate 
FaaS function runtime predictions. Equipped with runtime 
estimates, FaaS hosting costs were accurately estimated by 
applying the platforms pricing policy. Research findings 
include: RQ-1: Leveraging SAAF we characterized 
performance variance for identical CPU bound workloads on 
AWS Lambda, and measured a 0.5% coefficient of variance 
(CV) for single tenant runs on identical CPUs.  CV increased 
~7.4x as a result of CPU heterogeneity, and another ~2.7x from 
multitenancy when function instances ran concurrently on the 
same host. RQ-2: Leveraging Linux time accounting, we 
predicted FaaS workload runtime across different CPUs, with 
different memory settings, and to different platforms using 
successive workloads that introduce additional performance 
variance. Mean absolute percentage error for predictions of 77 
scenarios was 3.49%, equating to an average cost error of $6.46 
against an average cost of $150.45 for one million function 
workloads. Prediction error for workloads without memory 
stress was approximately ~0.5%, with fixed memory stress ~3%, 
with variable memory stress ~7%, and for deployments to IBM 
Cloud Functions ~3.5%.  RQ-3: We found cpuSteal to correlate 
with prediction error, while host VM freeMemory had a 
negative correlation.  
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