
Security Requirements of Components: A Mapping to the Common Criteria

Wes J. Lloyd, Sudipto Ghosh, Indrajit Ray
Department of Computer Science

Colorado State University
Fort Collins, Colorado 80523

{wlloyd, ghosh, indrajit}@cs.colostate.edu

Abstract

Components provide the building blocks for

developing and delivering software systems in less time
and with richer functionality than systems built using
traditional software development practices. However,
the reliance on using pre-built components may
complicate the assessment of the overall level of
security provided by the system. Assessment of system
security will require security properties of individual
components to be considered as well as the composite
level of security provided by the component based
system. This paper provides an analysis of how the
Common Criteria, an internationally recognized
standard for security requirements definition and
security assessment, can be applied to aid in the
specification and evaluation of security for
components and component-based systems. By
considering the software architecture of the component
based system and the mapping of security requirements
across the individual components of the system, insight
is sought to harness the Common Criteria to assist with
the identification and specification of security
requirements and the assessment of security for
component-based systems.

1. Introduction

The development of software systems in today’s
world of object-oriented, modularized software is
increasingly relying upon the integration and assembly
of pre-built off-the-shelf software components in order
to fulfill the overall system’s functional requirements.
By using components to implement various functions
of a software system, it is expected that these systems
can be developed and delivered faster while exhibiting
higher quality [7]. The use of components in building
software systems is a methodology known as
component-based software development (CBSD).
CBSD processes include familiar development
activities such as requirements definition, and design
specification. In addition, CBSD processes include

additional activities to evaluate, test, and select the
most appropriate components to meet system
requirements [1,15,11]. If software developers are to
rely on the use of preexisting components to provide
the implementation of vital portions of a system’s
functionality, then software engineers need to dedicate
effort towards the evaluation, testing, and selection of
components in order to ensure that the best components
are selected. In this paper we consider the use of
software components to implement the security
requirements for a software system.

Depending on the software system’s requirements
software engineers will consider various issues in the
evaluation and selection of components. Security
issues for software systems should be established prior
to the start of software development in order for them
to be considered for the remainder of the software
development lifecycle [8]. This paper considers how
the Common Criteria, an internationally recognized
standard for security requirements definition and
security assessment, can be used to specify the security
requirements of component-based systems.

Myers states that written and measurable objectives
(requirements) are required in order to perform system
testing [13]. It is widely agreed that requirements must
be defined and quantifiable for testing to be effective.
In addition to conformance testing of security
requirements, which focuses on the correct operation of
individual requirements, security testing at the system
level is desired in order to assess the overall level of
security of the system [4]. In addition to providing
guidance for security requirements identification and
specification, the Common Criteria provide seven
evaluation assurance levels (EALs), which can be used
to assess the overall level of security of the system.
Based on the level of security assurance required,
security testing can be performed appropriately in order
to validate a system’s compliance with a specified EAL
[2].

In this paper we consider how to use the Common
Criteria to identify the security requirements of
components, and component based systems. This
identification is accomplished by using the Common

Criteria as a guide to authoring the software system’s
specification document. Once security requirements
are identified using the Common Criteria, various
testing methods can be used to assure compliance at the
desired EAL. In addition to simply verifying
conformance to security requirements, security testing
techniques such as penetration testing [12] and
vulnerability testing using fault injection [5] are
approaches to security testing which could be
considered when establishing a system’s EAL.

Understanding how the Common Criteria security
requirements map to different types of software
components should help the software designer first in
formally identifying and specifying the security
requirements for the system, and second in constructing
the software design. If the designer identifies specific
security requirements for a system being built, then the
component type mapping can provide insight on which
types of components could be used to provide the
security implementation. The Common Criteria can
then be used to provide the security assessment using
the formal specification of system security
requirements generated in the requirements analysis
phase of system development. In addition to assisting
with the security specification, design and assessment,
the generation of a Common Criteria mapping to
component types may help to identify the most
common security requirements of concern to software
components and component based systems. By
identifying these common security requirements,
research efforts can be directed on developing specific
component security tests that test these requirements.
This component mapping may also be helpful in
identifying where testing efforts should be concentrated
when conducting a security assessment of a component
based system. Considering this research some
questions to consider include: What types of
components will require more rigorous testing to
ensure the overall security of the software system?
What is the impact of a component based system’s
architecture with respect to the difficulties of assessing
the system’s composite security level? Is the difficulty
of security assessment affected by how the security
requirements are implemented across different types of
components? What are the most common security
requirements of software components?

