
1

Dissertation Proposal
Computer Science Department

Colorado State University

Autonomous Resource Management for Multi-tier Application Deployment to

Infrastructure-as-a-Service (IaaS) Clouds

Wes J. Lloyd

wlloyd@cs.colostate.edu

Advisor: Dr. Shrideep Pallickara

shrideep@cs.colostate.edu

Summer 2012

Infrastructure-as-a-service (IaaS) clouds provide a new medium for deployment of multi-tier applications. By

harnessing advancements in virtualization, IaaS clouds can provide dynamic scalable infrastructure which can be

managed automatically, enabling applications to scale and load balance stressed components to better meet

workload demands. To maximize performance while minimizing deployment costs, it is necessary to optimize

physical location of virtual machines (VMs) which host application components while considering component

dependencies that affect multiplexing of physical resources such as CPU time, disk and network bandwidth.

Service isolation, hosting each application component using a separate VM has been suggested as a best practice,

but our work has shown this deployment scheme can lead to increased deployment costs (total number of VMs)

without providing performance benefits. This research proposal focuses on solving two primary problems of multi-

tier application deployment to IaaS clouds: (1) automating the determination of good compositions of application

components for deployment to VMs, and (2) autonomic management of virtual infrastructure to support varying

application workloads. Five primary research questions are identified and five experiments are proposed and

described supported by four development tasks in support of this research proposal.

mailto:wlloyd@cs.colostate.edu
mailto:shrideep@cs.colostate.edu

2

1. Introduction

 Cloud computing strives to provide computing as a utility to end users. Three service

levels delineate cloud computing, with each offering additional infrastructure control to the end

user. These include software-as-a-service (SaaS), where computational services such as

computational libraries, modeling engines, and/or application programming interfaces (APIs)

are hosted and made easily accessible to end users. Platform-as-a-service (PaaS) provides

environment hosting allowing developers freedom to design and deploy services as long as they

adhere to specific platform(s). PaaS provides specific relational databases, application servers,

and vendor/platform specific programming APIs while abstracting, hosting, of the underlying

infrastructure. Developers are freed from the burden of infrastructure management enabling

them to focus on the design and development of application middleware. Infrastructure-as-a-

service (IaaS) provides maximum freedom to developers enabling control of the middleware

design, as well as the application infrastructure stack. Developers can freely choose databases,

application servers, cache/logging servers as needed which are all hosted by virtual machines

(VMs). IaaS enables diverse application stacks to be supported through the virtualization of

various operating systems.

 IaaS provides many benefits including easier application migration as existing

applications can often be deployed as-is without extensive rearchitecting or redevelopment

which may be required when deploying applications to PaaS clouds which provide vendor

specific infrastructure. Legacy infrastructure can often be run under IaaS minimizing the need

to rearchitect systems enabling a faster approach towards cloud migration. Avoiding lock-in to

vendor specific application infrastructures and APIs can improve maintainability throughout an

application's life-cycle as vendor specific APIs may incur special costs and have limited support

if abandoned due to business reasons. IaaS clouds also allow granular scaling as individual

components of the application can be scaled as needed to meet demand.

 Multi-tier applications are decomposed into a stack of service-based components

including web server(s), proxy server(s), application server(s), relational and/or NoSQL

database(s), file server(s), distributed caches, log services and others. Service isolation involves

separating the hosting of components of the application stack so they execute using separate

VM instances. Isolation provides components explicit sandboxes, not shared by other systems.

Using hardware virtualization, isolation can be accomplished multiple times for separate

components on a single physical server. Previously, service isolation using a physical data

center required significant server real estate. Hardware virtualization refers to the creation and

use of VMs which run on a physical host computer. Virtualization provides for resource

elasticity where the quantity, location, and size of VM allocations can change dynamically to

meet varying system loads, as well as increased agility to add and remove services as an

application evolves. Service isolation, hardware virtualization, and resource elasticity are key

3

benefits motivating the adoption of IaaS based cloud-computing environments such as

Amazon's Elastic Compute Cloud (EC2).

1.1. Problem

 Given the advantages, IaaS clouds have become very attractive for hosting multi-tier

applications. But how should applications be rearchitected and deployed to take advantage of

the unique characteristics of IaaS? How can the cost of application hosting be minimized while

maximizing application performance? Research to investigate these questions forms the basis

of this research proposal.

1.2. Challenges

 Many challenges ensue when deploying applications to IaaS clouds. Application

components must be distributed using a series of VM images which are used to instantiate

VMs, a concept know as component composition. The number of images and the composition

of components vary. Ideal multi-tier application compositions exhibit very good performance

using a minimum number of images/VMs. These component aggregations exhibit performance

based on how well resource conflicts can be minimized.

 Using brute force performance testing to determine optimal placements is only feasible

for applications with small numbers of components. Bell's number is the number of partitions

of a set (k) consisting of (n) members [52]. If considering an application as a set of (n)

components, then the total number of possible component compositions is Bell's number (k).

Table 1 shows the first few bell numbers describing the possible component compositions for

an application with (n) components. Beyond four components the number of compositions

grows large such that brute force testing to benchmark performance becomes an unwieldy

arduous task. Further complicating testing, public IaaS clouds typically do not provide the

ability to control VM placements making it difficult, if not impossible, to deploy all possible

placements. Exclusive use of physical machines (PMs) is sometimes available for public IaaS

clouds for an additional cost which would allow the needed level of control.

An exponential generating function to generate Bell numbers is given by the formula:

4

Table 1

Number of Multi-tier Application Component Compositions

Number of components (n) Number of compositions (k)

3 5

4 15

5 52

6 203

7 877

8 4140

Provisioning variation, the variability of where application VMs are deployed across the

PMs of a cloud, results in performance variation and degradation [2] [3] [4]. Unwanted multi-

tenancy occurs when multiple VMs which intensively consume the same resource (CPU, Disk

I/O, and Network I/O) reside on the same physical host computer leading to resource

contention and performance degradation. Given an application with 4 components and 15

possible compositions provisioning variation yields 46 variations on how the 15 VMs can be

deployed across the PMs. Both component composition and VM provisioning result in an

explosion of the search space, making brute force testing of all possible deployments

impractical.

 Virtualization enables the resources of physical hardware to be partitioned for use by

VMs. Memory is physically reserved and not shared, while CPU time, Disk I/O and network I/O

are multiplexed and shared by all VMs running on a PM. The VM hypervisor either fully

simulates physical devices using software, a practice known as full virtualization, or virtual

device requests are passed directly to physical devices using para-virtualization. Full and para-

virtualization of disk and network devices both incur overhead because these device operations

incur additional management and in some cases full device simulation in addition to the actual

I/O operations.

2. Prior Work

 Placement of application components across a series of VM images can be envisioned as

a bin packing problem. The traditional bin packing problem states that each bin has a size (V),

and items (a1,...,an) are packed into the bins. For our problem there are a minimum of five bins

describing dimensions of: CPU utilization, disk write throughput, disk read throughput, network

traffic sent, and network traffic received. To treat component composition as a bin packing

problem both the resource capacities of our bins (PMs) as well as the resource consumption of

our items (components) must be quantified. Determining resource utilization and capacities is

5

challenging particularly for stochastic applications and heterogeneous hardware where

resource consumption and performance of resources varies.

 Several approaches exist for autonomic provisioning and configuration of VMs for IaaS

clouds. Xu et al. have identified two classes of approaches in [30]: multivariate optimization

(performance modeling), and feedback control. Multi-variate optimization approaches have a

specific optimization objective, typically improving performance, which is achieved by

developing performance models which consider multiple system variables. Feedback control

approaches based on process control theory attempt to improve configurations by iteratively

making changes and observing outcomes. Formal approaches to autonomic resource

provisioning attempted include: integer linear programming [33] [43], knowledge/case-based

reasoning [37] [38], and constraint programming [40]. Integer linear programming techniques

attempt to optimize a linear objective function. Case based reasoning approaches store past

experiences in a knowledge base for later retrieval which is used to solve future problems by

applying past solutions or inferring new solutions from previous related problems. Constraint

programming is a form of declarative programming which captures relations between variables

as constraints which describe properties of possible solutions. Feedback control approaches

have been built using reinforcement learning [30], support vector machines [11], neural

networks [31] [32], and a fitness function [42]. Performance models have been built using

regression techniques [29], artificial neural networks [13] [30], and support vector machines

[11]. Hybrid approaches which combine the use of performance modeling with feedback

control include: [11] [30] [31] [32].

