
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Predicting Performance and Cost of
Serverless Computing Functions with SAAF

Robert Cordingly
School of Engineering and Technology

University of Washington
Tacoma WA USA
rcording@uw.edu

Wen Shu
School of Engineering and Technology

University of Washington
Tacoma WA USA

shuwen12@uw.edu

Wes J. Lloyd
School of Engineering and Technology

University of Washington
Tacoma WA USA
wlloyd@uw.edu

Abstract— Next generation software built for the cloud
recently has embraced serverless computing platforms that use
temporary infrastructure to host microservices offering building
blocks for resilient, loosely coupled systems that are scalable, easy
to manage, and extend. Serverless architectures enable
decomposing software into independent components packaged
and run using isolated containers or microVMs. This
decomposition approach enables application hosting using very
fine-grained cloud infrastructure enabling cost savings as
deployments are billed granularly for resource use. Adoption of
serverless platforms promise reduced hosting costs while
achieving high availability, fault tolerance, and dynamic elasticity.
These benefits are offset by pricing obfuscation, as performance
variance from CPU heterogeneity, multitenancy, and provisioning
variation obscure the true cost of hosting applications with
serverless platforms. Where determining hosting costs for
traditional VM-based application deployments simply involves
accounting for the number of VMs and their uptime, predicting
hosting costs for serverless applications can be far more complex.
To address these challenges, we introduce the Serverless
Application Analytics Framework (SAAF), a tool that allows
profiling FaaS workload performance, resource utilization, and
infrastructure to enable accurate performance predictions. We
apply Linux CPU time accounting principles and multiple
regression to estimate FaaS function runtime. We predict runtime
using a series of increasingly variant compute bound workloads
that execute across heterogeneous CPUs, different memory
settings, and to alternate FaaS platforms evaluating our approach
for 77 different scenarios. We found that the mean absolute
percentage error of our runtime predictions for these scenarios
was just ~3.49% resulting in an average cost error of $6.46 for 1-
million FaaS function workloads averaging $150.45 in price.

Keywords— Serverless Computing, Function-as-a-Service,
Performance Evaluation, Performance Modeling, Resource
Contention, Multitenancy

I. INTRODUCTION

Serverless computing recently has emerged as a compelling
approach for hosting applications in the cloud [1][2][3].
Serverless computing platforms promise autonomous fine-
grained scaling of computational resources, high availability
(24/7), fault tolerance, and billing only for actual compute time
while requiring minimal setup and configuration. To realize
these capabilities, serverless platforms leverage ephemeral
infrastructure such as MicroVMs or application containers.
The serverless architectural paradigm shift ultimately promises
better server utilization as cloud providers can more easily

consolidate user workloads to occupy available capacity, while
deallocating unused servers, to ultimately save energy [4] [5].
Rearchitecting applications for the serverless model promises
reduced hosting costs as fine-grained resources are provisioned
on demand and charges reflect only actual compute time.

Function-as-a-Service (FaaS) platforms leverage serverless
infrastructure to deploy, host, and scale resources on demand
for individual functions known as “microservices” [6] [7] [8].
With FaaS platforms, applications are decomposed and hosted
using collections of independent microservices differing from
application hosting with Infrastructure-as-a-Service (IaaS) or
Platform-as-a-Service (PaaS) cloud platforms. On FaaS
platforms, temporary infrastructure containing user code plus
dependent libraries are created and managed to provide
granular infrastructure for each service [9]. Cloud providers
must create, destroy, and load balance service requests across
available server resources. Users are billed based on the total
number of service invocations, runtime, and memory utilization
to the nearest tenth of a second. Serverless platforms have
arisen to support highly scalable, event-driven applications
consisting of short-running, stateless functions triggered by
events generated from middleware, sensors, microservices, or
users [10]. Use cases include: multimedia processing, data
processing pipelines, IoT data collection, chatbots, short batch
jobs/scheduled tasks, REST APIs, mobile backends, and
continuous integration pipelines [7].

Serverless computing with its many advantages possesses
several important challenges. Unlike IaaS clouds, where cost
accounting is as simple as tracking the number of VM instances
and their uptime, serverless billing models are multi-
dimensional. Software deployments consist of many
microservices which must be individually tracked [11]. FaaS
platforms exhibit performance variance that directly translates
to cost variance. Functions execute over heterogeneous CPUs
that host a variable number of co-located function instances
causing resource contention. FaaS applications are decomposed
into many functions that are hosted and scaled separately. The
aggregation, or decomposition of application code into a
varying number of FaaS functions can directly impact the
composite size and cost of cloud infrastructure. FaaS platform
complexities including multi-dimensional billing models,
heterogeneous CPUs, variable function tenancy, and
microservice composition, leads to considerable pricing
obfuscation for application hosting.

2

FaaS platforms presently lack tool support to estimate the
costs of hosting applications. Current cloud pricing calculators
from public cloud providers (e.g. AWS and Azure), and
commercial tools (e.g. Intel Cloud Finder, RankCloudz,
Cloudorado) primarily provide IaaS compute and storage cost
estimates based on average performance [12][13][14].
Recently, FaaS calculators have appeared, but they are limited
to generating cost estimates based on average runtime and
memory size [15][16][17]. These calculators do not consider
how FaaS function runtime scales relative to the memory
reservation size, a feature coupled to CPU power on several
FaaS platforms [18][19].

To address pricing obfuscation of FaaS platforms, in this
paper, we offer a novel approach combining Linux CPU time
accounting and multiple regression to provide highly accurate
FaaS function runtime predictions. Equipped with performance
predictions, FaaS workload costs can be estimated by applying
the platform’s pricing policy. Our approach involves profiling
CPU metrics of multiple FaaS function deployments (e.g. AWS
Lambda with 256, 512, 1024 MB to Intel Xeon E5-2680v2, E5-
2676v3, E5-2686v4). We build regression models that predict
how CPU metrics (e.g. CPU user mode time, CPU kernel mode
time) scale across alternate function deployments with different
CPUs and memory settings, and even to different cloud
providers. By applying Linux CPU time accounting principles
we can then estimate FaaS function runtime on any CPUs (e.g.
Intel Xeon E5-2686v4), with any memory size (e.g. 1024 MB),
on any cloud (e.g. IBM Cloud Functions). We note that cloud
providers readily mix multiple CPU types to host FaaS
functions. This CPU heterogeneity increases performance
variance while decreasing performance model accuracy which
we address in this paper. We evaluate our approach with
compute bound functions for 77 different scenarios including
deployments to alternate CPUs (36 cases), with alternate
memory settings (27 cases), and to alternate platforms (14
cases). We found workload cost can be estimated with ~3.49%
mean absolute percentage error (MAPE) by applying FaaS
platform pricing policies, resulting in $6.46 cost error, against
an average workload price of $150.45 for 1-million function
call workloads. Our approach can help a developer predict FaaS
workload costs to make informed deployment decisions. These
advancements can enable developers to better evaluate
deployment and design alternatives, while understanding cost
implications to achieve more efficient serverless software
implementations.

A. Research Questions

This paper investigates the following research questions:
RQ-1: (Performance Variance) What factors are responsible

for performance variance on Function-as-a-Service (FaaS)
platforms? How much do these factors contribute to
performance variance?

RQ-2: (FaaS Runtime Prediction) When leveraging Linux
CPU time accounting principles and regression modeling, what
is the accuracy of FaaS function runtime predictions for
deployments with different memory settings and different
CPUs?