2. Background

Component selection involves a certain amount of
risk due to the inability to foresee complications and
problems once components are put to use. Time
available for testing and evaluation of the components
is often limited due to project budgets and deadlines.
Some risks associated with selecting a poor component
for implementation of security functions include:

• Component does not meet basic functional
security requirements.

Effect: Upon delivery the software system does not
provide required security functions.

• Component in its current state does not meet

future security requirements making it difficult
for the system to be extended to support future
needs.

Effect: The component must be replaced or updated in
order for the software system to support future security
requirements.

• A complex component providing security

functions decreases system maintainability,
and may even result in errors in the original
system construction.

Effect: The complex component is difficult to
understand, leading to additional maintenance activities
associated with using it, which results in higher
software maintenance costs.

• Component decreases the overall level of

system security because of security flaws
leading to confidentiality violations and data
integrity problems.

Effect: Use of the component exposes security holes
that can be exploited causing loss of system
availability, data integrity, and data confidentiality.

The risks identified above must be considered when

evaluating components that will provide the
implementation of system security functions. Non-
functional security requirements such as
understandability, adaptability and maintainability are
common concerns of software developers attempting to
make component selection decisions. Other issues of
concern include: Will components uphold the integrity
and confidentiality of system data they are exposed to?
Do the software components provide vulnerable
mechanisms that can allow intruders access to system
data? Consideration of these risks should help improve
component selection decisions.

The assessment of component security requires
more than the common penetrate and patch techniques
for assessing security. Penetrate and patch techniques
involve the assessment of security by exercising well-
known vulnerabilities of a system in the attempt to
bypass security. Once a given vulnerability is
discovered within a system, a fix is created and the
system is subsequently patched [6]. Several problems
exist with this approach including: allowing hackers the
opportunity to exploit systems that have not been

thoroughly tested, continual maintenance requirements
of installing frequent patches, and the potential that a
patch itself may expose new security holes.

Recent research has considered the need to
understand security properties of components used in
component-based systems. Khan and Han have
developed a security characterization framework,
which allows the security attributes of components to
be defined as a compositional security contract. Using
Khan’s security contracts developers can ensure that
one component’s required security properties conform
to the ensured security properties of another
component. The ensured and required security
properties of component interactions are defined [9].
In a similar but unrelated work Sewell and Vitek
provide a small programming language known as box-p
calculus [14]. The language is used to express the
composition of components while supporting the
enforcement of security policies.

Software organizations developing software
requiring high levels of security are pressured today to
produce highly secure systems with limited time and
budget constraints [3]. The U.S. Government has been
pressured to move towards using component-based
development in order to meet cost, quality, and
schedule constraints. A standardization of security
requirements for software systems has been identified
called the Common Criteria for Information
Technology Security Evaluation. The standard has
been drafted by the Common Criteria project
sponsoring organizations, which includes seven
organizations across six countries in North America
and Europe. [8]

There are two major portions of the Common
Criteria: Security Functional Requirements, and
Security Assurance Requirements. Security Functional
Requirements are functional requirements that can be
identified and used to evaluate a Target of Evaluation
(TOE). A TOE is the software system of concern that
is being evaluated. Security Assurance Requirements
define the scope, depth, and rigor of the security
evaluation activities in order to assure a certain level of
security. Security assurance evaluates all aspects of a
system including: configuration management, delivery,
operation, development, documentation, testing,
vulnerability, and life cycle support.

Figure 1 - Sample class decomposition diagram

The Common Criteria are broken into Classes,
Families, Components, and finally Component
elements (see Figure 1) [8]. A class is a grouping of
families with a focus on a common set of security
attributes. A family is a grouping of components that
share security objectives. A component, with respect
to the Common Criteria, represents a set of individual
related security requirements. Component elements are
specific individual security requirements. An example
of a component element is: “The software system’s
security functions shall protect the stored audit records
from unauthorized deletion.” The label
“FAU_STG.1.1” is used to identify the requirement
where “FAU” represents the class, “STG” the family,
“1” the component within the family, and finally “1”
the component element which states the unique security
requirement.

In [10] Khan considers how the security
requirements of one particular CC security class, user
data protection, apply to a component used in a
medical software system. Kahn states that all of the
requirements in the Common Criteria may not be
applicable directly to software components due to the
distributed nature of components and also the
complexity of the component composition. In this
paper the applicability of security requirements based
on the type of component is considered and also the
mapping of requirements based on the system’s
component architecture.