 Feedback control approaches apply control system theory to actively tune resources to

best meet pre-stated service level agreements (SLAs). Feedback control systems do not

determine optimal configurations as they often consider a smaller subset of the exploration

space as they use actual system observations to train models. This may result in inefficient

control response, particularly upon system initialization. Multivariate optimization approaches

model system performance with larger or complete training data sets enabling a much larger

portion of the exploration space to be considered. Performance models require initialization

with training datasets which can be difficult and time consuming to collect. Models with

inadequate training data sets may be inaccurate and ineffective for providing resource control.

Time to collect and analyze training datasets results in a trade-off between model accuracy vs.

availability. Additionally performance models with a large number of independent variables or

a sufficiently large exploration space exhibit the accuracy vs. complexity trade-off. Difficulty of

collecting training data for models with a large search space, and a large number of variables

leads to increased model development effort possibly forcing a tradeoff with model accuracy to

keep model building tractable. Hybrid autonomic resource provisioning approaches combine

the use of performance models with feedback control system approaches with an aim to

provide better control decisions more rapidly. These systems use training datasets to inform

6

control decisions immediately upon initialization which are further improved as the system

operates and more data is collected. Hybrid approaches often use simplified performance

models which trade-off accuracy for speed of computation and initialization.

 Wood et al. developed Sandpiper, a black-box and gray-box resource manager for VMs

[29]. Sandpiper was designed to oversee server partitioning and was not designed specifically

for IaaS. “Hotspots” are detected when provisioned architecture fails to meet service demand.

Their approach was limited to vertical scaling which includes increasing available resources to

VMs, and VM migration to a less busy PMs as needed. They did not perform horizontal scaling

by launching additional VMs and load balancing. Sandpiper acts as a control system which

attempts to meet a predetermined SLA. Xu et al. developed a resource learning approach for

autonomic infrastructure management [30]. Both application agents and VM agents were used

to monitor performance. A state/action table was built to record performance quality changes

resulting from state/action events. A neural network model was later added to predict reward

values to help improve performance after initialization when the state/action table was only

sparsely populated. Kousiouris et al. benchmarked all possible configurations for different task

placements across several VMs running on a single PM [13]. From their observations they

developed both a regression model and an artificial neural network to model performance.

Their approach did not perform resource control, but focused on performance modeling to

predict the performance implications of task placements. Niehorster et al. developed an

autonomic resource provisioning system using support vector machines (SVMs) for IaaS clouds

[11]. Their system responds to service demand changes and alters infrastructure configurations

to enforce SLAs. They performed both horizontal and vertical scaling of resources and

dynamically configured application specific parameters.

 A number of formal approaches for autonomic resource management appear in the

literature and commonly they've been built and tested with simulations only and not tested

with physical clouds. Lama and Zhou proposed the use of self-adaptive neural network based

fuzzy controllers in [31] [32] and was limited to controlling the number of VMs. Addis et al.

model resource control as a mixed integer non-linear programming problem and apply two

main features of classical local search exploration and refinement in [33]. Maurer et al.

propose using a knowledge management system which uses case based reasoning to minimize

SLA violations, achieve high resource utilization, conserve time and energy and minimize

resource reallocation (migration) [37] [38]. Van et al. treat virtual resource management as a

constraint classification problem and employ the choco constraint solver [40]. Their approach

is model agnostic as individual applications must provide their own performance model(s). Li et

al. propose a linear integer programming model for scheduling and migration of VMs for multi-

cloud environments which considers the costs of VM migration and cloud provider pricing [43].

Bonvin et al. propose a virtual economy which considers the economic fitness of the utility

provided by various application component deployments to cloud infrastructure [42]. Server

7

agents implement the economic model on each cloud node to help ensure fault tolerance and

adherence to SLAs. Unlike above mentioned approaches Bonvin et al. evaluated their approach

using applications running on physical servers, but their approach did not consider server

virtualization but simply managed the allocation/deallocation of services across a cluster of

physical servers.

2.1. Research Gaps

 Table 2 provides a comparison of autonomic infrastructure management approaches

described in [11] [13] [29] [30]. These approaches are compared because of the similarity to

our proposed approach(es) described later in this research proposal. Each of the reviewed

approaches has built a performance model and validated it benchmarking physical hardware in

contrast to theoretical approaches which were validated using only simulation [31] [32] [33]

[37] [38] [40] [43]. The complexity of cloud based systems makes validation using only simple

economics-like simulations of questionable value. Table 2 shows features modeled, controlled,

and/or considered by each of the approaches. Analyzing these approaches helps identify gaps

in existing research. None of the approaches reviewed address composition of application

components, as components were always deployed separately using full VM service isolation.

Service isolation enables easier horizontal scaling of resources for specific application

components but requires the largest number of VMs and may not provide better performance

versus more concise deployments [45] [46]. Several issues were considered by only one

approach including: horizontal scaling of VMs, tuning application specific parameters,

determination of optimal configurations, and live VM migration. None of the approaches in

Table 2 consider many independent variables in performance models and generally focus on a

few select variables purported as the crux of their research contributions while ignoring

implications of other variables. Approaches reviewed did not consider performance

implications of virtualization hypervisor type (XEN, KVM, etc.) or disk I/O throughput, and only

one approach considered implications of network I/O throughput and VM placement across

PMs. Learning approaches which tend towards the use of simplified performance models may

fail to capture the cause of improved performance when too many variables have been omitted

from models. Other issues not addressed include the use of heterogeneous environments

when PMs have varying capabilities, resource contention from interference between

application components, and interference from non-application VMs.

 Research should establish the most important variables for impacting application

performance on IaaS clouds to form a base set of parameters for future performance models.

Performance models may be further improved by the development and application of

heuristics which capture performance behavior and characteristics specific to IaaS clouds. New

performance models should be developed which better capture effects of virtualization,

8

component and VM location, and characteristics of physical resource sharing to support ideal

load balancing of disk I/O, network I/O and CPU resources.

Table 2

Autonomic Infrastructure Management Feature Comparison

Feature controlled / modeled Wood et al.

[29]

Xu et al.

[30]

Kousiouris

et al. [13]

Niehorster

et al. [11]

CPU scheduler credit X X

VM memory allocation X X X

Hypervisor type (KVM/XEN)

Disk I/O Throughput

Network I/O Throughput X

Location of application VMs X

Service composition of VM images

Scaling # of VMs per application component X

Application specific parameters X

SLA/SLO enforcement X X X

Determine optimal configuration X

Live VM migration X

Live tuning of VM configuration X X X

of CPU cores X X X

memory X X X

Performance modeling X X X

Multi-tier application support X X

 Existing gaps in research result from the infancy of cloud computing and the difficulty of

performance modeling while resulting from a large problem space(s) with many potential

independent variables. Benchmarking application resource utilization is difficult as isolating

resource utilization data using public clouds with heterogeneous PMs which may potentially

host multiple unrelated applications is difficult. Collecting resource utilization data involves

overhead and can skew the accuracy of the data. Use of isolated testing environments such as

private IaaS clouds can support testing but private IaaS virtual infrastructure management

(VIM) software is still evolving and presently exhibits variable performance, incomplete feature

sets, and inconsistent product stability [44]. Virtualization further complicates IaaS research, in

9

that the effects of virtualization are often misunderstood as the underlying implementation of

virtualization hypervisors are often misunderstood.

3. Research Goals

 This research proposal proposes to develop and improve autonomic resource

provisioning and infrastructure management to better support hosting multi-tier applications

using IaaS clouds. The aim is to develop heuristics which capture system behavior and devise a

hybrid approach which combines performance modeling and feedback control. The focus is on

two separate problems supporting deployment of multi-tier applications to IaaS clouds:

Problem 1:

Support autonomic determination of application component compositions to support multi-tier

application deployment to VMs

Problem 2:

Automatically scale and configure virtual infrastructure to meet varying application service

demand

 For problem 1, approach(es) will be devised which automatically determine

composition(s) of components that provide ideal application throughput. Rather than

determine the optimal configuration, which may be infeasible in reasonable time for

applications with too many components, our approach will combine performance modeling

with heuristics as an alternative to brute force testing to determine good (but perhaps not

optimal) component compositions. Once a composition has been chosen, VM images will be

generated and an initial application deployment will be made using one VM instance per image.