RQ-3: (Assessing Workload Predictability) How effective
are system metrics, for example the number of page faults and
context switches, at evaluating reliability of performance
predictions?

B. Research Contributions

This paper provides the following research contributions:

1. We introduce the Serverless Application Analytics
Framework (SAAF), a reusable programming framework
that supports characterization of performance, resource
utilization, and infrastructure metrics for software
deployments to FaaS platforms (AWS Lambda, Azure
Functions, Google Cloud Functions, and IBM Cloud
Functions) in popular languages (Java, Python, and
Node.js).

2. We detail performance variance of CPU-bound functions
on AWS Lambda and IBM Cloud Functions. We
characterize performance variance from heterogeneous
CPUs, and function multitenancy across different memory
sizes. (RQ-1)

3. We evaluate our FaaS function runtime prediction
approach that combines Linux CPU time accounting and
multiple regression for deployments across alternate
CPUs, memory reservation sizes, and platforms. We
evaluate our predictions to determine root mean squared
error (RMSE) and MAPE, while identifying factors that
impact accuracy using successive compute-bound
workloads each introducing more non-determinism. We
evaluate our approach for compute-bound functions for 77
different scenarios producing runtime predictions for:
alternate CPU types (36), alternate memory settings (27),
and alternate platforms (14). (RQ-2, RQ-3)

II. BACKGROUND AND RELATED WORK

The challenge of performance prediction on serverless
platforms, including the need to address performance variance
resulting from hardware heterogeneity is identified in [20]. The
authors identify how pay-as-you-go pricing models, and the
complexity of serverless application deployments, leads to the
key pitfall: “Serverless computing can have unpredictable
costs”. In contrast to application hosting with VMs, serverless
platforms complicate budgeting as organizations must predict
service utilization to estimate hosting costs. Performance
variance of serverless workloads and accuracy of runtime
predictions is invariably linked. We review related work on
cloud performance variance, performance modeling, and
performance evaluation of serverless platforms highlighting
relationships to our research goals.

A. Performance Variance of Cloud Systems

In the public cloud, key factors often responsible for
producing performance variance include hardware
heterogeneity, provisioning variation, and resource contention.
Ou and Farley identified the existence of heterogeneous CPUs
that host identically labeled VM types on Amazon EC2, leading
to IaaS cloud performance variance [21][22]. Rehman et al.
identified the problem of “provisioning variation” in IaaS
clouds in [23]. Provisioning variation is the random nature of

3

VM placements that generates varying multitenancy across
physical servers producing performance variance from resource
contention. Schad et al. showed the unpredictability of Amazon
EC2 VM performance resulting from provisioning variation
and resource contention from VM multitenancy in [24].
Ayodele et al. and Lloyd et al. demonstrated how resource
contention from multi-tenant VMs can be identified using the
cpuSteal metric in [25] [26].

On serverless FaaS platforms Jonas et al. identified
heterogeneous CPUs and noted their potential to complicate
performance modeling in [20]. Wang et al. identified
heterogeneous VM types on FaaS platforms from AWS, Azure,
and Google in [5]. They observed 4 CPU types and 5 VM
configurations (AWS Lambda), 3 CPU types x 3 VM
configurations (Azure functions), and 4 CPU types (Google
Cloud Functions). Their efforts did not evaluate the extent of
performance variance possible from heterogeneous CPUs.

Previous research has identified how provisioning variation
results in varying degrees of multitenancy on FaaS platforms
[4] [5] [27]. We identified how the number of function
“tenants” on VMs, called “function instances” by Wang,
increased when scaling up the number of concurrent requests
on AWS Lambda [4]. Conversely, increasing function memory
reduced the number of tenants on a VM. Wang observed that
function instance placement across VMs on AWS Lambda used
greedy placement, where concurrent requests are packed onto
individual VMs until available memory (3328MB) is
exhausted. Multiple functions from a single user account were
found to share VMs, but VMs did not appear to be shared with
other users. On Azure, the maximum observed tenancy of
function executions did not exceed 8, while up to 4 user
accounts shared VMs. While these efforts identified the
multitenancy, they did not evaluate performance implications
from resource contention.

B. Performance Modeling of Cloud Systems

On IaaS clouds, domain specific approaches have been
developed to model workload performance by incorporating
specific metadata regarding the tasks [28][29][30][31].
Recently, offline and online machine learning approaches have
been applied to model runtime of multi-stage, batch-oriented,
scientific workflows. Using task metadata and resource
utilization metrics as features provided accuracy improvements
[32][33][34].

Other efforts at IaaS cloud performance and cost modeling
have focused on cost-aware VM scheduling to support
infrastructure management for VM placement [35][36][37][38].
Efforts to save costs by leveraging reduced-priced cloud VMs
available through auction based pricing mechanisms, such as
Amazon EC2 spot instances, have spurred considerable research
[39][40][41]. In summary, existing approaches provide runtime
predictions for batch-oriented workloads that execute across
homogeneous cloud VMs. Other efforts focus on performance
modeling for resource management, to optimize use of auction
based VMs, or to help select an appropriate VM type. We are
unaware of previous research that has focused on performance
and cost modeling of serverless computing workloads.

C. Performance and Cost Evaluation of Serverless Platforms

Prior research on serverless platforms has focused on
evaluating performance of FaaS platforms for hosting a variety
of workloads. Several efforts have investigated performance
implications for hosting scientific computing workflows
[42][43][44][45]. Other efforts have evaluated FaaS
performance for machine learning inferencing [46][47], NLP
inferencing [48], and even neural network training [49]. To
support cost comparison of serverless computing vs. IaaS
cloud, Boza et al. developed CloudCal, a tool to estimate
hosting costs for service-oriented workloads on IaaS (reserved),
IaaS (On Demand), and FaaS platforms [50]. CloudCal
determines the minimum number of VMs to maintain a
specified average request latency to compare hosting costs to
FaaS deployments. FaaS resources, however, were assumed to
provide identical performance as IaaS VMs when functions
were allocated 128 MB RAM. Wang et al. identified AWS
Lambda performance at 128 MB as only ~1/10th of 1-core VM
performance in [5] suggesting potential inaccuracies with
CloudCal. Other efforts have conducted case studies to
compare costs for hosting specific application workloads on
IaaS vs. FaaS [27][51], and FaaS vs. PaaS [52]. We extend
previous efforts by characterizing performance variance of
workloads across FaaS platforms, and demonstrating our novel
Linux time accounting approach to predict FaaS workload
runtime and cost.

III. METHODOLOGY

In this section, we detail tools and techniques used to
investigate our research questions (RQ-1, RQ-2, RQ-3).
Section III.A describes the SAAF, the framework used to profile
our serverless workloads, and section III.B describes FaaS
Runner, a tool used to automate profiling experiments. Section
III.C details our experimental workloads, and section III.D
describes our approach to leverage Linux CPU time accounting
principles to generate runtime predictions for FaaS workloads
deployed with different configurations, or to alternate platforms.

