Environmental Modelling & Software xxx (2012) 1-13

Environmental Modelling & Software

journal homepage: www.elsevier.com/locate/envsoft

Contents lists available at SciVerse ScienceDirect . e

A software engineering perspective on environmental modeling
framework design: The Object Modeling System

0. David *P*, J.C. Ascough 11, W. Lloyd *P, T.R. Green¢, K.W. Rojas 9, G.H. Leavesley?, LR. Ahuja‘

@ Dept. of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA

b Dept. of Computer Science, Colorado State University, Fort Collins, CO 80523, USA

€ USDA-ARS-NPA, Agricultural Systems Research Unit, 2150 Centre Ave., Bldg. D, Fort Collins, CO 80526, USA
4 USDA-NRCS, 2150 Centre Ave., Bldg. A, Fort Collins, CO 80526, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 12 September 2011
Received in revised form

24 February 2012

Accepted 9 March 2012
Available online xxx

Keywords:

Object Modeling System
Environmental modeling frameworks
Modeling and simulation

Software engineering

Software design

The environmental modeling community has historically been concerned with the proliferation of
models and the effort associated with collective model development tasks (e.g., code generation, data
transformation, etc.). Environmental modeling frameworks (EMFs) have been developed to address this
problem, but much work remains before EMFs are adopted as mainstream modeling tools. Environ-
mental model development requires both scientific understanding of environmental phenomena and
software developer proficiency. EMFs support the modeling process through streamlining model code
development, allowing seamless access to data, and supporting data analysis and visualization. EMFs also
support aggregation of model components into functional units, component interaction and commu-
nication, temporal-spatial stepping, scaling of spatial data, multi-threading/multi-processor support, and
cross-language interoperability. Some EMFs additionally focus on high-performance computing and are
tailored for particular modeling domains such as ecosystem, socio-economic, or climate change research.
The Object Modeling System Version 3 (OMS3) EMF employs new advances in software framework
design to better support the environmental model development process. This paper discusses key EMF
design goals/constraints and addresses software engineering aspects that have made OMS3 framework
development efficacious and its application practical, as demonstrated by leveraging software engi-
neering efforts outside of the modeling community and lessons learned from over a decade of EMF
development. Software engineering approaches employed in OMS3 are highlighted including a non-
invasive lightweight framework design supporting component-based model development, use of
implicit parallelism in system design, use of domain specific language design patterns, and cloud-based
support for computational scalability. The key advancements in EMF design presented herein may be
applicable and beneficial for other EMF developers seeking to better support environmental model
development through improved framework design.

© 2012 Elsevier Ltd. All rights reserved.

Software availability

Name of software: Object Modeling System Version 3 (OMS3)

Contact address: Dr. Olaf David, USDA-ARS, ASRU, 2150 Centre Ave.,
Bldg. D, Suite 200, Fort Collins, CO 80526 USA.
E-mail: odavid@colostate.edu

Description: OMS3 is an environmental modeling framework that
utilizes new advances in framework software engineering

approaches including a non-invasive lightweight

1. Introduction

framework design and the use of domain specific

languages.
Developer: Olaf David
Source language: Java

* Corresponding author. USDA-ARS, ASRU, 2150 Centre Ave., Bldg. D, Suite 200,
Fort Collins, CO 80526, USA. Tel.: +1 970 492 7316; fax: +1 970 492 7310.
E-mail address: odavid@colostate.edu (O. David).

Designing domain specific software frameworks is challenging;
however, frameworks and libraries are essential to enable better
software engineering processes in support of scientific modeling.
There are many examples of framework use in software engi-
neering including: 1) a web developer uses a content management
system to develop a data warehouse application for enabling
communication with a remote data store; 2) a user interface
developer selects a widget framework to create a rich cross

1364-8152/$ — see front matter © 2012 Elsevier Ltd. All rights reserved.

doi:10.1016/j.envsoft.2012.03.006

Please cite this article in press as: David, O., et al., A software engineering perspective on environmental modeling framework design: The Object
Modeling System, Environmental Modelling & Software (2012), doi:10.1016/j.envsoft.2012.03.006

mailto:odavid@colostate.edu
mailto:odavid@colostate.edu
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2012.03.006
http://dx.doi.org/10.1016/j.envsoft.2012.03.006
http://dx.doi.org/10.1016/j.envsoft.2012.03.006