The initial application deployment (one VM per VM image) will support a base load. Problem 2

focuses on the research and development of a feedback control system to automatically scale

infrastructure based on application service load. For both problems metrics will be developed

and applied to evaluate quality and effectiveness of research system(s) and approach(es).

Autonomic infrastructure management will strive to minimize resources including the number

and size of VMs (memory, disk space, # processors), while maximizing application service

throughput (requests serviced / time). Applications supported are assumed to be non-

stochastic with relatively consistent performance behavior. These problems are related in that

both require performance model(s) to be built and later applied to predict potential

infrastructure management decisions. Performance models and lessons learned from

investigation of research problem 1 are directly applicable to research problem 2.

10

Service request velocity is the number of requests per unit time:

Service request velocity= (# requests / time)

Service demand acceleration is the positive rate of change in service request velocity per unit

time:

Service demand acceleration = (∆ Velocity / time)

Service demand deceleration is the negative rate of change in service request velocity per unit

time.

Our aim is to develop approach(es) to autonomic resource provisioning which aim to (1)

support high service demand acceleration, and (2) balance VM resource utilization in terms of

CPU time, Disk I/O, and Network I/O. Good autonomic infrastructure management systems will

support high service demand acceleration without dropping requests while completing each

service request in less than a predetermined time to support a predetermined service level

agreement (SLA). System(s) supporting high service demand acceleration can be said to have

high responsiveness. Supporting a high service demand deceleration is generally not

considered a challenge as deallocation of virtual resources is not time consuming relative to

acquiring new virtual resources.

Figure 1 - Autonomic Resource Provisioning Quality

 Many possible resource allocations meet service demand (requests/time). In Figure 1,

the graph represents the minimum quantity of resources to meet service demand. Points

above the line represent resource over-allocations incurring a higher cost, and points under the

line represent under-allocations which have lower cost but fail to respond to all service

11

requests. The goal is to identify resource allocations which exhibit the highest performance

with the least number of resources (VMs and VM resources: memory, # cores, disk space).

The curve appears similar to a supply and demand curve from economics. The similarity

between cloud-based resource provisioning and economics is recognized in [42]. In practice

scaling resources rarely achieves linear performance improvement as shown in the graph

because the law of diminishing returns predominates when scaling bottlenecks are not

consistently surmounted.

4. Previous Findings

 Previous findings from preliminary work have helped guide the development of this

research proposal. Previously two variants of the Revised Universal Soil Loss Equation – Version

2 (RUSLE2), an erosion model were deployed as a cloud-based web service to a private IaaS

cloud environment. RUSLE2 contains both empirical and process-based science that predicts rill

and interrill soil erosion from rainfall and runoff. RUSLE2 was developed to guide conservation

planning, inventory erosion rates, and estimate sediment delivery and is the USDA-NRCS agency

standard model for sheet and rill erosion modeling used by over 3,000 field offices across the

United States. RUSLE2 is a good candidate to prototype multi-tier application migration

because its architecture consisting of multiple components: an application server,

geospatial/relational database, file server, logging server, and distributed cache serves as a

good surrogate for multi-tier client/server applications.

 RUSLE2 was originally developed as a Windows-based Microsoft Visual C++ desktop

application. To facilitate functioning as a web service a modeling engine known as the

RomeShell was added to RUSLE2. The Object Modeling System 3.0 (OMS 3.0) framework using

WINE [18] provides middleware to facilitate model to web service inter-operation. The RUSLE2

web service was implemented as a JAX-RS RESTful JSON-based service hosted by Apache

Tomcat [16].

 The two variants of RUSLE2 are referred to as “d-bound” for the database bound variant

and “m-bound” for the model bound variant. The variants are named based on the

predominant application component acting as the application's performance bottleneck

consuming the largest quantity of CPU time. These variants represent two types of common

multi-tier applications relevant in practice: an application bound by the database tier, and an

application bound by the middleware (model) tier. For the “d-bound” version of RUSLE2 two

primary spatial queries were modified to perform a join on a nested query, while the “m-

bound” variant was unmodified. This modification results in the “d-bound” application having a

different application profile than the “m-bound” model. On average the “d-bound” application

requires about 2.45x more CPU time than the “m-bound” variant. The “m-bound” application’s

12

performance is constrained more by I/O performance while the “d-bound” application’s

performance is predominantly CPU-bound.

 In [14] RUSLE2 was deployed using to a Eucalyptus private IaaS cloud consisting of nine

PMs, eight acting as VM hosts. RUSLE2 deployment consisted of four primary components.

Execution times were benchmarked for both 100 and 1,000 model run ensemble tests using a

variety of infrastructure configurations. Scaling infrastructure to support computing an

increasing number of simultaneous model runs was not as simple as increasing the number of

VMs. While scaling infrastructure, a number of bottlenecks occurred which required tuning of

application parameters to surmount. Each of the graphs in Figure 2 shows performance gains

until a specific performance bottleneck occurs, which is surmounted in the following graph.

Figure 2 - Bottlenecks While Scaling Infrastructure

 (a) (b) (c)

 The first graph (a) depicts observed performance increases while scaling the number of

worker threads. The second graph (b) depicts performance increases as the number of VMs

performing modeling computations was increased. The final graph (c) shows performance

increases after tuning the number of worker threads in response to an increased number of M

VMs for the “m-bound” model only. In a related test for the “d-bound” model the number of

shared database connections required tuning when performance was bound by nested

database queries.

 In [45], how application resource utilization profiles were affected based on component

compositions across VMs, VM provisioning variation across PMs, VM memory size allocations,

and hypervisor type KVM/XEN were investigated. To capture VM resource utilization statistics

a profiling script was developed which captures CPU time, disk sector reads and writes (disk

sector=512 bytes), and network bytes sent/received. RUSLE2 was deployed using four VM

images hosting one application component each. VMs types are identified in table 3. The M

component provides model computation and web services using Apache Tomcat. The D

component implements the geospatial database which provides geospatial lookups for climate,

soil, and management data to parameterize model runs. Postgresql was used as a relational

database and PostGIS extensions were used to support geospatial database functions [17] [18].

13

The file server service F was used by the RUSLE2 model as a large cache of static XML files

which parameterize model runs. NGINX [19], a lightweight high performance web server

provided access to a repository of static files on average ~5KB each. The logging service L

provided historical tracking of modeling activity. The Codebeamer tracking facility was used to

log model activity [20]. Codebeamer provides an extensive customizable GUI and reporting

facility. A simple JAX-RS RESTful JSON-based web service was developed to encapsulate logging

functions to decouple Codebeamer from the RUSLE2 web service and also to provide a logging

queue to prevent logging delays from interfering with the RUSLE2 web service. Codebeamer

used the Apache Tomcat web application server and Derby a non-network relational database.

Codebeamer, is a 32-bit application and required the use of the Linux 32-bit compatibility

libraries (ia32-libs) to run on 64-bit VMs. A physical server running the HAProxy load balancer

implements the application's entry point and redirects modeling requests to the VM hosting the

modeling engine. HAProxy is a dynamically configurable very fast load balancer which supports

proxying both TCP and HTTP socket-based network traffic [21].

 Brute force testing was completed of every possible component composition for the

RUSLE2 application as shown in Table 4. In all tests each PM hosted only one VM. Figure 3

shows the variation in resource utilization profiles for the service compositions. For the 15

service compositions, resource utilization data for all components was totaled: CPU time, Disk

sector reads, Disk sector writes, network bytes received, and network bytes sent. Data was

normalized to the average resource consumption for each resource. The graph shows the

absolute value of the deviation from average for each service composition. Larger boxes

indicate a greater deviation from average resource utilization and smaller boxes indicate

compositions which perform close to the average. The graph does not express

positive/negative deviation from average but the magnitude of deviation.

Table 3

RUSLE2 VMs

VM Description

M Model Apache Tomcat 6.0.20, Wine 1.0.1, RUSLE2, Object

Modeling System (OMS 3.0)

D Database Postgresql-8.4.7, and PostGIS 1.4.0-2.

Spatial database consists of soil data (1.7 million

shapes, 167 million points), management data (98

shapes, 489k points), and climate data (31k shapes, 3

million points), totaling 4.6 GB for the state of TN

F Fileserver nginx 0.7.62 to serve XML files which parameterize

the RUSLE2 model. 57,185 XML files consisting of

305MB.