A. The Serverless Application Analytics Framework (SAAF)

To support profiling FaaS software deployments we have
developed the Serverless Application Analytics Framework
[53]. SAAF supports characterization of performance, resource
utilization, and infrastructure for FaaS workloads deployed to
AWS Lambda, Google Cloud Functions, Azure Functions, and
the IBM Cloud Functions commercial FaaS platforms
[21][22][61][62]. SAAF supports characterization of workloads
written in Java, Python, Node.js, Go, and with AWS Lambda
custom runtimes. Programmers include the SAAF library and a
few lines of code to enable profiling. SAAF collects metrics
from the Linux /proc filesystem and appends them to the JSON
payload returned by the function instance. Metrics are then
processed by FaaS Runner (see section B) our custom client
application for further analysis. Table I shows a selected set of
key metrics collected by SAAF.

Commercial FaaS platforms (e.g. AWS Lambda, IBM Cloud
Functions) expose or hide different metadata about the
underlying Linux environments used to host functions. In this
paper, we focus on AWS Lambda and IBM Cloud Functions
as both platforms offer production level support of Java. On

4

Azure Functions, Java runs in a Windows environment causing
Linux time accounting metrics used by our runtime prediction
approach, described in section IV.B, to be unavailable. Google
Cloud Functions does not presently support Java. SAAF’s
approach to data collection is applicable to any FaaS platform
that exposes Linux CPU time accounting metrics.

TABLE I. RUNTIME, RESOURCE UTILIZATION, AND CONFIGURATION
METRICS COLLECTED BY SAAF WITHIN A FUNCTION INSTANCE.

‘’ INDICATES RAW AND DELTA VERSIONS ARE PROVIDED

Fig. 1. SAAF profiling overhead percentiles (ms)

at different memory settings on AWS Lambda

 To determine function tenancy and potential resource
contention, SAAF supports uniquely identifying VMs that host
one or more function instances by implementing platform
specific mechanisms. IBM Cloud Functions runs Xen 4.7
allowing the unique XEN hypervisor ID that is available from
/sys/hypervisor/uuid [55] to be used as a method of VM
identification. VMs can be uniquely identified on AWS Lambda
with the sandbox-root ID in /proc/$$/cgroup [5].

 Granularity of SAAF metric collection can controlled to
specify which metrics to collect: CPU, memory, function
instance, Linux, and platform metrics. We profiled the overhead
of collecting metrics on AWS Lambda using a function only
containing SAAF at 256MB, 512MB, 1024MB, and 2048MB
and show the overhead in (ms) by percentile in Figure 1. AWS
Lambda couples CPU timeshare with function memory
allocation, reducing performance. Only for functions at 256MB,
when collecting all metrics, did SAAF overhead exceed 100 ms,
the billing unit of AWS Lambda in 10% of cases.

B. FaaS Runner

FaaS Runner provides a client-side application used in
conjunction with SAAF. FaaS Runner supports automating
profiling experiments across many different function
configurations, while compiling results into a report that
aggregates data for quick analysis. FaaS Runner combines the
performance, resource utilization, and configuration metrics
from many concurrent sessions enabling observations not
possible when profiling individual FaaS functions calls. FaaS
Runner is written in Python 3.6 and uses separate threads to host
up to 1,000 individual, concurrent function invocations.
Repeatable experiment configurations are defined using JSON
files. Users define a set of input JSON payloads to distribute
among function invocations, the number of concurrent or
sequential calls to make, when to reconfigure FaaS function
memory settings, and how to display the results. FaaS Runner
groups results by CPU type, the virtual machine hosting
function instances, or any other attributes defined in an
experiment file. By categorizing results, FaaS Runner supports
inferring the number of function instances sharing the same
CPU type, VM, or any other unique attribute. This enables
performance comparisons based on function tenancy, the
number of function instances that share a host (VM).

Fig. 2. Workload profiling with FaaS Runner and SAAF

C. Experimental Workloads

To evaluate our Linux time accounting and regression
performance prediction approach, we developed a compute-
bound function known as the “Calcs Service” (https://github
.com/wlloyduw/CalcsService). This microservice produces
workloads where a variable number of calculations are
performed using the formula (a × b ÷ c) with operands stored

SAAF Metric Description Source

instanceID
Cloud provider’s unique ID for function
runtime environment. On AWS Lambda this
is the CloudWatch log stream ID.

environment
variable

conSwitches Number of context switches /proc/vmstat

cpuIdle CPU idle time in ms /proc/stat

cpuIOWait CPU time waiting for I/O to complete /proc/stat

cpuIrq CPU time servicing HW interrupts /proc/stat

cpuKrn CPU time in kernel mode in ms /proc/stat

cpuModel CPU model number /proc/cpuinfo

cpuNice CPU time executing prioritized processes /proc/stat

cpuSoftIrq CPU time servicing soft interrupts /proc/stat

cpuType FaaS function function instance CPU type /proc/cpuinfo

cpuUsr CPU time in user mode in ms /proc/stat

saafRuntime
Overhead time in (ms) of SAAF metric
collection

calculated by
SAAF

freeMemory FaaS environment free memory in MB /proc/vmstat

latency
Difference between runtime measured by
FaaS Runner and SAAF runtime metric

calculated by
client

mjrPgFaults VM major pagefaults for function instance /proc/vmstat

newcontainer
0=function executes in new function instance
1=function executes recycled instance

calulcated by
SAAF

pagefaults VM pagefaults for function instance /proc/vmstat

runtime Server side total FaaS function runtime in ms
calculated by
SAAF

totalMemory FaaS environment total memory in MB /proc/vmstat

userRuntime Runtime of function minus SAAF time (ms)
calculated by
SAAF

vmcpusteal CPU ticks lost to other VMs or the hypervisor /proc/stat

vmID Unique id for the VM hosting this function
/proc/cgroup,
/sys/hyprvsr

5

in separate large arrays on the heap. For each calculation, a
random index is chosen into the arrays to store random numbers
for use as operands. This is in contrast to multiplying operands
stored using local primitive integers. To vary the degree of
memory stress, the array size is adjusted from 1 to 1,000,000
elements. The calcs function was used in our workloads to
perform a number of calculations between 30,000,000 to
60,000,000 to provide a variety of function runtimes to support
training performance models. To ensure deterministic behavior,
we used the same random seed for random array indexing to
produce identical array access sequences for every execution.
We also used the same random seed to generate identical
“random” operand values. A child thread was introduced to
create a multi-threaded workload where the child thread
performs ½ the number of calcs to finish before the parent. The
second thread adds CPU contention while the parent thread
dictates the function’s runtime. To evaluate performance
predictions we did not use existing CPU benchmark
applications because their binary executables may not always
fit in the FaaS package space, and deploying binaries results in
FaaS functions essentially being wrappers.

We profiled the alternate function configurations (e.g. CPU,
memory, platform) described in table II and III to evaluate
prediction accuracy where subsequent workloads introduce
additional memory stress. Regression models are trained to
convert individual CPU metrics from scenario-to-scenario
using profiling data obtained from representative workloads.
Developing a one-size fits all generic model to derive runtime
predictions for any FaaS workload using generalized training
data, similar to [56] for IaaS clouds, was not our objective for
this paper.

