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Abstract—Public Infrastructure-as-a-Service (IaaS) clouds 

abstract the physical hardware implementation of resources 

provided to users. Users are not informed about the exact physical 

location of their virtual machines (VMs), the specific hardware 

used, the number of co-resident VMs they reside with, or the 

workloads that co-resident VMs are running. Detecting when VMs 

underperform can help identify resource contention from co-

resident VMs to spur their replacement. In addition, resource 

utilization metrics may help classify performance of runs for use 

in VM performance model datasets that sample the distribution of 

performance outcomes. VM performance models are key to 

optimizing the cost of bioinformatics analyses in the public cloud. 

In this paper, we investigate performance variation of running big 

data genomics workflows in the public cloud.  We examine causes 

of performance variation including VM provisioning, CPU 

heterogeneity, and resource contention. We leverage Amazon 

Elastic Compute Cloud placement groups, a feature designed to 

help influence VM placement on Amazon EC2 to help examine 

how VM placement impacts performance variation. As a use case, 

we investigate the performance of a multi-stage bioinformatics 

RNA sequencing (RNA-seq) analytical workflow consisting of four 

distinct phases, executing in ~90 minutes on average on 8-core 

public cloud VMs. In addition, we investigate whether Linux 

resource utilization metrics collected by profiling workflow runs 

can help identify performance variations.  

I. INTRODUCTION 

In public clouds, provisioning variation refers to the 
random nature of VM placement across physical hosts that 
occurs as a result of the load balancing of VM launch requests 
by the cloud provider.  Where VMs are hosted on public clouds 
is abstracted, and is considered a challenge to infer in real-time 
[1][2][3][4][5][6][7]. Public clouds support features including 
availability zones, virtual private networks, and placement 
groups to help consolidate VMs. These features can help 
influence VM placement relative to other user VMs for 
application hosting to help improve performance.  Though user 
VMs may be controlled, shared physical hosts can still be busy 
with other co-resident resource hungry VMs that consume an 
unusual share of CPU, memory, disk, or network resources. 
Resource contention has been shown to degrade performance 
of scientific applications hosted in public clouds [8][9][10]. 

CPU heterogeneity occurs in the public cloud where cloud 
providers implement the same VM type using more than one 
CPU type. Farley et al. first discovered CPU heterogeneity on 
Amazon EC2 VMs of the same instance type [11].  Farley’s 
work focused on the m1.small instance type demonstrating cost 
savings by discarding VMs with lower performing CPUs. Ou et 

al. identified heterogeneous VM implementations on multiple 
public clouds and found at least four different Intel Xeon CPUs 
used to implement the m1.large EC2 instance type producing 
performance variation of 20% for operating system benchmarks 
[12]. We developed a “trial-and-better” approach where the 
CPU type of VMs are checked upon launch, and those with 
lower performing CPUs are terminated and replaced.  Lloyd et 
al. tested 12 different EC2 VM types and found that 25% were 
implemented with more than one CPU [10]. By leveraging the 
trial-and-better approach, Lloyd demonstrated potential for up 
to 14% performance improvement for RESTful environmental 
modeling web service workloads. 

In this paper, we investigate the implications of VM 
provisioning variation and CPU heterogeneity on the 
performance of a multi-stage bioinformatics RNA sequencing 
(RNA-seq) workflow. We investigate the performance of 
running concurrent instances of this workflow across 
c5.2xlarge EC2 instances equipped with 8 vCPUs. Running the 
RNA-seq workflow concurrently on the cloud is a common 
scenario for exploratory investigations over genomics data.  We 
leverage EC2 placement groups to control VM placement as 
much as possible and study runtime implications. Our empirical 
experiments show that c5 instances, considered the current 
generation of compute optimized VMs in us-east-2 (Ohio), 
exhibit CPU heterogeneity. Nearly half of the instances used 
are the Intel Xeon Platinum 8124M CPU and the other half are 
the Intel Xeon Platinum 8275CL CPU. This CPU heterogeneity 
produced a difference between min/max performance of 19.5% 
for RNA-seq spanning from a minimum of 82m 28s (8275CL) 
to a maximum of 98m 35s (8124M). As workflows are 
deployed thousands of times, this performance variation 
translates to performance losses and cost increases for big data 
analyses.  