L Logger Codebeamer 5.5 running on Apache Tomcat w/

Apache Derby. Custom RESTful JSON-based

logging wrapper web service.

14

Figure 3 – Resource Utilization Variation for Service Composition

Table 4

VM Component Compositions

Config PM 1 PM 2 PM 3 PM 4

SC1 M D F L

SC2 M D F L

SC3 M D F L

SC4 M D F L

SC5 M D F L

SC6 M D F L

SC7 M D F L

SC8 M D F L

SC9 M D L F

SC10 M F D L

SC11 M F D L

SC12 M L D F

SC13 M L D F

SC14 M D L F

SC15 M L F D

 From component composition testing in [45] and [46] the top 3 performing

compositions SC2, SC6, and SC11 were identified. These compositions performed better than

cpu time disk sector reads disk sector writes network bytes rcvd network bytes sent

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

sc15

sc14

sc13

sc12

sc11

sc10

sc9

sc8

sc7

sc6

sc5

sc4

sc3

sc2

sc1

Resource Type

R
e

s
o

u
rc

e
 f

o
o

tp
ri

n
t

15

isolating each application component on a separate physical node as in SC7. Testing was

required to identify these top performing compositions as intuition was insufficient. The best

compositions appear to isolate the L VM while keeping the D and F VM co-located, but M and

D were separate only sometimes. Altering the VM memory size allocation was also found to

result in changes to resource utilization footprints.

 Service isolation, the practice of isolating each application component to run on a

separate VM exhibited higher overhead leading to performance degradations for top

performing configurations as shown in figure 4. The graphs show the percentage change in

performance resulting from service isolation for the SC2, SC6, and SC11 configurations. In most

cases service isolation decreased model performance, and in all cases service isolation

increased hosting costs requiring 4 VMs versus 2 VMs for SC2, and 3 VMs for SC6 and SC11.

Industry has suggested service isolation as a best practice for deploying multi-tier

applications to IaaS clouds which appears contrary to our results in terms of achieving both

best performance and lowered hosting costs.

 Additional provisioning variation testing was conducted to complete testing of all

possible methods to deploy the application in terms of component and VM location. Table 5

describes these component composition and VM deployment configurations. This testing

validated if component composition testing using only one component per VM (table 4) was

sufficient to find the best configurations. In total 46 configurations of the 15 service

compositions from Table 4 were tested. Test results are shown in Figure 5. The graph shows

the performance difference from average in milliseconds for each configuration. The SC2, SC6,

SC11 configurations and their provisioning variants were the best performing compositions.

SC6A and SC11A performed better than equivalents SC6 and SC11 which used one VM to host

each application component. Testing component composition performance with VMs deployed

to isolated PMs was sufficient to find the best compositions, and co-locating VMs provided

further performance improvements. These results demonstrate that it is not necessary to

exhaustively test all provisioning variations of component compositions to determine the

best compositions.

Figure 4 – Service Isolation Overhead

16

Table 5

Provisioning Variation VM Tests

 PM 1 PM 2

SC2A [M D F] [L]

SC3A [M D] [F L]

SC4A [M D] [F] [L]

SC4B [M D] [F] [L]

SC4C [M D] [F] [L]

SC4D [M D] [L] [F]

SC5A [M] [D F L]

SC6A [M] [D F] [L]

SC6B [M] [D F] [L]

SC6C [M] [D F] [L]

SC6D [M] [L] [D F]

SC8A [M] [D] [F L]

SC8B [M] [D] [F L]

SC8C [M] [D] [F L]

SC8D [M] [F L] [D]

SC9A [M] [D L] [F]

SC9B [M] [D L] [F]

SC9C [M] [D L] [F]

SC9D [M] [F] [D L]

SC10A [M F] [D L]

SC11A [M F] [D] [L]

SC11B [M F] [D] [L]

SC11C [M F] [D] [L]

SC11D [M F] [L] [D]

SC12A [M L] [D F]

SC13A [M L] [D] [F]

SC13B [M L] [D] [F]

SC13C [M L] [D] [F]

SC13D [M L] [F] [D]

SC14A [M D L] [F]

SC15A [M L F] [D]

17

Figure 5 – Provisioning Variation Performance Variation

5. Research Questions

The following research questions will be investigated:

RQ1. Which independent variables best help model application performance (throughput) to

guide autonomic service composition?

To improve performance modeling of multi-tier applications deployed to IaaS clouds the utility

of a number of independent variables not previously studied will be investigated. Variables

describing resource utilization including statistics describing system load, CPU time, disk I/O and

network I/O will be investigated. Both VM and PM statistics will be studied. Other

independent variables to be considered include application component location relative to

other application components, application VM location relative to other application VMs

18

(where VMs host one or more application components), VM configuration parameters including

memory size allocation, # of CPU cores, and hypervisor type (KVM, XEN). The goal is to

determine the most important independent variables for performance modeling to support

building better performance model(s) for predicting performance of different possible

configurations. Additionally multiple approaches to multivariate analysis will be investigated

including but not limited to multiple linear regression (MLR), multivariate adaptive regression

splines (MARS), and artificial neural networks (ANNs).

RQ2. Can VM resource classifications and behavioral rules aid performance predictions to

help determine good service compositions?

A resource utilization classification scheme will be devised to classify application component

resource utilization for CPU time, disk I/O, and network I/O. Application components will be

benchmarked in isolation using separate VMs/PMs to determine their resource requirements

for various service loads. These classifications will then be used to determine service

compositions which balance PM resource utilization. The utility of using component resource

classifications as a heuristic to improve component compositions will be investigated. A

scheme will be developed which characterizes component behavior and dependencies based

on assessing network traffic of components deployed in physical isolation. The existence and

quantity of traffic flowing between components will be captured to express both the existence

and importance of the component dependencies for the application. Component interactions

(network traffic) will be expressed as behavioral rules for the application. The utility of using

these behavioral rules as heuristics to improve component compositions will then be

investigated.

The ultimate goal of developing and investigating both of these heuristics is to support the

development of a component composition approach which determines good service

compositions without requiring brute force testing because for large applications with many

components exhaustive testing of all possible compositions is impractical.

RQ3. How rapidly can VMs be launched in response to service demand acceleration?

Before developing an autonomic resource provisioning system the scaling limitations imposed

by the underlying virtualization and IaaS cloud middleware must be determined. How quickly

application VMs can be launched should be quantified and workarounds developed to support

higher service demand acceleration as needed. One potential workaround is to prelaunch VMs

and suspend or pause them as needed. A tradeoff with pre-launching surplus VMs is higher

hosting costs in exchange for greater responsiveness to demand acceleration.

19

RQ4. Does performance of service compositions change when scaled up?

Do the performance characteristics of service compositions remain the same when the number

of VMs is scaled up? If only some VMs of an application are scaled up, how does this impact

performance? Does the physical placement location of these additional VMs matter? A

possible scenario which may degrade performance could be when multiple instances of a

particular application VM are launched but all assigned to the same PM. This scenario could

result in unwanted resource contention since each instance of the VM depends on the same

resources and they have all been deployed to the same PM. Rules and policies may be needed

to control the physical placement of VMs based on resource profiles as application VMs are

scaled up to meet increased service demand.

RQ5. Which independent variables are most important for modeling application performance

(throughput) in support of autonomic resource scaling?

An extension to RQ1, this research will investigate which independent variables are most

important for modeling application performance when virtual infrastructure is scaled up.

Independent variables to be considered include: Number of VMs (1 to n) per application VM,

VM RAM allocation, VM core allocation, Location of VMs, and application specific parameters

including: number of worker threads, number of database connections, and number of

supported application server connections. The goal is to build a performance model capable of

predicting performance without exhaustive testing of all possible infrastructure configurations.