TABLE II. EXPERIMENTAL WORKLOAD ALIAS AND DEFINITIONS

Name Definition

NMT1 Fixed # of Calcs, No Memory Stress, 1 Thread, concurrent calls

MT1 Fixed # of Calcs, Memory Stress, 1 Thread, concurrent calls

NMT2-seq Fixed # of Calcs, No Memory stress, 2 Threads, Sequential calls

NMT2 Fixed # of Calcs, No Memory Stress, 2 Threads, concurrent calls

MT2 Fixed # of Calcs, Memory Stress, 2 Threads, concurrent calls

SCNMT1 Scaling Calcs, No Memory Stress, 1 Thread, concurrent calls

SCMT1 Scaling Calcs, Memory Stress, 1 Thread, concurrent calls

SCNMT2 Scaling Calcs, No Memory Stress, 2 Threads, concurrent calls

SCMT2 Scaling Calcs, Memory Stress, 2 Threads, concurrent calls

SCSMT2 Scaling Calcs, Scaling Memory Stress, 2 Threads, concurr. calls

TABLE III. EXPERIMENTAL WORKLOAD CONFIGURATIONS

Workload Name Calcs Memory Stress Threads Tenancy

NMT1 40 million No 1 n

MT1 40 million array=1 million 1 n

NMT2-seq 40 million No 2 1

NMT2 40 million No 2 n

MT2 40 million array=1 million 2 n

SCNMT1 3060m step 3m No 1 n

SCMT1 3060m step 3m array=1 million 1 n

SCNMT2 3060m step 3m No 2 n

SCMT2 3060m step 3m array=1 million 2 n

SCSMT2 3060m step 3m 11m, step 100k 2 n

The Calcs Service supports generating FaaS workloads
described in tables II and III. We profiled the total number of
page faults running the two-thread calcs service (SCSMT2) on

AWS Lambda at 256MB and observed 15.8x more average
page faults with array sizes of 1,000,000 vs. 1, and 13.2x at
2048MB. More page faults occurred at lower memory settings
because of higher function tenancy on VMs. This confirmed
our memory stress approach successfully generates memory
contention. Memory stress also significantly reduced
performance. When comparing NMT1 and MT1 workloads,
runtimes increased by (3.90x, 3.88x, 3.55x, 2.24x) for 256MB,
512MB, 1024MB, and 2048MB respectively. Memory stress
also increased performance variance. The Coefficient of
Variation (CV), defined as the standard deviation divided by
the mean, provides a normalized comparison of performance
variance. CV increased from (11.9→29.7%, 9.6→25.8%,
9.2→21.7%, 5.5→24.8%) with maximum memory stress for
256MB, 512MB, 1024MB, and 2048MB respectively.

D. Runtime Predictions with Linux Time Accounting

In this paper, we adapt our IaaS cloud performance
modeling techniques leveraging Linux CPU time accounting
for FaaS platforms [57]. Our approach is in contrast to
traditional performance modeling approaches described in
section II.B that leverage application metadata or resource
utilization metrics as features to train models that directly
predict runtime. Linux provides CPU time accounting by
providing metrics that detail time spent in different CPU states
measured in centiseconds (cs). Summing these metrics and
dividing by the number of CPU cores provides the wall clock
time of any profiled workload as in the formula:

Workloadtime =

௨௦ ା ୡ୮୳୰୬ ା ୡ୮୳୍ୢ୪ୣ ା ୡ୮୳୍ୟ୧୲ ା

ୡ୮୳୍୬୲ୗ୰୴ୡ ା ୡ୮୳ୗ୲୍୬୲ୗ୰୴ୡ ା ୡ୮୳୧ୡୣ ା ୡ୮୳ୗ୲ୣୟ୪

ೝೞ

In contrast to training models to predict runtime, we train
individual models to predict individual CPU metrics for FaaS
deployments with different configurations (e.g. memory,
CPUs, or to alternate platforms). We then solve for workload
runtime using the formula. In this paper, we focus on
evaluating this approach for CPU-bound workloads. For these
workloads, the majority of the variance is explained by CPU
user mode time (cpuUsr) and CPU idle time (cpuIdle). We
trained regression models to estimate how individual CPU
metrics scale across different FaaS deployments to different
CPUs, with different memory sizes, etc. Having models for
specific CPUs allows accurate workload runtime and cost
predictions for FaaS functions that run across heterogeneous
CPUs. Table V provides data detailing an example of CPU
heterogeneity on commercial FaaS platforms.

For FaaS functions with different memory reservation sizes,
we observed on platforms that scale CPU power with memory
(e.g. AWS Lambda and Google Cloud Functions), that cpuIdle
time scales inversely with memory size. The workload’s
cpuUsr time remains approximately the same. In effect, the
required cpuUsr time to complete the workload does not
change, but changing the FaaS function memory alters the CPU
timeshare for function execution, and this is reflected by
cpuIdle.

To produce FaaS workload runtime predictions we profiled
our workloads using a base configuration having a fixed CPU
and memory setting (e.g. 256MB CPU E5-2680v2). We

6

generated regression models to convert cpuUsr and cpuIdle to
a variety of target platforms. Deltas of cpuUsr, cpuIdle, CPU
context switches, and page faults were used as independent
variables. We did not incorporate application specific
independent variables to ensure our approach is workload
agnostic. Multiple regression models were trained and
evaluated using RStudio [58]. We then applied Linux time
accounting principles to predict function runtime for 77
different target configurations (e.g. 256MB CPU E5-2676v3 as
one example).

Table IV describes our experiment source and target
platform configurations. Numbers in parentheses indicate the
maximum observed number of co-located function instances on
the VM at different memory configurations. To refer to
different CPUs we use aliases (e.g. a1, a2, i1, i2, etc.), described
in Table V. To address function multitenancy in our models
and normalize predictions, we filtered runs that did not exhibit
maximum tenancy. Due to greedy function placement, the vast
majority of concurrent function invocations were observed to
exhibit maximum tenancy on AWS Lambda.

TABLE IV. RUNTIME PREDICTION SOURCE AND TARGET PLATFORM
CONFIGURATIONS INCLUDING INTEL XEON E5 CPU, MEMORY, AND FUNCTION

TENANCY PER VM IN PARENTHESES

Source Platform Target Platform(s)

CPU Configurations:

AWS 256MB 2680v2 (13) AWS 2676v3:256(13), 512(6), 1024(3), 2048MB(1)

AWS 256MB 2680v2 (13) AWS 2686v4:256(13), 512(6), 1024(3), 2048MB(1)

AWS 256MB 2676v3 (13) AWS 2686v4:256(13), 512(6), 1024(3), 2048MB(1)

Memory Configurations:

AWS 256MB 2680v2 (13) AWS 512MB (6) v2, 1024MB (3) v2, 2048MB (1) v2

AWS 256MB 2676v3 (13) AWS 512MB (6) v3, 1024MB (3) v3, 2048MB (1) v3

AWS 256MB 2686v4 (13) AWS 512MB (6) v4, 1024MB (3) v4, 2048MB (1) v4

IBM Configurations:

AWS 2048MB 2680v2 (1) IBM 2048MB (4): 2683v3, 2683v4, 2650v4, 2690v4

TABLE V. OBSERVED RATIOS OF CPU TYPES ON AWS LAMBDA AND
IBM CLOUD FUNCTIONS FAAS PLATFORMS

Platform Intel Xeon CPU VM Alias %

AWS E5-2680v2 @ 2.8 GHz, 10 core c3 a1 67.5

AWS E5-2676v3 @ 2.4 GHz, 12 core m4 a2 19.9

AWS E5-2686v4 @ 2.3 GHz, 18 core r4 a3 12.5

IBM E5-2683v3 @ 2.0 GHz, 14 core unseen i1 18.4

IBM E5-2683v4 @ 2.1 GHz, 16 core bl2/b1/m1 i2 66.1

IBM E5-2650v4 @ 2.2 GHz, 12 core u1 i3 3.8

IBM E5-2690v4 @ 2.6 GHz, 14 core c1 i4 7.2

IBM Gold 6140 @ 2.3 GHz, 18 core unseen i5 4.5

IV. EXPERIMENTAL RESULTS

To evaluate our research questions, we profiled the
workloads described in Tables II & III on source and target
platforms described in Table IV. We deployed AWS Lambda
functions in the Virginia region. We pinned all Lambda
functions to execute within in the same availability zone (e.g.
us-east-1b) to reduce hardware heterogeneity and increase the
likelihood that experiments run with identical conditions. IBM
Cloud Functions were deployed to the us-south Dallas
datacenter. We identify the prevalence of heterogeneous CPUs
found on both AWS Lambda-VPC (us-east-1b, 350 runs) and
IBM Cloud Functions (south, 1000 runs) in Table V. Our

statistics illustrate one example of possible CPU variance on
commercial FaaS platforms.