When genomics workflows underperform on the public 
cloud, we are interested in developing techniques to 
automatically identify underperforming VMs in real-time so 
they can be replaced. Additionally, when profiling resource 
utilization of workflows to train VM performance models there 
is a desire to adequately sample the entire input space to capture 
the full spread of possible runtimes for a workflow (e.g. 19.5% 
for c5.2xlarge). To ensure training data adequately covers the 
input space, we aim to develop techniques that can suggest 
where a profiling sample lies across the distribution before 
knowing the distribution. We investigate Linux profiling metric 
relationships with workflow runtime to identify relationships to 
spur this effort. 
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A. Research Questions 

This paper investigates the following research questions: 

RQ-1: What is the performance variation of running genomics 
data analytical workflows on the public cloud?  How much do 
factors such as provisioning variation, CPU heterogeneity, and 
resource contention contribute to performance variation? How 
does performance compare to analyses on isolated hosts? 

RQ-2: What relationships exist between Linux resource 
utilization metrics (CPU, memory, disk, and network) and 
workflow runtime? Which metrics trend negatively or 
positively with runtime? Can these relationships help infer 
where a workflow’s runtime lies along the distribution of 
runtimes for a particular VM? 

II. BACKGROUND 

A. CPU Heterogeneity 

Public cloud providers largely have chosen to offer distinct 
types of VMs to cloud users to simplify the task of resource 
allocation to users.  By fixing VM resources to have distinct 
quantities of virtual CPUs (vCPUs), memory, storage capacity, 
and network bandwidth, cloud providers can focus on 
optimizing hardware to deliver these resources in a highly 
available and scalable manner. For example, the Amazon, 
Microsoft, and Google public clouds presently offer more than 
265, 204, and 35 fixed VM types each with predefined 
hardware specifications for the number of vCPUs, RAM size, 
storage type and capacity, and network bandwidth. As cloud 
hardware ages, however, cloud providers are forced to replace 
aging hardware to implement existing VM types with new 
CPUs.  This CPU heterogeneity has been shown to produce 
performance variation for a variety of application workloads 
[10][11][12]. 

TABLE I.  EC2 C5.2XLARGE HETEROGENOUS PROCESSORS: 
INTEL XEON PLATINUM 8124M VS INTEL XEON PLATINUM 8275 CL 

 
Intel(R) Xeon(R) 
Platinum 8124M 
CPU @ 3.00GHz 

Intel(R) Xeon(R) 
Platinum 8275CL 
CPU @ 3.00GHz 

Family/microns/yr Skylake/14nm/2017 
Cascade 

Lake/14nm/2019 

vCPUs/host 72 96 

Physical CPU 
cores/host 

36 48 

Base clock MHz 3000 3000 

Burst clock MHz 
(single/all) 

3400 / 3500 3600 / 3900 

L1 cache: 
1.125 MiB  

(½ data, ½ code) 
1.75 MiB  

(½ data, ½ code) 

L2 cache: 18 MiB 24 MiB 

L3 cache: 24.75 MiB 35.75 MiB 

Total Freq. 53% (16 VMs) 47% (14 VMs) 

Standard Freq. 13% (4 VMs) 20% (6 VMs) 

Cluster Freq. 13% (4 VMs) 20% (6 VMs) 

Spread Freq. 27% (8 VMs) 7% (2 VMs) 

In this paper we focus on performance analysis of the RNA-
seq workflow on c5.2xlarge Amazon EC2 instances. These 
VMs are equipped with 8 vCPUs, 16 GB RAM, EBS storage, 
and up to 10 Gigabit network throughput. For this work we 
created ~30 VMs, where 16 were randomly implemented with 
the Intel Xeon Platinum 8124M CPU, and 14 with the Intel 
Xeon Platinum 8275CL CPU.  Comparison of these two CPUs 

and their occurrence rates observed with different VM 
placement groups appears in Table I. 

B. VM Placement Groups 

Amazon EC2 offers VM placement groups to help influence  
placement of VMs in the public cloud [13][14]. Options include 
spread, cluster, and partition placement groups. With spread 
placement, AWS places instances on distinct hardware using 
distinct racks, where each rack has its own network and power 
source to maximize dispersion.  Spread placement is limited to 
7 VMs per availability zone forcing us to use two availability 
zones to obtain 10 distinct VM placements in the us-east-2 Ohio 
region for our experiments. Spread placement guarantees that 
no two VMs will be co-located with each other. Given that 
genomics workflows are both CPU and I/O intensive, co-
locating all concurrent runs on the same hardware will result in 
interference between runs producing resource contention. 
Spread placement guarantees user VM’s won’t interfere with 
each other, but it does not guarantee resource isolation from 
other user’s VMs.   

Partition placement is similar to spread placement but 
allows for more than one VM to exist in each partition allowing 
for distinct destinations for VMs.  Users are limited to 7 
partitions per availability zone. We do not investigate partition 
placement groups here because RNA-seq workflows run 
standalone on individual VMs and we do not want to co-
schedule concurrent runs on the same hardware. 