5.1. Research Approach

 To support this research the Cloud Services Innovation Platform (CSIP) has been

developed in cooperation with the US Department of Agriculture - Natural Resources

Conservation Service (USDA-NRCS) and the US Department of Agriculture – Agricultural

Research Service (USDA-ARS). CSIP provides a generic modeling engine to support deployment

of scientific models using IaaS Cloud based VMs to support multi-core parallel model

computation. CSIP enables modeling-as-a-service by supporting execution of many

simultaneous model runs in parallel for existing legacy models without re-architecting model

code. The Object Modeling System version 3 framework within CSIP provides the basis for

supporting parallel distributed modeling computation for individual computational steps within

a model [16] [17]. OMS was developed by the USDA–ARS in cooperation with Colorado State

University and supports component-oriented simulation model development in Java, C/C++ and

FORTRAN. OMS provides numerous tools supporting data retrieval, GIS, graphical visualization,

20

statistical analysis and model calibration. Using a scalable pool of distributed worker VMs

CSIP's architecture is positioned to extend beyond support of legacy models and support map-

reduce style disaggregation of modeling computation [53]. Models with independent time and

spatial stepping such as discrete event simulations and fully distributed watershed models can

split computations based on discrete time and spatial units for later merging during a reduction

phase. These models are poised as excellent candidates to harness the distributed parallel

computation capability of distributed map-reduce.

 CSIP supports individual model runs and ensemble runs which are groups of modeling

requests bundled together. To invoke CSIP model services a client sends a JSON object

including required parameters. Model results are computed and returned as a JSON object.

Ensemble runs are processed by dividing groups of modeling requests into individual requests

which are then resent to the web service, similar to the “map” function of MapReduce. A

configurable number of worker threads concurrently executes individual runs of the ensemble,

and upon completion results are combined (reduced) into a single JSON response object and

returned.

 To support CSIP two Eucalyptus 2.0 IaaS private clouds hosted by Colorado State

University’s Civil Engineering department have been implemented. Eucalyptus is an open

source framework which provides an implementation of the IaaS architecture [25]. Eucalyptus

supports two common cloud application programming interfaces (APIs) developed by Amazon,

elastic compute cloud (EC2) and simple storage service (S3). EC2 is an API which enables

management of virtual computing infrastructure. VMs can be launched, destroyed, modified,

etc. as needed programmatically using the EC2 API. S3 is an API which supports a non-SQL,

non-relational simple storage system acting as a cloud-based key-value data store. These

private clouds were installed using the engineering college’s local area network and were

isolated to prevent outside access. One cloud consists of (9) SUN X6270 blade servers on the

same chassis sharing a private 1 Giga-bit VLAN. Each blade server is equipped with dual Intel

Xeon X5560-quad core 2.8 GHz CPUs, 24GB ram, and two 15000rpm hard disk drives of 145GB

and 465GB capacity. A second cloud consists of a variety of surplus DELL Poweredge servers

and commodity PCs. Both clouds employ a single server to host cloud services including the

Eucalyptus cloud-controller (CC), cluster-controller (CLC), walrus (VM image) server, and

storage-controller (SC). All other machines are configured as Eucalyptus node-controllers (NCs)

to support hosting one or more VMs using either the XEN or KVM hypervisor [26] [27]. CentOS

5.7 Linux 64-bit is used as the host operating system for cloud nodes running the XEN

hypervisor, and Ubuntu 10.10 Linux is the host operating system for cloud nodes running the

KVM hypervisor. VM guests run Ubuntu Linux 64-bit server 9.10, 10.04, and 10.10. Planned

upgrades to support future research include moving to Eucalyptus 3.1 and Ubuntu 12.04 which

offers native dual hypervisor support (XEN and KVM) using the Linux 3.x kernel.

21

 XEN supports para-virtualization which enables VMs to have nearly direct access to the

host computer's physical disk and network devices to enable faster performance [5] [6] [26]. A

disadvantage of XEN's para-virtualization is that all guest VMs must run a modified operating

system kernel. The kernel-based virtual machine (KVM) hypervisor supports full virtualization

of the underlying operating system allowing VMs to run any operating system without requiring

special kernels. KVM has gained popularity with recent enhancements to Intel/AMD x86-based

CPUs required for running KVM which provide special extensions to support full virtualization of

guest operating systems without modification. These extensions allow device simulation

overhead to be reduced to provide improved performance similar to XEN [10] [27].

 To support research investigating deployment of multi-tier applications to cloud-based

infrastructures several models developed and deployed using the CSIP architecture are

available for study which serve as multi-tier application surrogates. These models include: the

Revised Universal Soil Loss Equation – Version 2 (RUSLE2) [15], the Wind Erosion Prediction

System (WEPS) [48], the Soil Tillage Intensity Rating (STIR), a sub-model of RUSLE2, and the Soil

Conditioning Index (SCI) model [49]. Additionally one or more watershed models may be

deployed using the CSIP infrastructure such as the Soil and Water Assessment Tool (SWAT) [50]

and/or the AgroEcosystem-Watershed model (AgES-W) [51].

5.2. Research Experiments and Tasks

 To investigate research questions detailed in section 5, the following tasks and

experiments outlined in Table 6 are proposed. Experiment and tasks are described in detail

below.

Table 6

Research Question Task and Experiments Relationships

Research Question Experiments / Tasks

RQ1 Experiment 1

RQ2 Task 1, Task 2, Task 3, Experiment 2

RQ3 Experiment 3

RQ4 Experiment 4

RQ5 Task 4, Experiment 5

22

Experiment 1 Component Composition Exploratory Modeling

Goal Investigate independent variables to determine their utility for

performance modeling for singly provisioned component compositions.

Performance model(s) should predict performance without exhaustively

testing all possible component compositions. Emphasis will be on

predicting performance throughput and ranking performance of possible

component compositions.

Research Question RQ1

Summary Determine the best independent variables which help predict

performance for a variety of service compositions based on benchmarks

collected from testing application performance when each application

component has been deployed in physical isolation.

Variables:

 Application profile resource utilization data: CPU time, disk

I/O and network I/O

 Resource utilization and load of VMs/PMs

 VM placement location

 VM configuration parameters: memory allocation, # of CPU

cores, hypervisor type (KVM, XEN, …)

Metrics Independent variables should have high R2 values under multiple linear

regression tests indicating their predictive value. Performance models

should predict good service compositions determined using brute force

testing.

Recently, initial work has been completed for Experiment 1 and a paper summarizing the

results has been submitted to the 2012 IEEE/ACM Utility and Cloud Computing Conference

(UCC) [47].

Task 1 Application Resource Classification

Goal Develop scheme to classify magnitude of resource utilization for CPU

time, disk I/O, and network I/O of application components deployed in

isolation on separate VMs.

Research Question RQ2

Summary Develop classification scheme to express relative resource utilization

for application components. Express resource utilization using numeric

ratio scale normalized from 0 to 1, where 1 represents the maximum

available resources as benchmarked for CPU time, disk I/O, network

I/O for a typical VM (eg. 8 virtual cores, 4 GB ram, 10 GB disk hosted

by one of our private clouds)

An application component's resource utilization can be expressed as:

CPU time = .725
Disk I/O = .212

Network I/O = .100

23

Task 2 Devise Scheme to Capture Application Behavioral Rules

Goal Develop scheme to capture and express application component

interactions. Scheme will provide behavioral guidelines to

investigate independent variables to determine their utility for

performance modeling for singly provisioned component compositions.

Performance model(s) should predict performance without exhaustively

testing all possible compositions.

Research Question RQ2

Summary Deploying all components in physical isolation will increase network

traffic. This network traffic will be assessed and the dependencies and

the magnitude of dependencies captured which occur between

application components.

Magnitude of dependencies for up-link and down-link communication

are expressed using a numeric ratio scale normalized from 0 to 1, where

1 represents the maximum dependency possible (network saturation)

between a component running on one VM interacting with a dependent
component on another VM. The maximum is established using

benchmarks to determine the maximum network throughput supported

between 2 VMs. This approach assumes that dependencies between

components will use TCP socket-based based communication for all

interaction.

Behavior could be stated as follows:

A → B .115

B → C .35

C → A .511

Task 3 Autonomic Component Composition

Goal Using the resource classification scheme and behavior rules developed

in tasks 1 and 2, develop method(s) to automatically determine good
VM image component compositions for multi-tier applications.

Approach(es) should not rely on brute force exhaustive testing of all

possible compositions but be informed by heuristics developed in tasks

1 & 2.

Research Question RQ2

Summary Develop an autonomic component composition scheme combining the

resource utilization classification and behavioral rule heuristics of tasks

1 & 2 to provide a method for determining good service composition(s)

without exhaustive testing of all possible compositions. Exhaustive

testing may be used to validate approach efficacy.