A. Performance Variance of FaaS Platforms

To quantify performance variance for RQ-1, we leveraged
our calcs service with the NMT2-seq and NMT2 workloads.
These workloads were designed to minimize non-deterministic
performance behavior. Functions performed a static number of
calculations, using the same operand values, without memory
stress. Our goal was to quantify performance variance on AWS
Lambda and IBM Cloud Functions.

Fig. 3. FaaS workload performance variance resulting from heterogeneity in

CPU type and the number of co-located function executions on host VMs
based on the experiment, platform, and memory reservation size

We compared function runtime for NMT2-seq workloads
performing 40,000,000 calcs (a × b ÷ c) using the same random
seed to select operands. We ran this workload sequentially to
force single tenant function execution to enable measuring
performance across isolated VMs dedicated to individual
requests on both platforms. We measured performance at 256,
512, 1024, and 2048MB and group results by CPU type. CV on
AWS Lambda was 4.54% (256MB), 4.46% (512MB), 4.82%
(1024MB), and 1.03% (2048MB) for function executions
across heterogeneous CPUs as shown in Figure 3. Grouping
runtime by CPU type reduced performance variance to only
0.64%, 0.42%, and 0.45% CV for the a1, a2, and a3 CPUs. On
IBM CV was 16.88% (256MB), 5.78% (512MB), 4.82%
(1024MB), and 9.04% (2048MB) for function executions
across heterogeneous CPUs. Characterizing runtime by CPU
type on IBM did not substantially improve CV: 10.79% (i2
CPU) and 4.07% (i3 CPU). Performance on AWS Lambda a3
CPUs outperformed a1 CPUs by 14.6% (256MB), 16.1%
(512MB), and 16.4% (1024MB), while a3 was about 3.6% faster
than a2. Despite the faster clock speed of the a1 CPU, it only
outperformed a2 and a4 with maximum memory (3008MB),
where the a1 CPU produced runtimes 19.8% less than a2, and
16.5% less than a3. This behavior reflects better single core
performance with the a1 CPU, and better multi-core
performance with the a2 and a3 CPUs which coincides with the
evolution of Intel Xeon processors from v2v3v4. CV
increased as a result of CPU heterogeneity ~7.4x on AWS
Lambda, but only ~1.2x on IBM Cloud Functions. Single
tenant performance variance for function execution with
identical CPUs on IBM was more than 10x that of AWS Lambda
as most of the NMT2-seq workload variance on IBM appeared
to be not related to CPU heterogeneity. We explain key
differences with IBM’s FaaS platform at the end of section IV.B.

7

We next compared performance of the multithreaded NMT2
workload to investigate performance variance for multitenant
function executions on FaaS platforms. Here many, but not all
functions execute with identical tenancy due to greedy function
placement on AWS, e.g. 256MB (commonly 13 tenants),
512MB (6 tenants), 1024MB (3 tenants), and 2048MB &
3008MB (1 tenant) for all CPUs. Here CV increased to 10.31%
(256MB), 9.61% (512MB), and 10% (1024MB) across all CPUs
as shown in Figure 3. On IBM, CV values from multitenancy
were 24.54% (256MB), 17.31% (512MB), 16.57% (1024MB),
and 20.28% (2048MB), nearly 2x more than AWS Lambda.
Moving from single tenant to multitenant function
executions, CV increased ~2.7x on AWS Lambda, and ~2.5x
on IBM Cloud Functions. Given that Lambda employs greedy
function placement across VMs, most executions occur at the
same tenancy level. IBM Cloud Functions had higher CV for the
single tenant NMT2-seq workload producing a lower increase
with multitenancy (NMT2). We illustrate estimated hosting
costs for 1,000,000 function calls in Figure 4, demonstrating
how CPU heterogeneity translates to price volatility. The
“combined” column projects the total cost based on observed
CPU ratios. FaaS CPU heterogeneity results in a lottery,
where lucky users reap lower hosting costs.

Fig. 4. Lambda hosting cost variation, NMT2 with CPU heterogeneity

B. FaaS Runtime Prediction

To investigate RQ-2, we estimate workload runtime with
Linux CPU time accounting, by training individual regression
models to predict specific CPU metrics (e.g. cpuUsr, cpuIdle)
for FaaS deployments with alternate configurations (e.g. CPUs,
memory, commercial FaaS platform). We convert a workload’s
resource utilization profile from one configuration to another
and apply Linux CPU time accounting to generate runtime
predictions. On FaaS platforms, resource utilization metrics
obtained by SAAF originate from containers (IBM) or
MicroVMs (AWS) and are generally isolated to report resource
utilization of individual function executions. Linear regression
and multiple regression can convert individual CPU metrics
with high accuracy. We demonstrate linear regression of
cpuUsr and cpuIdle from AWS Lambda in Figure 5. We
captured CPU resource utilization metrics for single tenant,
single thread invocations of our calcs service at different
memory settings (256MB, 512MB, and 2048MB) on two
different CPUs (Intel Xeon E5-2680v2 @ 2.8 GHz and E5-
2686v4 @ 2.3 GHz). We scaled calculations from 80 to 120
million stepping by 400,000 without memory stress. Linear

regression of cpuIdle time between the 256MB and 512MB
deployments had a coefficient of determination of R2=.988.
Linear regression of cpuUsr time between the E5-2680v2 and
E5-2686v4 CPUs at 2048MB had R2=.974. The high
predictability of individual CPU metrics enables high accuracy
with our Linux time accounting approach to predict runtime.
We trained cpuUsr and cpuIdle models for source and target
platforms described in Table IV and applied Linux time
accounting to generate runtime predictions. The FaaS Runner
automated data collection. Samples matching the desired
source and targets were filtered using R scripts. We investigated
the accuracy of our runtime predictions using successive
workloads each introducing additional performance variance
from SCNMT2SCMT2SCSMT2. The CV for workload
runtime across all CPU and memory configurations was 87.8%,
104.8%, and 114.9% for the respective workloads. Our
objective is that each successive workload introduces more
performance variance providing a greater challenge for
performance prediction.