Cluster placement packs instances close together inside an 
Availability Zone, to ensure the lowest possible network 
latency and the highest possible network throughput up to 10 
Gbps for TCP/IP traffic. Instances in a cluster placement group 
are placed on the same rack, or on racks close to one another in 
the cloud data center.  Cluster placement for concurrent jobs of 
the same type may increase resource contention and reduce 
performance when VMs that share the same host run identical 
workflows 

III. METHODOLOGY  

A. UMI RNA-seq Workflow 

As a use case we study the performance of the multi-stage 
bioinformatics analytical workflow (RNA sequencing using 
unique molecular identifiers) [15]. To reduce computation time 
and cost as we performed 330 workflow runs, we used a partial 
dataset generated by excluding all but the first million reads 
from the original FASTQ files. The workflow consisted of 4 
distinct phases each requiring different computational 
resources to execute. The first phase is a download phase where 
the workflow downloads input data (8 GB of FASTQ files). The 
second phase is a split step where data demultiplexing is 
performed.  Data is sorted using a sequence barcode to identify 
the originating sample. The third phase aligns the reads to a 
human reference genomic sequence to identify the gene that 
produced the transcript. The final stage is the "merge" phase 
which counts all the aligned reads to identify the number of 
transcripts produced by each gene. RNA-seq was deployed on 
EC2 instances using a Docker container with Ubuntu 16.04 
LTS as the host operating system.  A VM image was created 
which included Docker and all required software dependencies 
for use in launching VMs. 
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Fig. 1. CPU utilization graph for the four phases (download, split, 

align, and merge) of the RNA-seq workflow. The graph depicts  

% CPU time in each CPU mode: cpuIOWait, cpuIdle (CPU idle time), 

cpuKrn (CPU kernel mode), and cpuUsr (CPU user mode) [16]. 

Figure 1 summarizes CPU time of the different RNA-seq 
phases by distinct CPU mode: user mode time, kernel mode 
time, I/O wait time, soft interrupt service time, and idle time. 
The Download phase is limited by the network bandwidth and 
the split phase by disk I/O. These phases bound by I/O exhibit 
high cpuIdle time. The align and merge steps are CPU-bound 
and most of the CPU time is accounted for in CPU user mode. 
For our experiments, we profile resource utilization of RNA-
seq for the entire workflow (all four phases), and for the 
alignment phase, the longest phase (73% of runtime). 

B. Container Profiler 

To profile resource utilization of the RNA-seq workflow in 
our experiments, the Container Profiler tool was used [16].  The 
Container Profiler measures and records resource utilization of 
any containerized task capturing over 50 individual metrics to 
characterize CPU, memory, disk, and network utilization at the 
VM, container, and process levels. All experimental data were 
obtained using the Container Profiler including the runtime of 
each workflow phase. 

C. Cloud Infrastructure for Experiments  

In experiment #1 (RQ-1), we profiled RNA-seq using 30 x 
AWS ec2 c5.2xlarge instances using three different Amazon 
EC2 placement groups to test for performance variation. We 
launched 10 VMs using each placement group: standard 
placement (i.e. no strategy, standard VM launch), spread, and 
cluster.  We leveraged these 30 instances to run the multi-stage 
UMI RNA-seq workflow 3 times each, for a total of 90 different 
runs. For these instances we received 16 with the Intel Xeon 
8124M processor, and 14 with the Intel Xeon 8274CL 
processor. Processor breakdowns by placement group are 
described in Table I. 

For experiment #2 (RQ-2), to test for relationships between 
Linux resource utilization metrics and RNA-seq workflow 
runtime we launched 16 x AWS ec2 c5.2xlarge instances. 9 
instances were created using standard placement, and 7 
instances were created with cluster placement.  For standard 
placement we received 77.7% Xeon 8124M CPUs, and 22.3% 
8275CL CPUs.  For cluster placement we received 71.4% Xeon 
8124M CPUs, and 28.6% Xeon 8275CL CPUs for a total of 12 
x 8124M CPUs and 4 x 8275CL CPUs. Each instance ran the 

RNA-seq workflow 15 times over a 24-hour period for a total 
of 240 runs. By running 15 consecutive iterations of the RNA-
seq on each VM we sought to observe if workflow performance 
was constant or variable over a 24-hour period. Persistently 
slow VMs, once identified, can be replaced to improve 
throughput and runtime while lowering cloud computing costs.  