Voelter has defined a component classification with
two categories of components: logical, and technical
[16]. Logical components are further broken down into
the subcategories of Domain, Data, and User
components. In this paper these classifications are
mapped to the classes of security requirements of the
Common Criteria.

Logical components are:

• Domain: Provide business logic often referred
to as middleware (the controller, in the model,
view, controller aggregate design pattern)

Example: A domain component will perform work on
data within a system. A mortgage component will
provide a set of financial functions for computing
mortgage information. In addition a mortgage
component may interact with data components
containing financial data.

• Data: Provide data access services including

validation, conversion (the model in the
model, view controller aggregate design
pattern)

Example: A data component provides access to data.
A data component must ensure data integrity,

Components

confidentiality, and accessibility. Domain components
will interact with domain and user components

• User: Provide user interface, access to domain

and data components (the view in the model,
view, controller aggregate design pattern)

Example: A user component provides user interface
functionality interconnecting domain and data
components. A text box graphical widget provides the
ability to display and modify the contents of a data
component. A text box may also provide an interface
to invoke business functions of a domain component.

Technical components act as containers or

frameworks that provide a runtime environment for the
component. They handle cross cutting technical
concerns such as transactions, security, failover, and
load balancing. What the specific technical concerns
are, is determined based on the application domain.
Using container components, the separation of
technical concerns can be handled centrally.

3. Component Mapping

There are 11 different security classes in the
Common Criteria. These classes include families of
related security requirements. The (11) classes are:
Security Audit (FAU), Communication (FCO),
Cryptographic Support (FCS), User Data Protection
(FDP), Identification and Authentication (FIA),
Security Management (FMT), Privacy (FPR),
Protection of the system security functions (FPT),
Resource Utilization (FRU), System Access (FTA),
and Trusted path/channels (FTP). Table 1 shows the
relative sizes of the different security classes in the
common criteria. Classes vary in size considerably.
The User Data Protection (FDP) is a very large class
that addresses the numerous requirements concerning
the protection of user data. The Resource Utilization
(FRU) class, a much smaller class, addresses security
issues associated with the availability of required

resources. It is likely that components, which
implement requirements from the larger security
classes, will require more testing effort.

CC Security Class Number Of CC

Requirements
(FAU) - Security Audit 27
(FCO) – Communication 12
(FCS) – Cryptographic Support 5
(FDP) - User Data Protection 67
(FIA) – Identification and
Authentication

20

(FMT) – Security Management 19
(FPR) – Privacy 20
(FPT) – Protection of the System’s
Security Functions

50

(FRU) Resource Utilization 9
(FTA) System Access 15
(FTP) Trusted Path/Channels 6

Table 1 - Number of Security Requirements for
Common Criteria Classes

In order to consider a mapping of the Common

Criteria to Voelter’s component types the role of the
software architecture should be considered. Based on
the software architecture the mapping of common
criteria security requirements to components will vary.
Figure 2 depicts a simplified view of a component-
based architecture. This architecture includes
components from each of the four component types
identified by Voelter. The data components provide
access to a database, or backend data store. These data
components provide wrappers to allow access to the
data. The user interface is implemented using a set of
user components. Domain components perform the
work of the system by interacting between data and
user components. Cross cutting security requirements
that are of consequence to all components in the
architecture can be implemented in the component
framework, which consists of a set of technical
components. The precise distribution of the
implementation of security requirements for a
component-based system is not definite. Many