24

Experiment 2 Validate Autonomic Service Composition

Goal Validate component composition approaches developed by task 3.

Quantify the quality of the compositions, and the composition effort

required. Compare service composition approach(es) developed against

other approaches including adhoc (random) composition, and

approaches which exhaustively test all possible compositions (where

feasible). Compare with other approaches from literature if available.

Research Question RQ2

Summary Evaluate quality of autonomic service composition approaches

developed in task 3. Quantify the quality of compositions generated by

the approach(es). Quantify the quality of approach(es) deriving the

compositions.

Metrics Service composition approach(es) are validated using the following

metrics:

Composition Speed: This is the average time required to determine
component compositions. Good approaches will determine service

compositions quickly.

Resource Packing: This is the average number of VMs required for

component compositions. Good approaches will minimize the number

of required VMs for the application deployment.

Composition Quality: This is the average service throughput of

component compositions. Good compositions will support high service

throughput.

Computation Cost: This is the average quantity of CPU time, disk I/O,
network I/O time required to make the component composition

determinations. Good approaches will have the smallest computational

footprints.

Experiment 3 Investigate Virtual Infrastructure Management Limitations

Goal Benchmark performance of launching a variety of VM sizes

Research Question RQ3

Summary Benchmark the capabilities of Virtual Infrastructure Management

(VIM) to determine the physical limitations for scaling. Determine how

rapidly VMs can be launched based on their size and present load of

PMs.

Develop workarounds for performance bottlenecks as needed. Consider

costs of prelaunching additional VMs and placing them in stand-by to
rapidly respond to increased service demand.

Metrics Benchmark VM launch times as a factor of VM disk size.

Small (5 GB disk)

Medium (10 GB disk)

Large (20 GB disk)

25

Experiment 4 Service Composition Scaling Test

Goal Determine if the best component compositions determined by task 3

remain the best compositions when scaled to multiple VMs per system

component and subjected to high load.

Research Question RQ4

Summary Quantify performance of the best component compositions from task 3
to determine if their performance remains favorable versus other

possible compositions when scaled up.

Consider ramifications of the physical placement of additional

application VMs. What is important to know about how the placement

of these additional VMs impacts capacity?

Check for unexpected behavior.

Metrics Compare service response time and service throughput of different

component compositions when scaled to multiple VMs.

Task 4 Develop Autonomic Resource Provisioning System

Goal Develop an autonomic resource provisioning system

Research Question RQ5

Summary Develop a dynamic resource provisioning system which scales

infrastructure resources based on service demand.

The system requires hot spot detection to determine when allocated

resources are insufficient to meet service demand. Hotspot detection

can be based on detection of dropped service requests due to

overloading. Hotspot detection schemes may also attempt to predict

resource shortfalls before they occur based on analysis of usage

patterns.

Scaling and load balancing:

Upon hotspot detection resources should be scaled up and load

balancers reconfigured.

The system will not use brute force testing to determine how to scale

infrastructure but will use performance model(s) informed by heuristics

developed in tasks 1 and 2.

Two or more approaches to performance modeling will be attempted

including a multiple linear regression model and an artificial neural

network.

26

Experiment 5 Evaluate Autonomic Resource Provisioning System

Goal Validate autonomic resource scaling approach(es)

Research Question RQ4

Summary This experiment will validate the effectiveness of the autonomic

resource provisioning system. Where possible our approach will be

contrasted with existing approaches.

Metrics Service Demand Acceleration Responsiveness: Determine the

maximum load acceleration supported without dropping requests.

% of service requests completed: Determine the ratio of completed

requests to total requests.

Adaption time: Determine the time required to adapt (min:sec)

infrastructure before there are no dropped requests for various load

scenarios

Recovery time: Determine the recovery time from failure (min:sec)

before there are no dropped requests

5.3. Benchmarks / Evaluation Metrics

 Metrics will be used to quantify the quality of component composition and autonomic

resource provisioning schemes developed by this research. Time-based performance metrics

will be used to quantify service response time and service throughput of multi-tier applications.

5.3.1. Service Performance Metrics

 The time scale of service performance metrics will be dependent on the service of

interest. The time scale will typically be in seconds or minutes. Service response time is the

execution time required from when the service is invoked until it responds with a result.

Service throughput is the number of service responses produced per unit of time. Service

throughput will be calculated using ensemble tests which combine together service requests

into a single request. The ensemble execution time is the time required to execute all service

requests in the ensemble. Service throughput is computed by normalizing to a common time

unit (e.g. seconds, minutes) the number of service requests completed. For this research the

RUSLE2 and STIR models will express performance in model runs per second, and the WEPS and

SCI models will express performance in model runs per minute.

27

5.3.2. Autonomic Resource Provisioning Quality Metrics

 Responsiveness, will capture the maximum supported load acceleration supported by an

autonomic resource provisioning system without dropping application service requests. When

service request(s) are dropped this is indicative of a hot spot indicating additional resources are

required to meet current demand. The completion rate captures the percentage of service

requests completed relative to the total number of requests issued. The adaption time reflects

the time required to adapt a multi-tier application's infrastructure in response to a change in

service demand. The recovery time is the time required for the system to recover from the

failure of one or more VMs.

5.3.3. Service Composition Quality Metrics

 Composition speed is the computation time required to determine application

component compositions used for deploying components across a set of VMs. Resource

packing density measures the compactness of an application's component composition.

Resource packing density is the ratio of the number of application components to the number

of VMs used for application deployment (components : VMs). Packing density greater than 1

indicates that at least one VMs is multiplexed to host more than one application component. A

very high packing density represents an efficient deployment in terms of hosting costs as the

total number of VMs has been kept low. A packing density of 1 represents total service

isolation. Composition performance quantifies the average service throughput obtained by an

application component composition. Average application service throughput is established by

executing a standardized set of tests which are reused throughout experimentation to

benchmark service performance. The composition footprint measures an application's total

resource utilization profile by totaling together all CPU time, disk I/O, and network I/O for all

VMs of the component composition. Having a high or low composition footprint does not

necessarily correlate with good application performance. Autonomic component composition

schemes should aim to minimize the composition speed, maximize resource packing density,

while maximizing service throughput.

6. Expected Contributions

 This research proposal aims to research and investigate: (1) autonomic approach(es) for

determining ideal component compositions to guide deployment of multi-tier application(s) to

VMs, and (2) autonomic resource provisioning approach(es) to manage and scale infrastructure

to meet service demand for hosting multi-tier applications using IaaS clouds. This research aims

to develop performance model(s) of multi-tier applications hosted by virtualized infrastructure

28

which consider application resource utilization profiles, component compositions across VMs,

and VM physical placements. The effectiveness of harnessing application profile data including

various CPU time, disk I/O, and network I/O heuristics will be quantified for use in models which

aim to predict performance of application deployments. Two primary heuristics will be

developed and investigated to help improve autonomic service composition and resource

provisioning. A resource characterization heuristic will be developed to quantify application

component resource consumption of CPU time, disk I/O throughput, and network I/O

throughput. The utility for supporting load balancing of cloud resources using this heuristic will

be investigated. A component behavior heuristic will be developed and investigated which aims

to capture and quantify the degree of component dependencies. Implications for aiding

determination of ideal component composition(s), and performing autonomic infrastructure

management using performance models aided by both heuristics will be investigated.

Limitations of scaling virtual infrastructure will be quantified and workarounds investigated to

support autonomic resource provisioning. Finally, metrics will be developed to evaluate both

our autonomic service composition and resource provisioning approaches developed by this

research. These metrics are considered research contributions as they are applicable to

evaluating similar autonomic service composition and resource provisioning systems.

Presently multi-tier applications are often deployed to IaaS clouds using service isolation

of application components by deploying components to separate VMs hosted in an ad hoc

manner across PMs. When service isolation is not used, applications are deployed using adhoc

deployments of components to VMs which may or may not provide ideal utilization of physical

resources. IaaS clouds are not intelligent in how VMs are deployed and how application

infrastructure is supported. This research proposes to develop approaches which (1) improve

the initial composition of application components deployed to VMs, and (2) improve

management of cloud infrastructure by considering application resource requirements and

profile characteristics enabling better sharing and utilization of physical resources.