Fig. 5. cpuIdle & cpuUsr linear regression AWS Lambda

SCNMT2 provides a CPU-bound workload with a scaled
number of random calculations from 30 to 60 million,
leveraging 2 threads without memory stress. SCMT2 performs
the same calculations, but adds fixed memory stress using large
arrays for math operands as described in section III.C. Finally,
SCSMT2 scales the array size from 1 to 1 million in steps of
100,000 to produce 10 different memory stress scenarios. As
Lambda uses greedy function placement across VMs, most
functions execute with the same VM function tenancy. For a
workload of 100 concurrent function executions, approximately
91%, 96%, and 99% execute with identical VM-function
tenancy of 256MB (13 tenants), 512MB (6 tenants), and
1024MB (3 tenants). To simplify performance predictions, we
used profiling data from function executions with maximum
tenancy.

In total, we consider 77 different workload/configuration
scenarios generating runtime predictions for: alternate CPU
types (36), alternate memory settings (27), and alternate
platforms (14). For brevity, detailed prediction statistics for all
workload/configuration scenarios, including average runtime
of workloads, CV, RMSE, MAPE, mean absolute error (MAE),
and degrees of freedom are available online at: [59].

In Figures 6 and 7 we depict the average % error of our
runtime predictions for each workload for every configuration.
Degrees of freedom varied across our tests because of the

8

variable infrastructure received when executing FaaS
workloads. For example, when executing a workload, we may
randomly receive 70 a1 CPUs in one trial, and 47 a1 CPUs in
another. This results in different quantities of training data for
different configurations. The average error for SCNMT2
runtime predictions on different CPUs was just 0.51%, and
with different memory settings 0.59%. Predictions between
the a1 and a3 CPU at 1024MBs had the highest average error at
1.53% and MAE of 62ms, less than the smallest billing
increment of a serverless platform.

Fig. 6. Mean absolute percent error (MAPE) of memory to memory

FaaS runtime prediction models.

Fig. 7. Mean absolute percent error (MAPE) of CPU to CPU

FaaS runtime prediction models.

For SCMT2 workloads that add memory stress, the average
error for runtime predictions for all configurations to
different CPUs was 2.52%. Adding memory stress increased
runtime prediction errors ~5x. The average error for SCMT2
runtime predictions to different memory settings was
3.83%, an increase of ~6.5x over the SCNMT2 workload
without memory stress. Predictions between the a1 and a3 to
512MB, 1024MB, and 2048MB had the highest MAPE at
7.29% producing MAE of 1.81s, 929ms, and 485ms for
respective memory values. All other SCMT2 CPU predictions
had far less error averaging just 0.96% MAPE. One million
function invocations of our SCMT2 workload at 2048MB
memory cost approximately $232.81. To put our runtime
predictions into perspective for the SCMT2 workload, our
worst case runtime error for a1a3 CPU at 2048MB results in
overestimating cost by $16.18, compared to average cost error
of just $5.15 for all SCMT2 runtime predictions.

SCSMT2 workloads introduce variable memory stress
resulting in an average error for SCSMT2 runtime

predictions to different CPUs of 5.10%. With increasing
memory stress, runtime predictions for SCSMT2 had about 2x
more error than SCMT2 workloads. SCSMT2 has a higher CV
than SCMT2 and SCNMT2. Additional memory stress made the
SCSMT2 workload non-deterministic, increasing performance
variance leading to more difficult runtime predictions, and less
accuracy. We project our performance prediction error for the
SCSMT2 runtime predictions to different CPUs with 1,000,000
functions calls in Figure 8. The average error for SCSMT2
runtime predictions to different memory settings was
10.48%. Test data for predicting SCSMT2 workload runtime to
different memory settings also had the highest CV at 36%.
Correspondingly, we observed a decrease in R2 for our
regression models from ~ .98 to .85.

Fig. 8. Percent error of cost predictions for SCSMT2

derived from FaaS runtime prediction models

We evaluated our runtime predictions for SCNMT2
workloads without memory stress deployed on IBM Cloud
Functions [55]. The average error for IBM SCNMT2
runtime predictions to four different CPUs was 3.55%. The
occurrence rates for obtaining different IBM CPUs is described
in Table V. Our prediction error equated to an average of 1.09s,
717ms, 287ms, and 120ms with 256, 512, 1024, and 2048MB.
Average cost error of one million function invocations on IBM
was $4.24 vs. an average workload cost of $119.38.

We observed that IBM shares VMs differently than AWS
Lambda. Where AWS Lambda explicitly couples CPU
timeshare to the memory reservation size, IBM does not adapt
the CPU timeshare based on memory reservation size. IBM
allows co-located function instances to compete for available
CPU time on the VM. This allows users to obtain the best
possible performance based on available resources, resulting in
much higher performance variance. IBM Cloud Functions
differed from AWS Lambda in that host VMs had 4 vCPUs and
16GB of RAM each. IBM function tenancy on each VM maxed
out at: 32x256MB, 16x512MB, 8x1024MB, and 4x2048MB.
This is in contrast to AWS Lambda max tenancy of: 13x256MB,
6x512MB, 3x1024MB, and 1x2048MB. On IBM, single tenant
executions of our NMT2 calcs service at 256MB required just
2091ms, where with full multitenancy performance slowed to
26,816ms, a slowdown of 12.82x. We observed performance
degradation from multitenancy of 5.86x, 3.42x, and 1.69x at
512, 1024, and 2048MB. As configured, we estimate IBM
Cloud Functions to be 63% more expensive than AWS Lambda

9

to execute one million calcs functions with maximum VM
function tenancy resulting from high concurrency. If functions
execute sequentially however, IBM Cloud Functions completes
the workload for just 13.4% the price of Lambda ($8.89) at
256MB. The same workload on IBM can cost anywhere
from $8.89 to $113.97 at 256MB depending on the tenancy
of function executions across VMs driven by the
concurrency of client requests. On IBM, users benefit when
FaaS workloads execute with low concurrency, and pay more
when demand spikes. This provides an excellent example of
pricing obfuscation on serverless platforms.

Table VI shows the CV for FaaS workload runtime for each
of our FaaS workloads contrasted with prediction error. Each
row summarizes model error for predictions to a different target
configuration (e.g. CPU, memory, or platform). Our prediction
error is much lower than CV because we have addressed key
factors responsible for performance variance in our
approach: CPU heterogeneity and function multi-tenancy.
Across all 77 scenarios, we calculated a MAPE of 3.49%,
equaling a cost error of $6.46 for 1,000,000 function workloads
costing an average of $150.45.

TABLE VI. RUNTIME PREDICTION MODEL EVALUATION SUMMARY

Workload
Prediction Type

Number of
Models

Workload
CV

MAPE
Average

Cost Error
Average

Workload Cost
SCNMT2 – CPU 12 21% 0.51% $0.36 $70.27

SCMT2 – CPU 12 23% 2.52% $5.15 $204.23

SCSMT2 – CPU 12 32% 5.10% $8.86 $173.64

SCNMT2 – Memory 9 20% 0.59% $0.45 $76.30

SCMT2 – Memory 9 22% 3.83% $9.07 $236.88

SCSMT2 – Memory 9 36% 10.5% $19.99 $190.80

SCNMT2 - IBM 14 18% 3.55% $4.24 $119.38

Overall Average 77 (sum) -- 3.49% $6.46 $150.45

C. Assessing Workload Predictions

To investigate heuristics for RQ-3 we assessed statistical
correlations between resource utilization metrics and absolute
error of our runtime predictions. Our objective is to identify
heuristics for different types of workloads that employ metric
thresholds to signal when runtime predictions are likely to be
error prone. We evaluated Pearson correlation coefficients
between the absolute error of our runtime predictions and
resource utilization metrics for our SCSMT2 workload tests. We
evaluated correlations for configurations with minimum
(CPU:a2a3 1024MB, memory:2561024 a3), median
(CPU:a2a3 512MB, memory:256512 a1), and maximum
(CPU:a1a3 512MB, 2562048, a1) prediction error. We
ignored metric correlations collinear with runtime: cpuUsr,
cpuIdle, context switches, # of calcs, and the operand array size.