Figure 2 - Component Based Architecture

 �����
� � � � � 	
 	 ��

� �
 �
� � � � � 	
 	 ��

�� � ��	 �
� � � � � 	
 	 ��

����� ��
 �

� � � � � 	
 	 ��
� ��
 � � � �

�����
� � � � � 	
 	 ��

�����
� � � � � 	
 	 ��

�� � ��	 �
� � � � � 	
 	 ��

�� � ��	 �
� � � � � 	
 	 ��

� �
 �
� � � � � 	
 	 ��

� �
 �
� � � � � 	
 	 ��

�
 � � 	 �� ���
� � � � � 	
 	 ��

�
 � � 	 �� ���
� � � � � 	
 	 ��

�
 � � 	 �� ���
� � � � � 	
 	 ��

�
 � � 	 �� ���
� � � � � 	
 	 ��

�
 � � 	 �� ���
� � � � � 	
 	 ��

��� �
 ��	 �
 ���
 ����������� �
 �

mappings are possible. In one scenario security
requirements could be implemented in various
components across a 3-tier architecture. In another
scenario security requirements could be implemented
using technical components in a common component
framework. The framework provides a central
location for implementing shared security functions.
For a distributed system this central component
framework may provide required functions for the
distributed components to interact. This central
framework is likely to implement various security
functions. It is not reasonable to precisely define
where all software architectures should implement
security requirements. It is possible to identify the
common locations where particular security
requirements are likely to be implemented.

The Security Audit class (FAU) considers
requirements for providing security audit facilities.
Auditing consists of: generating logs of system
activity and events, logging configuration functions,
and providing access to the logs. In addition the audit
logs can require automated analysis to detect
potential breaches of security. Any component that
provides access to system resource(s) may need to
support security-auditing capabilities. Data
components provide a wrapper interface to system
data. Data components that provide operations to
read/write data could include audit functions.
Domain components that perform system tasks could
include security audit functions to log when a
particular operation is performed and who requested
the operation(s) to be performed. The security
auditing features of a component-based system (CBS)
could also be implemented solely using technical
components. This approach considers auditing as a
crosscutting requirement that pertains to the entire
system. In this case auditing functions could be
implemented centrally within a technical component.
Other components would need to access the auditing
functions provided by the technical components
through some interface.

Communication requirements are defined in the
Communication Class (FCO). Communication
security requirements deal primarily with assuring the
identity of parties participating in data exchange.
Non-repudiation of the message originator and
receiver are primary concerns. Within component
based systems, any component that communicates
with another component either in a distributed system
or in a centralized system will need to be concerned
with the repudiation of identities. Domain
components that perform the primary work of the
system are most likely to communicate with external
components. These domain components typically
provide external interfaces enabling system functions
to be invoked externally. It is important that only
those who are properly identified and authorized have

access to system functions. For example: Consider a
component based e-commerce system. One particular
component is responsible for accepting payment
information to authorize purchases. In this scenario
the component should be capable of verifying the
identity of the parties involved in the commerce
exchange. Any domain components providing this
type of functionality should be concerned with non-
repudiation requirements. Technical components
typically provide internal functions and services for
the components making up the component-based
system. For a distributed system, technical
components in a common framework may provide
basic communication functions allowing distributed
components to interact. The technical components,
which compose this framework, may need to consider
non-repudiation requirements in order to validate the
authenticity of parties involved in communication.
Finally a data component, which directly provides
network access to a backend data store, may need to
be concerned with the repudiation of parties making
data read/write requests.

The Cryptographic Support class (FCS) defines
security requirements for cryptography to ensure
information confidentiality. Two families of
requirements consider cryptographic key management
and the operation of encryption algorithms. Any
component, which uses cryptographic techniques to
encrypt data, will need to consider FCS requirements.
Since cryptography deals with confidentiality of data,
data components are most likely to require
cryptographic capabilities. Data components provide
an interface to read/write data. These components
could include the necessary encryption and
decryption functions to ensure confidentiality.
Domain components that enable system events such
as system log-on and user authentication may require
cryptography for exchanging confidential
information. Domain components may provide
secure encrypted communication mechanisms to
external systems. Whenever a domain component is
to provide a facility for confidential data exchange
across a network, cryptographic functions should be
considered. Distributed systems using a component
framework to enable interactions among distributed
components may need encryption capabilities if
confidentiality of data being sent across a network is
of concern. Encryption is likely to be a security
requirement that cross cuts multiple components in
the system. Several data components may need
encryption services and it would be inefficient if each
data component defined its own encryption functions.
A solution that encourages software reuse is to
implement encryption services in a common library of
functions in a common framework of technical
components.

The User Data Protection (FDP) class is the
largest class in the Common Criteria consisting of 67
unique security requirements. Since FDP is such a
large class elements of it can be mapped to all types
of components. The FDP class is concerned with
security functions to enforce integrity of user data.
This class is broken down into four primary groups:
policy related requirements, specific forms of user
data protection, user data management/storage, and
inter-system communication.