6.1. Related research

 Autonomic service composition and resource provisioning for hosting multi-tier

applications using IaaS clouds is a compound problem which crosscuts many existing areas of

distributed systems research. Related research problems which are NOT the primary focus of

this work are described below. These research problems can be as considered related research

and potential future work, but are generally considered as non-goals of this work.

29

6.1.1. Heterogeneous physical infrastructure

 This research does not focus on the implications of IaaS clouds consisting of

heterogeneous physical infrastructure. Having physical hosts with unequal resource capacity

adds another dimension to the resource provisioning problem. Support for heterogeneous

hardware for PMs acting as VM hosts will be developed only as needed but is not a focus of this

research.

6.1.2. Stochastic applications

 This research focuses on autonomic service composition and resource provisioning to

support hosting a single non-stochastic multi-tier application which exhibits stable resource

utilization characteristics. The primary focus is to support application deployment and

infrastructure management for service-based applications which provide modeling or

computational engines as a service to end users. Applications with non-deterministic stochastic

behavior are not the focus of this work.

6.1.3. External Interference

 Public IaaS clouds and private IaaS clouds hosting multiple applications may experience

interference when multiple applications simultaneously share the same PMs hosting

application infrastructure. Interference from external applications, particularly stochastic

applications, can cause unpredictable behavior. The research will focus on service composition

and resource provisioning for a single multi-tier application. Future work could include

extending our approach to support autonomic resource provisioning for multiple co-located

non-stochastic applications. At the virtualization level, the ability for hypervisors to host

multiple VMs while minimizing interference is an active research topic [8] [9] [10].

6.1.4. Fault tolerance

 This research does not focus exclusively on fault tolerance of the virtual infrastructure

hosting multi-tier applications. Fault tolerance is considered an autonomic resource

provisioning system feature, but is not a primary focus of this research. Fault tolerance support

and investigation of fault tolerance research questions related to autonomic resource

provisioning systems is considered as future or related work.

30

6.1.5. Hot-spot detection

 This research does not focus specifically on development of novel hot spot detection

schemes. Hot spot detection scheme(s) are required for autonomic resource provisioning and

appropriate methods will be chosen and developed as needed.

7. Summary

This proposal focuses on research and investigation of challenges related to developing

autonomic component composition and resource provisioning systems to support deployment

of multi-tier applications to IaaS clouds. Five primary research questions have been identified

and five experiments supported by four development tasks have been detailed to support this

research. At the conclusion of this research one or more approaches to the two primary

problems will be developed and demonstrated using available multi-tier environmental science

applications. This research will (1) develop performance models and heuristics which support

prediction of ideal compositions of application components for deployment across VMs, and (2)

develop performance models and heuristics which support autonomic resource provisioning to

scale virtual infrastructure autonomously based on application service demand. This research

aims to develop approaches for intelligent infrastructure management which improve existing

IaaS cloud technology by moving IaaS virtual infrastructure management from simple

management of pools of VMs, to intelligent systems which balance resource utilization of CPU,

disk, and network resources to improve application performance and utilization of physical

infrastructure.

References

[1] Vouk, M., “Cloud Computing – Issues, Research, and Implementations”, Proc. 30th Intl.
Conf. Information Technology Interfaces (ITI 2008), Cavtat, Croatia, June 23-26, 2008,
pp. 31-40.

[2] Rehman, M., Sakr, M., “Initial Findings for Provisioning Variation in Cloud Computing”,
Proc. of the IEEE 2nd Intl. Conf. on Cloud Computing Technology and Science (CloudCom
'10), Indianapolis, IN, USA, Nov 30 – Dec 3, 2010, pp. 473-479.

[3] Schad, J., Dittrich, J., Quiane-Ruiz, J., “Runtime Measurements in the Cloud: Observing,
Analyzing, and Reducing Variance”, Proc. of 36th Intl. Conf. on Very Large DataBases
(VLDB 2010), Singapore, China, Sept 13-17, 2010, pp. 460-471.

[4] Zaharia, M., Konwinski, A., Joesph, A., Katz, R., Stoica, I., “Improving MapReduce
Performance in Heterogeneous Environments”, Proc. 8th USENIX Conf. Operating
systems design and implementation (OSDI '08), San Diego, CA, USA, Dec 8-10, 2008, pp.
29-42.

31

[5] Camargos, F., Girard, G., Ligneris, B., “Virtualization of Linux servers”, Proc. 2008 Linux
Symposium, Ottawa, Ontario, Canada, July 23-26, 2008, pp. 73-76.

[6] Armstrong, D., Djemame, K., “Performance Issues In Clouds: An Evaluation of Virtual
Image Propagation and I/O Paravirtualization”, The Computer Journal, June 2011, vol.
54, iss. 6, pp. 836-849.

[7] Jayasinghe, D., Malkowski, S., Wang, Q., Li, J., Xiong, P., Pu, C. “Variations in
Performance and Scalability when Migrating n-Tier Applications to Different Clouds”,
Proc. 4th IEEE Intl. Conf on Cloud Computing (Cloud 2011), Washington D.C., USA, July,
2011, pp. 73-80.

[8] Matthews, J., Hu, W., Hapuarachchi, M., Deshane, T., Dimatos, D., Hamilton, G.,
McCabe, M., Owens, J., “Quantifying the Performance Isolation Properties of
Virtualization Systems”, Proc. ACM Workshop on Experimental Computer Science
(ExpCS ’07), New York, NY, USA, 2007, Article 6.

[9] Somani, G., Chaudhary, S., “Application Performance Isolation in Virtualization”, Proc.
2nd IEEE Intl. Conf on Cloud Computing (Cloud 2009), Bangalore, Indian, Sept 2009, pp.
41-48.

[10] Raj, H., Nathuji, R., Singh, A., England, P., “Resource Management for Isolation Enhanced
Cloud Services”, Proc. ACM Cloud Computing Security Workshop (CCSW ’09), Chicago, IL,
USA, Nov, 2009, pp. 77-84.

[11] Niehörster, O., Krieger, A., Simon, J., Brinkmann, A., “Autonomic Resource Management
with Support Vector Machines”, Proc. 12th IEEE/ACM Intl. Conf. On Grid Computing
(GRID 2011), Lyon, France, Sept 21-23, 2011, pp. 157-164.

[12] Tordsson, J., Montero, R., Moreno-Vozmediano, R., Llorente, I., “Cloud brokering
mechanisms for optimized placement of virtual machines across multiple providers”,
Future Generation Computer Systems, vol. 28, 2012, pp. 358-367.

[13] Kousiouris, G., Cucinotta, T., Varvarigou, T., “The effects of scheduling, workload type
and consolidation scenarios on virtual machine performance and their prediction
through optimized artificial neural networks”, The Journal of Systems and Software, vol.
84, 2011, pp. 1270-1291.

[14] Lloyd, W., Pallickara, S., David, O., Lyon, J., Arabi, M., Rojas, K., “Migration of Multi-tier
Applications to Infrastructure-as-a-Service Clouds: An Investigation Using Kernel-Based
Virtual Machines”, Proc. 12th IEEE/ACM Intl. Conf. On Grid Computing (GRID 2011),
Lyon, France, Sept 21-23, 2011, pp. 137-143.

[15] United States Department of Agriculture – Agricultural Research Service (USDA-ARS),
Revised Universal Soil Loss Equation Version 2 (RUSLE2), http://www.ars.usda.gov/
SP2UserFiles/Place/ 64080510/RUSLE/RUSLE2_Science_Doc.pdf

[16] Ahuja, L., Ascough, J., David, O., “Developing natural resource modeling using the object
modeling system: feasibility and challenges”, Advances in Geosciences, vol. 4, 2005, pp.
29-36.

[17] David, O., Ascough, J., Leavesley, G., Ahuja, L., “Rethinking modeling framework design:
Object Modeling System 3.0”, Proc. iEMSs 2010 Intl. Congress on Environmental
Modeling and Software, Ottawa, Canada, July 5-8, 2010, 8 p.

[18] WineHQ – Run Windows applications on Linux, BSD, Solaris, and Mac OS X,
http://www.winehq.org/

http://www.ars.usda.gov/
http://www.winehq.org/

32

[19] Apache Tomcat – Welcome, 2011, http://tomcat.apache.org/
[20] PostGIS, 2011, http://postgis.refractions.net/
[21] PostgreSQL: The world's most advanced open source database,

http://www.postgresql.org/
[22] nginx news, 2011, http://nginx.org/
[23] Welcome to CodeBeamer, 2011, https://codebeamer.com/ cb/user/
[24] HAProxy – The Reliable, High Performance TCP/HTTP Load Balancer,

http://haproxy.1wt.eu/
[25] Nurmi, D. et al., “The Eucalyptus Open-source Cloud-computing System”, Proc. IEEE Intl.