For CPU predictions, a significant positive correlation was
between cpuSteal and prediction absolute error (max: r=.18
p<.0001 df=506, median: r=.25 p<.05 df=70, min: r= n.s.).
CpuSteal ticks are registered when a VM is ready to execute, but
the physical CPU is busy servicing work from other co-located
VMs sharing the physical host, or from the hypervisor itself [27].
CpuSteal introduces performance variance as workloads
underperform for no apparent reason when the CPU is “stolen”
by another VM. For the 12 SCSMT2 CPU and memory
configurations in Figure 7, 4 had a statistically significant
correlation between prediction error and cpuSteal.

For memory predictions, a significant negative correlation
was between freeMemory and prediction absolute error (max:
r=-.154 p<.01 df=324, median: r=-.19 p<.0001 df=506, min: r=-
.25 p<.001 df=177). When VMs had less free memory, our
predictions tended to be less accurate. Runtime predictions from
2562048MB produced on average 4.3x more error than
256512MB or 2561024MB predictions. VM freeMemory
also decreased with function memory size: at 256MB VMs had
approximately ½ the freeMemory of VMs at 2048MB. We
suspect that lower VM freeMemory results from co-located
function instances. In conclusion, 9 memory configurations of
SCSMT2 depicted in Figure, 5 had a statistically significant
correlation between prediction error and VM freeMemory.

V. CONCLUSIONS

In this paper, we introduced the Serverless Application
Analytics Framework (SAAF) and demonstrated how SAAF
supported by the FaaS Runner tool can profile performance,
resource utilization, and infrastructure of concurrent FaaS
workloads. To alleviate pricing obfuscation of software
deployments to serverless platforms, we leveraged Linux CPU
time accounting principles and multiple regression to generate
FaaS function runtime predictions. Equipped with runtime
estimates, FaaS hosting costs were accurately estimated by
applying the platforms pricing policy. Research findings
include: RQ-1: Leveraging SAAF we characterized
performance variance for identical CPU bound workloads on
AWS Lambda, and measured a 0.5% coefficient of variance
(CV) for single tenant runs on identical CPUs. CV increased
~7.4x as a result of CPU heterogeneity, and another ~2.7x from
multitenancy when function instances ran concurrently on the
same host. RQ-2: Leveraging Linux time accounting, we
predicted FaaS workload runtime across different CPUs, with
different memory settings, and to different platforms using
successive workloads that introduce additional performance
variance. Mean absolute percentage error for predictions of 77
scenarios was 3.49%, equating to an average cost error of $6.46
against an average cost of $150.45 for one million function
workloads. Prediction error for workloads without memory
stress was approximately ~0.5%, with fixed memory stress ~3%,
with variable memory stress ~7%, and for deployments to IBM
Cloud Functions ~3.5%. RQ-3: We found cpuSteal to correlate
with prediction error, while host VM freeMemory had a
negative correlation.

ACKNOWLEDGMENTS
This research is supported by NSF Advanced Cyberinfrastructure

Research Program (OAC-1849970), NIH grant R01GM126019, and
the AWS Cloud Credits for Research program.

REFERENCES
[1] M. Yan, P. Castro, P. Cheng, and V. Ishakian, “Building a chatbot with

serverless computing,” in Proceedings of the 1st International Workshop on
Mashups of Things and APIs, 2016, p. 5.

[2] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation with
openlambda,” in 8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16), 2016.

[3] I. Baldini et al., “Serverless Computing: Current Trends and Open Problems,”
in Research Advances in Cloud Computing, 2017.

[4] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Serverless
computing: An investigation of factors influencing microservice performance,”
in Proceedings - 2018 IEEE International Conference on Cloud Engineering,
IC2E 2018, 2018.

[5] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking Behind the
Curtains of Serverless Platforms,” 2018 USENIX Annu. Tech. Conf. (USENIX

10

ATC 18), 2018.
[6] A. Sill, “The Design and Architecture of Microservices,” IEEE Cloud Comput.,

2016.
[7] “Openwhisk common use cases.” [Online]. Available:

https://console.bluemix.net/docs/openwhisk/
openwhisk_use_cases.html#openwhisk_common_use_cases.

[8] “Fn Project – The Container Native Serverless Framework.” [Online].
Available: https://fnproject.io/.

[9] E. Oakes, L. Yang, K. Houck, T. Harter, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Pipsqueak: Lean Lambdas with Large Libraries,” in
Proceedings - IEEE 37th International Conference on Distributed Computing
Systems Workshops, ICDCSW 2017, 2017.

[10] I. Baldini et al., “The serverless trilemma: Function composition for serverless
computing,” in Onward! 2017 - Proceedings of the 2017 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, co-located with SPLASH 2017, 2017.

[11] A. Eivy, “Be Wary of the Economics of ‘Serverless’ Cloud Computing,” IEEE
Cloud Comput., 2017.

[12] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari, “Open Issues
in Scheduling Microservices in the Cloud,” IEEE Cloud Comput., 2016.

[13] M. Eisa, M. Younas, K. Basu, and H. Zhu, “Trends and directions in cloud
service selection,” in Proceedings - 2016 IEEE Symposium on Service-Oriented
System Engineering, SOSE 2016, 2016.

[14] M. Eisa, M. Younas, and K. Basu, “Analysis and representation of QoS
attributes in cloud service selection,” in Proceedings - International Conference
on Advanced Information Networking and Applications, AINA, 2018.

[15] “AWS Lambda Pricing Calculator.” [Online]. Available:
https://s3.amazonaws.com/lambda-tools/pricing-calculator.html.

[16] “Serverless Cost Calculator.” [Online]. Available: http://serverlesscalc.com/.
[17] “[20] Servers.LOL – Serverless Cost Calculator for AWS Lambda – IOPipe.”

[Online]. Available: https://servers.lol/.
[18] “AWS Lambda - Serverless Compute.” [Online]. Available:

https://aws.amazon.com/lambda/.
[19] “Cloud Functions - Event-driven Serverless Computing.” [Online]. Available:

https://cloud.google.com/functions/.
[20] E. Jonas et al., “Cloud programming simplified: a berkeley view on serverless

computing,” arXiv Prepr. arXiv1902.03383, 2019.
[21] Z. Ou et al., “Is the Same Instance Type Created Equal? Exploiting

Heterogeneity of Public Clouds,” IEEE Trans. Cloud Comput., vol. 1, pp. 201–
214, 2013.

[22] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bowers, and M. M.
Swift, “More for your money: Exploiting Performance Heterogeneity in Public
Clouds,” in Proceedings of the Third ACM Symposium on Cloud Computing -
SoCC ’12, 2012, pp. 1–14.

[23] M. S. Rehman and M. F. Sakr, “Initial findings for provisioning variation in
cloud computing,” in Proceedings - 2nd IEEE International Conference on
Cloud Computing Technology and Science, CloudCom 2010, 2010, pp. 473–
479.

[24] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in the
cloud: observing, analyzing, and reducing variance,” Proc. VLDB Endow., vol.
3, pp. 460–471, 2010.