Most FDP security requirements are of concern to
data components since they provide the primary
interface to the system data. However FDP
requirements are not solely implemented within the
data components themselves. Access control and
information flow policies are likely to be required for
the information exchange functions provided by these
data components. However the implementation of
these security policies is a common security
requirement for the entire system. Consequently
information flow and access control policies are
likely to be implemented using technical components
in a central component framework.

Data components may implement specific forms
of user data protection to ensure integrity, or they
may use security functionality provided in a
component framework. Data management functions
including support for offline storage, exporting data,
importing data, and protection of data are security
functions data components are likely to implement.

Domain components are likely to implement
communication with other software systems. This
communication can result in sending and receiving
significant amounts of user data across a network. In
this case domain components are likely to be
concerned with data integrity. These domain
components may implement specific forms of user
data protection or call upon functions in a central
component framework to provide security. User
components need to ensure the integrity of
information provided by users to the system. Data
collected from user components should not be
corrupted by a malicious party.

Requirements related to establishing and verifying
user identify are considered in the Identification and
Authentication class (FIA). Logging into a system
typically requires that a user first be identified and
then authenticated based on a password response.
FIA requirements are likely to be implemented in
domain components. The login process is an activity
the system must perform, and domain components
typically enable the actions within a system. For
distributed systems, components communicating
across the network must identify and authenticate
parties involved in the communication to prevent
confidentiality and integrity violations. Such
distributed systems may use technical components in

a central component framework to provide
identification and authentication functions.

Requirements to manage a system’s security data
are defined in a class known as Security Management
(FMT). Management of security data such as access
control lists, capability lists, and security
configuration settings are responsibilities considered
in this class. Components implementing security
functions will require access to this security data.
Technical components in a central framework are
likely to provide a good location for implementing
security data management. Security functions
needing access to security data are likely to be
implemented across many components in the system.
By providing central access to security data its
integrity and confidentiality is more easily ensured.
Using a centralized approach to managing security
data is likely to improve the overall security system’s
maintainability and understandability from a
developer’s point of view. An alternative to having
central management of security data is to scatter
security data across components requiring access to
it. Although this approach is possible it is less ideal
because it complicates the management of security
data by distributing implementation sparsely across
the components in the system.

Security requirements related to user identity
protection and prevention of improper use of user
identify (identify theft) are considered in the Privacy
class (FPR). Since domain components are likely to
handle user identification and authentication
requirements, they could be good candidates to
implement user identity protection and theft
requirements. The user is identified through
interaction with domain components. Steps should be
taken within these domain components to enable
anonymity (no identity exposure), pseudonymity (no
identity exposure but user held accountable),
unlinkability (unable to determine identity of
repeating system usage), and unobservability
requirements (unable to monitor system use).
Implementation of privacy security requirements
could be handled centrally by technical components
interacting with the domain components that provide
the user identification and authentication services.

The FPT class considers the protection of the
application’s overall security system. The FPT class
considers the overall management of the security
functions of the software system. The FPT is a large
class in the Common Criteria consisting of 50 unique
requirements. There are 16 families of requirements
in the FPT class. The majority of the requirements in
FPT apply to system-wide security functions. These
system security functions are easily implemented in
technical components as part of a central component
framework. Many security requirements central to a
system as a whole are found in these families:

Abstract Machine Test, Availability of Security Data,
Confidentiality of Security Data, Integrity of Security
Data, Internal System Security Data Transfer, State
Synchrony Protocol, Time Stamps, Inter-TSF Data
Consistency, Internal Security Data Replication
Consistency, Reference Mediation, Domain
Separation, and Self Security Tests. Security
requirements from the families: Trusted Recovery of
the System on Restart, and Replay Detection, could
apply to Domain components. Domain components
are responsible for executing system actions. A
startup action could be executed by a domain
component. Replay detection could be required of
domain components, which are providing external
communication interfaces.

The Resource Utilization class (FRU) considers
availability of required resources for supporting the
security functions of a system. This includes
requirements to ensure the availability of resources
during all system conditions, including system failure.
In a component-based system the allocation and
management of shared resources is a function that
cross cuts many components. FRU requirements are
most easily implemented using technical components
in a central component framework. FRU requirements
could be implemented in a domain component, when
the domain component is the only component
providing access to a resource. (E.g. the domain
components act as a wrapper to a system resource) If
multiple components access a shared resource then a
mediator, in the form of a domain component, is
needed to manage access. Finally data components
providing security data may need to be fault tolerant
in the event of a failure of the data store.