IV. EXPERIMENTAL RESULTS 

A. RNA-seq Public Cloud Performance Variation  

To determine performance variation for RNA-seq (RQ-1), 
30 runs were profiled using each VM placement strategy (e.g. 
standard, spread, and cluster). An additional 3 runs were 
completed on a c5.2xlarge ec2 dedicated host, a private isolated 
cloud server not shared by any other users to benchmark 
performance when there is no resource contention. 

 

Fig. 2. RNA-seq runtime distribution graphs for c5.2xlarge instances 

by VM placement group and processor type. Graphs on the left depict 

runtime distributions for all four stages of the UMI RNA-seq 

workflow. Graphs on the right depict runtime distribution for the 

alignment phase of the workflow. 

Figure 2 depicts the runtime distributions of RNA-seq for 
each placement group and processor for the entire workflow, 
and just the alignment phase. Most runs on the 8275CL 
processor outperform the 8124M. Figure 2 depicts the 
challenge of capturing training data for VM performance 
models.  CPU heterogeneity increases the sample space of the 
distribution. Statistically, instance types with heterogeneous 
CPUs will be best handled by separating data for each CPU into 
separate distribution curves. The probability of obtaining a 
particular CPU should be considered. Figure 2 also highlights 
the distribution of processors for each VM placement strategy. 

Tables II and III detail runtime statistics for workflow 
runtime on the 8124M and 8275CL CPUs. The tables include 
the percent runtime variation which captures the difference 
between the minimum and maximum. We also calculate the 
coefficient of variation (CV), which is equal to the standard 
deviation over the mean. Table II also details runtime on an 
EC2 dedicated host. Using an isolated host reduced runtime 
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over standard VMs by 10.16% on average, and by 16.44% in 
the extreme case.  

TABLE II.  C5.2XLARGE (XEON 8124M)  

RNA-SEQ WORKFLOW RUNTIME SUMMARY  

 Standard Cluster Spread Dedicated Host 

Max Runtime (sec) 5915 5813 5667 5091 

Min Runtime (sec) 5383 5334 5238 5065 

Average (sec) 5596.33 5577.83 5396.83 5080.67 

(%) Runtime Variation 9.51% 8.59% 7.95% 0.51% 

Coefficient of Variation 3.47% 2.68% 3.28% 0.27% 

TABLE III.  C5.2XLARGE (XEON 8275CL)  

RNA-SEQ WORKFLOW RUNTIME SUMMARY 

 Standard Cluster Spread 

Max Runtime (sec) 5375 5289 5040 

Min Runtime (sec) 4983 5013 4948 

Average (sec) 5129.39 5110.67 4995.33 

(%) Runtime Variation 7.64% 5.40% 1.80% 

Coefficient of Variation 2.13% 1.36% 0.61% 

For both processors, the runtime distribution is the greatest 
when creating an instance with standard VM placement in the 
public cloud, and smallest with spread placement. CV is also 
greatest for standard cloud placement (3.47%). Spread 
placement provided the lowest average runtime for both CPUs. 
These results demonstrate up to a 19.5% performance variation 
for RNA-seq on the c5.2xlarge EC2 instance type with 
differences explained by CPU heterogeneity (8124M vs. 
8275CL), resource contention (standard vs. dedicated host), 
and VM placement (standard vs. spread). 

 

Fig. 3. Resource utilization heatmap (8124M CPU) for the alignment 

phase with clustered (ordered) rows. Negative correlations between 

profiling metrics and runtime can be seen. Columns depict 180 

individual workflow runs from left to right sorted by increasing 

runtime.  

B. Resource Utilization Relationships with Workflow Runtime  

We next investigated relationships between Linux resource 
utilization metrics collected by the Container Profiler with 
RNA-seq workflow runtime (RQ-2) over 240 runs. 75% of the 
runs ran on the 8124M CPU, while 25% ran using the 8275CL. 
We normalized metrics using per minute averages to investigate 
correlations with workflow runtime. Several metrics had 
statistically significant negative correlations with workflow 
runtime (p<.01). Correlations include, VM metrics: disk sector 
reads, CPU context switches, disk sector writes, # of successful 
disk writes, and page faults; Container metrics: disk read bytes, 
and max memory used. 

Figure 3 provides a heatmap that visualizes relationships 
between workflow runtime and Linux resource utilization 
metrics. A cluster of inverse relationships with runtime is seen 
including (container metrics): cDiskWriteBytes, 
cDiskReadBytes, cMemoryMaxUsed, and (VM metrics): 
vDiskSectorReads, vCpuMhz, vCpuContextSwitches, 
vDiskSectorWrites, vDiskSuccessfulWrites, and vPgFaults. As 
future work, we will investigate machine learning classifiers to 
characterize VM performance.  
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