[25] A. O. Ayodele, J. Rao, and T. E. Boult, “Performance Measurement and
Interference Profiling in Multi-tenant Clouds,” in Proceedings - 2015 IEEE 8th
International Conference on Cloud Computing, CLOUD 2015, 2015.

[26] W. Lloyd, S. Pallickara, O. David, M. Arabi, and K. Rojas, “Mitigating resource
contention and heterogeneity in public clouds for scientific modeling services,”
in Proceedings - 2017 IEEE International Conference on Cloud Engineering,
IC2E 2017, 2017.

[27] W. Lloyd, M. Vu, B. Zhang, O. David, and G. Leavesley, “Improving
application migration to serverless computing platforms: Latency mitigation
with keep-Alive workloads,” in Proceedings - 11th IEEE/ACM International
Conference on Utility and Cloud Computing Companion, UCC Companion
2018, 2019.

[28] K. Wang and M. M. H. Khan, “Performance prediction for apache spark
platform,” in Proceedings - 2015 IEEE 17th International Conference on High
Performance Computing and Communications, 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security and 2015 IEEE 12th
International Conference on Embedded Software and Systems, H, 2015.

[29] J. White, M. Matalka, W. F. Fricke, and S. Angiuoli, “Cunningham: a BLAST
Runtime Estimator,” Nat. Preced., 2011.

[30] A. Ganapathi et al., “Predicting multiple metrics for queries: Better decisions
enabled by machine learning,” in Proceedings - International Conference on
Data Engineering, 2009.

[31] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson, “Statistics-driven
workload modeling for the cloud,” in Proceedings - International Conference
on Data Engineering, 2010.

[32] M. Hafizhuddin Hilman, M. A. Rodriguez, and R. Buyya, “Task runtime
prediction in scientific workflows using an online incremental learning
approach,” in Proceedings - 11th IEEE/ACM International Conference on
Utility and Cloud Computing, UCC 2018, 2019.

[33] R. F. Da Silva, G. Juve, M. Rynge, E. Deelman, and M. Livny, “Online Task
Resource Consumption Prediction for Scientific Workflows,” in Parallel
Processing Letters, 2015.

[34] T. P. Pham, J. J. Durillo, and T. Fahringer, “Predicting Workflow Task
Execution Time in the Cloud using A Two-Stage Machine Learning Approach,”
IEEE Transactions on Cloud Computing, 2017.

[35] R. Ghosh, F. Longo, V. K. Naik, and K. S. Trivedi, “Modeling and performance
analysis of large scale IaaS clouds,” Futur. Gener. Comput. Syst., 2013.

[36] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elasticity
provisioning system for the cloud,” in Proceedings - International Conference
on Distributed Computing Systems, 2011, pp. 559–570.

[37] J. L. L. Simarro, R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente,
“Dynamic placement of virtual machines for cost optimization in multi-cloud
environments,” in Proceedings of the 2011 International Conference on High
Performance Computing and Simulation, HPCS 2011, 2011, pp. 1–7.

[38] D. Villegas, A. Antoniou, S. M. Sadjadi, and A. Iosup, “An analysis of
provisioning and allocation policies for infrastructure-as-a-service clouds,” in
Proceedings - 12th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, CCGrid 2012, 2012, pp. 612–619.

[39] S. Yi, D. Kondo, and A. Andrzejak, “Reducing costs of spot instances via
checkpointing in the Amazon Elastic Compute Cloud,” in Proceedings - 2010
IEEE 3rd International Conference on Cloud Computing, CLOUD 2010, 2010,
pp. 236–243.

[40] A. Andrzejak, D. Kondo, and S. Yi, “Decision Model for Cloud Computing
under SLA Constraints,” in IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, 2010,
pp. 257–266.

[41] Q. Zhang, Q. Zhu, and R. Boutaba, “Dynamic Resource Allocation for Spot
Markets in Cloud Computing Environments,” 2011 Fourth IEEE Int. Conf. Util.
Cloud Comput., pp. 178–185, 2011.

[42] J. Spillner, C. Mateos, and D. A. Monge, “Faaster, better, cheaper: the prospect
of serverless scientific computing and HPC,” in Communications in Computer
and Information Science, 2018.

[43] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless execution
of scientific workflows: Experiments with HyperFlow, AWS Lambda and
Google Cloud Functions,” Future Generation Computer Systems, 2017.

[44] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “Serverless execution of scientific
workflows,” in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017.

[45] M. Malawski, K. Figiela, A. Gajek, and A. Zima, “Benchmarking
heterogeneous cloud functions,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2018.

[46] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning models
in a serverless platform,” in Proceedings - 2018 IEEE International Conference
on Cloud Engineering, IC2E 2018, 2018.

[47] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and G. Karsai,
“BARISTA: Efficient and Scalable Serverless Serving System for Deep
Learning Prediction Services,” in 2019 IEEE International Conference on
Cloud Engineering (IC2E), 2019, pp. 23–33.

[48] M. Fotouhi, D. Chen, and W. J. Lloyd, “Function-as-a-Service Application
Service Composition: Implications for a Natural Language Processing
Application,” in Proceedings of the 5th International Workshop on Serverless
Computing, 2019, pp. 49–54.

[49] L. Feng, P. Kudva, D. Da Silva, and J. Hu, “Exploring Serverless Computing
for Neural Network Training,” in IEEE International Conference on Cloud
Computing, CLOUD, 2018.

[50] E. F. Boza, C. L. Abad, M. Villavicencio, S. Quimba, and J. A. Plaza,
“Reserved, on demand or serverless: Model-based simulations for cloud budget
planning,” in 2017 IEEE 2nd Ecuador Technical Chapters Meeting, ETCM
2017, 2018.

[51] M. Villamizar et al., “Infrastructure Cost Comparison of Running Web
Applications in the Cloud Using AWS Lambda and Monolithic and
Microservice Architectures,” in Proceedings - 2016 16th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing, CCGrid
2016, 2016.

[52] L. F. A. Jr, F. S. Ferraz, R. F. A. P. Oliveira, and S. M. L. Galdino, “Function-
as-a-Service X Platform-as-a-Service : Towards a Comparative Study on FaaS
and PaaS,” Twelfth Int. Conf. Softw. Eng. Adv. Funct., 2017.

[53] “SAAF: Serverless Application Analytics Framework.” [Online]. Available:
https://github.com/wlloyduw/SAAF.

[54] “Azure Functions - Develop Faster with Serverless Compute.” [Online].
Available: https://azure.microsoft.com/en-us/services/functions/.

[55] “IBM Cloud Functions.” [Online]. Available: https://cloud.ibm.com/functions/.
[56] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H. Katz,

“Selecting the best VM across multiple public clouds: A data-driven
performance modeling approach,” in SoCC 2017 - Proceedings of the 2017
Symposium on Cloud Computing, 2017.

[57] W. J. Lloyd et al., “Demystifying the Clouds: Harnessing Resource Utilization
Models for Cost Effective Infrastructure Alternatives,” IEEE Trans. Cloud
Comput., vol. To appear, 2015.

[58] “Open source and enterprise-ready professional software for data science -
RStudio.” [Online]. Available: https://www.rstudio.com/.

[59] “The Serverless Application Analytics Framework: Performance Modeling.”
[Online]. Available: https://github.com/wlloyduw/SAAF/blob/master/
perfmodel.pdf.