The System Access class (FTA) considers security
requirements related to establishing a user’s session.
A domain component could provide session tracking
requirements, however all aspects of session
management would need to be supported by a single
domain component. This implementation is unlikely
since the implementations of session tracking
requirements are not easily split across multiple
domain components. Imagine finding a set of
commercial components that handles all aspects of
session management. It is unlikely to find a
component that manages session privileges for users,
and another that enables session creation. Technical
components as part of a central component
framework could more easily implement session
tracking features. The component framework should
already have access to system security data; therefore
it should be easier to implement session management
capabilities using technical components in the
component framework.

The trusted path/channels class (FTP) defines
requirements for having a trusted communication path
between users and the system’s security functions,

and also between the system and other trusted
software systems. Communication activities are
likely to be provided by domain components. A
domain component can provide the required network
functions for the establishment of external
connections to the component-based system. For
distributed systems communication functions could
be implemented in a central component framework.
In this case the implementation of a trusted path
would take place using technical components in the
component framework.

4. Discussion

To summarize the component mapping in the
previous section a 3-point ordinal scale is used to
express the likelihood of a given Common Criteria
security class’s mapping to Voelter’s component
types. The ordinal scale used is described in Table 2.

Rank Description

Empty
(0)

No Mapping: Security requirements of the CC
class are unlikely to be implemented in this type
of component.

1 Weak Mapping: One or more, but not all of the
security requirements of the CC class could be
implemented in this component type.

2 Possible Mapping: More than one and possibly
all of the security requirements of the CC class
could be implemented by multiple components
of this type.

3 Strong Mapping: All of the security requirements
of this CC class could be entirely implemented
by a single component or a fixed set of
components of this type.

Table 2 - Ordinal Scale Describing
Component Mappings

An empty rank (0) indicates that the specified
component type does not implement security
requirements from the CC class. A weak mapping (1)
implies that one or more, but not all of the security
requirements from the CC class could be
implemented by components receiving this ranking.
A possible mapping (2) indicates that multiple
components of the specified type could fully
implement all of the security requirements of the CC
class. When new functions and components are
added to the system, additional implementation of
security may be required. A strong mapping (3)
indicates that a single component or a fixed set of
components can implement all of the security
requirements of the CC class. If new functions and
components are added to the system the
implementation of security functions can entirely rely
on preexisting components. Table 3 provides a
ranking of the mappings of security requirements to

Function Domain
components

Data
Components

User
Components

Technical
Components

Avg mapping to
component types

(FAU) – Security Audit 2 1 3

1.5

(FCO) – Communication 2 1 3 1.5
(FCS) – Cryptographic
Support

1 2 3 1.5

(FDP) - User Data
Protection

2 2 1 2 1.75

(FIA) – Identification and
Authentication

2 3 1.25

(FMT) – Security
Management

1 1 3 1.25

(FPR) – Privacy 3 1 1
(FPT) – Protection of the
Security System

1 3 1

(FRU) Resource
Utilization / Availability

2 1 3 1.5

(FTA) System Access 1 3 1
(FTP) Trusted
Path/Channels

2 3 1.25

Totals 19 8 1 30 -
Table 3 - Common Criteria Security Classes mapping to component types

various component types using the ordinal scale of
Table 2.

Table 3 summarizes the mapping between
Voelter’s component types and the Common Criteria
security classes. From the totals provided by
summing the columns it seems that user components
rarely implement security functions (total=1),
whereas data components are somewhat more
involved with the implementation of system security
requirements (total=8). Domain components could
implement nearly all aspects of security of the
Common Criteria (total=19) if necessary. Technical
components can be used to implement a common
framework to provide security functions across the
application (total=30). Such a common framework is
especially important for distributed systems, which
have additional communication requirements not
present for centralized systems. In a distributed
system, components may need to interact with a
component framework in order to communicate and
interact with the system as a whole.

Domain components typically handle action
related security requirements. Tasks such as
establishing a user’s session, or requesting access to
an audit log, are action-oriented tasks, which the user
may request. Domain components typically provide
the realization of system actions in a component-
based system; therefore we can expect to see some
security requirements being implemented in domain
components.

Data components provide access data stored in
backend data stores such as relational databases, file
systems, etc. Data components are primarily
concerned with the integrity and confidentiality of
data as it flows into and out of data components.

Data components may need to implement special user
data protection schemes and employ access control
policies to ensure data integrity. Encryption may be
required to ensure confidentiality of the data when
transmitted over insecure networks.