Symposium on Cluster Computing and the Grid (CCGRID 2009), Shanghai, China, May
18-21, 8p.

[26] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A., “Xen and the Art of Virtualization”, Proc. 19th ACM Symposium on
Operating Systems Principles (SOSP '03), Bolton Landing, NY, USA, Oct 19-22, 2003, 14 p.

[27] Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A., “kvm: the Linux Virtual Machine
Monitor”, Proc. 2007 Ottawa Linux Symposium (OLS 2007), Ottawa, Canada, June 27-30,
2007, pp. 225-230.

[28] Myers, R., “Classical and Modern Regression with Applications”, 2nd Edition, PWS-KENT
Publishing Company, Boston, MA, 1994.

[29] Wood, T., Shenoy, P., Venkataaramani, A., Yousif, M., “Sandpiper: Black-box and gray-
box resource management for virtual machines”, Computer Networks, vol. 53, 2009, pp.
2923-2938.

[30] Xu, C., Rao, J., Bu, X., “URL: A unified reinforcement learning approach for autonomic
cloud management”, Journal of Parallel and Distributed Computing, vol. 72, 2012, pp.
95-105.

[31] Lama, P., Zhou, X., “Efficient Server Provisioning with Control for End-to-End Response
Time Guarantee on Multitier Clusters”, IEEE Transactions on Parallel and Distributed
Systems, vol. 23, No. 1, Jan 2012, pp. 78-86.

[32] Lama, P., Zhou, X., “Autonomic Provisioning with Self-Adaptive Neural Fuzzy Control for
End-to-end Delay Guarantee”, Proc. 18th IEEE/ACM Int. Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS 2010),
Miami Beach, FL, USA, August 17-19, 2010, pp. 151-160.

[33] Addis, B., Ardagna, D., Panicucci, B., Milano, P., Zhang, L., “Autonomic Management of
Cloud Service Centers with Availability Guarantees”, Proc. 3rd IEEE Int. Conf. On Cloud
Computing (CLOUD 2010), Miami FL, USA, July 5-10, 2010, pp. 220-227.

[34] Casale, G., Kraft, S., Krishnamurthy, D., “A Model of Storage I/O Performance
Interference in Virtualized Systems”, Proc. 31st Int. Conf. On Distributed Computing
Systems Workshops (ICDCSW 2011), Minneapolis MN, USA, June 20-24, 2011, pp. 34-39.

[35] Casalicchio, E., Silvestri, L., “Architectures for Autonomic Service Management in Cloud-
Based Systems”, Proc. 16th IEEE Symposium on Computers and Communication (ISCC
'11), Kerkyra, Greece, June 28-July 1, 2011, pp. 161-166.

[36] Voith, T., Oberle, K., Stein, M., “Quality of service provisioning for distributed data
center inter-connectivity enabled by network virtualization”, Future Generation
Computer Systems, vol. 28, 2012, pp. 554-562.

http://tomcat.apache.org/
http://postgis.refractions.net/
http://www.postgresql.org/

33

[37] Maurer, M., Brandic, I., Sakellariou, R., “Enacting SLAs in Clouds Using Rules”, Springer
Lecture Notes in Computer Science, vol. 6852, p. I, 2011, pp. 455-466.

[38] Maurer, M., Brandic, I., Sakellariou, R., “Simulating Autonomic SLA Enactment in Clouds
Using Case Based Reasoning”, Lecture Notes in Computer Science, vol. 6481, 2010, pp.
25-36.

[39] Andreolini, M., Casolari, S., Colajanni, M., Messori, M., “Dynamic Load Management of
Virtual Machines in Cloud Architectures”, Proc. 1st Int. Conf. On Cloud Computing (ICST
CLOUDCOMP 2009), Munich, Germany, Oct 19-21, 2009, 14 p.

[40] Van, H., Tran, F., Menaud, J., “Autonomic Virtual Resource Management for Service
Hosting Platforms”, Proc. IEEE Workshop on Software Engineering Challenges in Cloud
Computing (ICSE CLOUD '09), Vancouver, B.C. Canada, May 23, 2009, 8 p.

[41] Iqbal, W., Dailey, M., Carrera, D., “SLA-Driven Dynamic Resource Management for Multi-
tier Web Applications in a Cloud”, Proc. 10th IEEE/ACM Int. Conf. On Cluster, Cloud, and
Grid Computing (CCGRID 2010), Melbourne, Australia, May 17-20, 2010, pp. 832-837.

[42] Bonvin, N., Papaioannou, T., Aberer, K., “Autonomic SLA-driven Provisioning for Cloud
Applications”, Proc. IEEE/ACM Int. Symposium on Cluster, Cloud, and Grid Computing
(CCGRID 2011), Newport Beach, CA, USA, 2011, pp. 434-443.

[43] Li, W., Tordsson, J., Elmroth, E., “Modeling for Dynamic Cloud Scheduling via Migration
of Virtual Machines”, Proc 3rd IEEE Int. Conf. On Cloud Computing Technology and
Science (CloudCom '11), Athens, Greece, 2011, pp. 163-171.

[44] Sempolinski, P., Thain, D., “A Comparison and Critique of Eucalyptus, OpenNebula and
Nimbus”, Proc 2nd IEEE Int. Conf on Cloud Computing Technology and Science
(CloudCom '10), Indianapolis, IN, USA, Nov 30 – Dec 3, 2010, pp. 417-426.

[45] Lloyd, W., Pallickara, S., David, O., Lyon, j., Arabi, M., Rojas, K., “Performance
Implications of Multi-Tier Application Service Configurations on Infrastructure-as-a-
Service Clouds”, submitted to Elsevier Future Generation Computer Systems, Feb. 15
2012, under review.

[46] Lloyd, W., Pallickara, S., David, O., Lyon, j., Arabi, M., Rojas, K., “Service Isolation and
Compositions for Multi-tier Application Deployment: An Investigation on Implications
for Infrastructure-as-a-Service Clouds”, submitted to ACM Symp. on Cloud Computing
(SOCC 2012), Oct. 14-17, 2012.

[47] Lloyd, W., Pallickara, S., David, O., Lyon, j., Arabi, M., Rojas, K., “Performance Modeling
to Support Multi-Tier Application Deployment to Infrastructure-as-a-Service Clouds”,
submitted to IEEE/ACM Int. Conf. on Utility and Cloud Computing (UCC 2012), Nov 5-8,
2012.

[48] Hagen, L., “A wind erosion prediction system to meet user needs”, Journal of Soil and
Water Conservation March/April 1991, vol. 46, iss. 2, pp. 105-111.

[49] United State Department of Agriculture – Natural Resources Conservation Service
(USDA-NRCS), 2003, “Interpreting the Soil Conditioning Index: A tool for measuring soil
organic matter trends”, http://soils.usda.gov/SQI/management/files/sq_atn_16.pdf

[50] Gassman, P. Reyes, M., Green, C., Arnold, J., “The Soil And Water Assessment Tool:
Historical Development, Applications, and Future Research Directions”, Transactions of
the American Society of Agricultural and Biological Engineers (ASABE 2007), vol. 50, iss.
4, pp. 1211-1250.

34

[51] Ascough, J., David, O., Krause, P., Heathman, G., Kralisch, S., Larose, M., Ahuja, L., Kipka,
H., “Development and application of a modular watershed-scale hydrologic model using
the object modeling system: runoff response evaluation”, Transactions of the American
Society of Agricultural and Biological Engineers (ASABE 2012), vol. 55, iss. 1, pp. 117-135.

[52] Chen, W., Deng, E., Du, R., Stanley, R., Yan, C., “Crossing and Nesting of Matching and
Partitions”, Transactions of the American Mathematical Society, vol. 359, No. 4, April
2007, pp. 1555-1575.

[53] Dean, J., Ghemawat, S., “MapReduce: Simplified Data Processing on Large Clusters”, In
Communications of the ACM, vol. 51, Iss. 1., Jan 2008, pp. 107-113.