User components provide the application interface
to the user. Common user components include
graphical widgets often referred to as controls. For
example: A calendar component is a user component,
which allow for the selection of dates by displaying a
month-based calendar. Sophisticated data grid
components are user components that can display
data in a variety of numerical formats. For user
components one significant security concern is that of
user data protection. When data is provided to/from
user components, the system must ensure that the
integrity and confidentiality of the data is maintained.

The final column shows the “average mapping to
different component types”. A larger number
suggests that the security requirements from the CC
security class could potentiality be implemented in
several different types of components, whereas a
small number suggests that the security requirements
of the CC class are likely to be confined to fewer
types of components. For example privacy
requirements deal with assuring that the user’s
identity remains anonymous. This requirement could
be implemented by a domain component, because the
domain component provides the user login and
authentication capabilities, or within a trusted
component which is part of the component framework
that handles many crosscutting requirements. In
contrast the security auditing could be implemented
in most of the different component types. Auditing
could occur in a domain component for recording

Figure 3 - Component Based System Architecture

results of user driven actions, in a data component for
recording access and changes to data, or in a
technical component as part of a central component
framework.

Figure 3 shows a possible architecture of a
component-based system. In this system various
components interact with the component framework,
which consists of technical components. There are
also various interactions between data, domain, and
user components. The interactions between
components do not conform to any strict rules. This
architecture represents an ad-hoc arrangement of
security functions throughout the components of the
system. In the absence of a common component
framework the mapping of security requirements to
components is likely to be more scattered. Security
requirements will likely be implemented across many
of the components in the system, especially
considering that off-the-shelf domain and data
components may include various security features.
The suggested mappings of CC classes are shown
next to the relevant component types in Figure 3.
Even with several CC security classes handled by the
component framework, data and domain components
may still need to be concerned with the
implementation of various security functions of the
system.

After the requirements definition phase for a
component-based system, by considering the mapping
presented in section 3, insight to the mapping of
security requirements to the components and
component architecture of the system is possible.
This mapping of security requirements to components
can later help to identify where testing efforts should
be focused. Security assessment is likely to be
simpler if a component framework provides the
implementation of common security requirements.
Rigorous unit testing of this framework could lead to
better detection of security flaws in the system. By

centralizing the implementation of security functions
the overall security assessment for the system may
require less effort.

The common criteria define the TSF as the
software system whose security system is being
evaluated. Using the Common Criteria a concise
view of the TSF is a precondition for conducting a
security assessment of the system. For the evaluation
of a component-based software system using the
Common Criteria we can propose that by using the
providing mapping it may be easier to derive the
security specification required for the security
evaluation.

In addition to the complications for security
assessment, a component-based system having
security requirements implemented sparsely across
many components of the system will likely also suffer
from poor software maintainability. Developers will
have difficulty understanding the software design, and
extending it to include new security capabilities.
Diagnosing the cause of a security fault is further
complicated due to the distributed implementation of
security functions across the system’s components.

5. Conclusion and Future Work

In evaluating the Common Criteria applicability to
assessing security of components and component-
based systems the importance of the system’s
software architecture is identified. Depending on the
architecture chosen, many security requirements
could be implemented by technical components in a
central framework or the security requirements could
be scattered more sparsely across various components
of a component based system. User components that
provide an interface for an application have only a
minor role in implementing security requirements for
a component-based system. Data and Domain
components may both implement various security

�����
� � � � � 	
 	 ��

� �
 �
� � � � � 	
 	 ��

�� � ��	 �
� � � � � 	
 	 ��

�
 � � 	 �� ���
� � � � � 	
 	 ��

�
 � � 	 �� ���
� � � � � 	
 	 ��

�
 � � 	 �� ���
� � � � � 	
 	 ��

�
 � � 	 �� ���
� � � � � 	
 	 ��

�����
� � � � � 	
 	 ��

�� � ��	 �
� � � � � 	
 	 ��

� �
 �
� � � � � 	
 	 ��

����� ��
 �

� � � � � 	
 	 ��
� ��
 � � � �

�����
� � � � � 	
 	 ��

� �
 �
� � � � � 	
 	 ��

�� � ��	 �
� � � � � 	
 	 ��

�
 � � 	 �� ���
� � � � � 	
 	 ��

�
 � � 	 �� ���
� � � � � 	
 	 ��

�
 � � 	 �� ���
� � � � � 	
 	 ��

�
 � � 	 �� ���
� � � � � 	
 	 ��

�����
� � � � � 	
 	 ��

�� � ��	 �
� � � � � 	
 	 ��

� �
 �
� � � � � 	
 	 ��

����� ��
 �

� � � � � 	
 	 ��
� ��
 � � � �

FAU
FMT
FPT
FRU
FTA

FCO FIA
FPR FTP FCS FDP

requirements with respect to their functional
application in the system. Ultimately the level of
system security provided by a component based
system is affected by the security properties provided
by the software components, as well as their
composite interactions achieved through integration
in the system architecture.

This paper has suggested how security
requirements are mapped across software components
in a component based system. Analyzing component-
based systems to see if the security requirements are
implemented where suggested could further enhance
this mapping. What are the pitfalls of using the
Common Criteria to assess the security provided by a
component based system? How does the application
domain affect the mapping of security requirements to
components? How can the mapping help to focus
security-testing efforts? Future work is needed to
improve component based software development so
that it is a viable development methodology for
building systems with significant security concerns.

6. References

[1] Bergner, K., Rausch, A., Sihling, M., Vilbig, A.,
Componentware – Methodology and Process, in
Proceedings of 1999 International Workshop on
Component Based Software Engineering held in
conjunction with ICSE99, Los Angeles, CA, USA, pp. 194-
203, 1999.

[2] Caplan, K., Sanders, J.L., Building an International
Security Standard, in IT Professional, vol.1, no.2, March-
April 1999, pp. 29-34.

[3] Devanbu, P. and Stubblebine, S. Software
Engineering for Security: a Roadmap. In The Future of
Software Engineering. Special volume of the proceedings
of the 22nd International Conference on Software
Engineering - ICSE 2000, June 2000.

[4] Dima, A., Wack, J., Wakid, S., Raising the Bar on
Software Security Testing, in IT Professional, vol. 1, no. 3,
May-June 1999, pp. 27-32..

[5] Du, W., Mathur, A.P., Testing for Software
Vulnerability Using Environment Perturbation, in
Proceedings for 2000 International Conference on
Dependable Systems and Networks (DSN 2000), pp. 603-
612, 2000.

[6] Ghosh, A. K., McGraw, G. An Approach for
Certifying Security in Software Components. In
proceedings of the 21st National Information Systems
Security Conference, pp. 42-48, 1998.

[7] Goulao, M., Abreu, F.B., The Quest for Software
Components Quality, in Proceedings for 2002 Computer
Software and Applications Conference, (COMPSAC ’02),
pp. 313-318, 2002.

[8] ISO/IEC-15408 (1999) Common Criteria for
Information Technology Security Evaluation, v 2.0, Nat’l
Inst. Standards and Technology, Washington, DC, June
1999, http://csrc.nist.gov/cc

[9] Khan, K.M. Han, J., Composing security-aware
software, IEEE Software, vol.19, no.1, Jan.-Feb. 2002,
pp.34-41.

[10] Khan, K.M., Han, J., Zheng, Y., Characterizing User
Data Protection of Software Components. In Proceedings
of the 2000 Australian Software Engineering Conference,
Gold Coast, Queensland, Australia, April 2000.

[11] Kotonya, G., Onyino, W., Hutchinson, J., Sawyer, P.,
Canal, J., COTS Component-Based System Development:
Processes and Problems, appears in Business Component-
Based Software Engineering, Kluwer Academic Publishers,
pp. 228-245, 2003.

[12] McDermott, J.P., Attack Net Penetration Testing, in
Proceedings of 2000 workshop on New Security
Paradigms, pp. 15-21, 2001.

[13] Myers, G., Software reliability: principles and
practices: New York: John Wiley & Sons, 1976.

[14] Sewell, P., Vitek, J., Secure Composition of Insecure
Components. In proceedings of the 12th IEEE Computer
Security Foundations Workshop (CSFW-12), Mordano,
Italy, 1999.

[15] Syperski, C., Gruntz, D., Murer, S., Component
Software: Beyond Object-Oriented Programming Second
Edition, Addison-Wesley / ACM Press, 2002.

[16] Völter, M., A Taxonomy for Components, in Journal
of Object Technology, vol. 2, no. 4, July-August 2003, pp.
119-125., http://www.jot.fm/issues/issue_2003_07/article3