2 0. David et al. / Environmental Modelling & Software xxx (2012) 1-13

platform desktop application for image processing; 3) a Geograph-
ical Information System (GIS) specialist uses a geo-processing
library to process geometric data layers for optimal solar panel
placement; 4) a biologist uses a statistical framework and library
tools to test the correlation between gene expression and pheno-
types; and 5) a climate researcher accesses array-oriented scientific
data (e.g., precipitation and temperature) which is distributed to
multiple computers using the Message Passing Interface library.
Software developers use different frameworks and libraries for
many reasons often revolving around trust (the software applica-
tion has already been developed and appears to work correctly),
complexity (to avoid dealing with complex and multifarious
details), and efficiency (the work of others is easier to build upon).
Effective software frameworks improve not only developer
productivity but also the quality and reliability of the software
product itself, and allow developers to focus development efforts
on supporting unique application requirements (as opposed to
developing application infrastructure).

Frameworks and libraries abstract common software function-
ality to provide application developers with a means to achieve
reuse. An Application Programming Interface (API) is an abstraction
layer that provides access to the underlying functionality of soft-
ware frameworks. Frameworks and libraries always provide one or
more APIs; however, frameworks and libraries are not used in the
same fashion. Many frameworks adhere to the notion of the
“Inversion of Control” design pattern where the framework directs
program execution flow. When using a framework that supports
Inversion of Control, application classes extend framework-specific
data types which are invoked dynamically at runtime by the
framework. In contrast, use of software libraries entails instantia-
tion of library data types and invocation of library functions by
application code. Developers must have familiarity with frame-
work-specific classes, types, and methods to harness the func-
tionality provided.

Designing an environmental modeling framework (EMF)
requires consideration of a broad spectrum of modeling approaches
including discrete event simulation, agent-based modeling, and the
use of genetic algorithms. Current EMFs evolved using simulation
models originating from hydrology, biology, climatology, and
economic scientific domains (Argent, 2004). They typically reflect
domain origins in their design and allow abstract modeling within
the various scientific disciplines. What else differentiates EMFs?
Environmental modelers are typically not software engineers.
Scientific understanding requires detailed knowledge which
contradicts full reliance on black-box programming interfaces that
can hide information related to input/output management, code
relationships, etc. Additionally, scientific knowledge is needed to
develop or choose an adequate set of equations, algorithms, and
mathematical constructs to create environmental models. Unique
social and cultural characteristics of the environmental model
development process include:

e Environmental modelers desire to understand scientific
details. Traditional framework designs often do not suffi-
ciently describe all the features of a science component in
that: 1) emphasis is placed on algorithmic relationships
where data object implementations reduced to traditional
typing systems may be too simplistic; and 2) relevant meta-
information describing data objects is often part of the
external documentation and not an integral part of the
model.

Environmental model development needs to be creative, i.e.,
new approaches have to be explored that go beyond the
boundaries of given programming languages, data structures,
algorithms, and existing architectures. EMFs should foster

creativity and not constrain the modeler to the framework
developer’s view.

e Environmental models evolve within their own “engineering
ecosystem.” Many current environmental modeling efforts
involve tens of thousands of lines of scientific code that are
resistant to refactoring and efforts to improve code design
because of resource, cultural, and reward constraints. High
quality model code is often a secondary priority since scientific
reward is frequently based on the accuracy of model output,
rather than long-term model code maintainability and
reusability.

Individuals and organizations increasingly realize the opportu-
nities of collaborative and open modeling efforts, taking advantage
of current state-of-the-art software development practices
employed by open source projects, industry, etc. Environmental
model development can be expensive and time consuming, e.g.,
various natural resource models produced by the U.S. Department
of Agriculture-Agricultural Research Service (USDA-ARS) such as
the Soil and Water Assessment Tool (SWAT, Arnold et al., 1993),
Water Erosion Prediction Project (WEPP, Flanagan and Nearing,
1995), and the Root Zone Water Quality Model (RZWQM, Ahuja
et al., 2000) have cost roughly US $15-20M each to design, imple-
ment, evaluate, and deploy. EMFs have emerged as a valuable tool
to streamline diverse modeling projects, allowing modelers to
more easily develop and integrate models while simultaneously
taking advantage of advances in information processing and data
management. The major objectives of this paper are to present key
EMF design goals/constraints and describe the development and
application of the Object Modeling System Version 3 (OMS3)
including the rationale behind the nontraditional OMS3 framework
design approach. OMS3 represents a significant departure from
previous versions of the framework and also from traditional
framework design approaches for environmental modeling. The
“non-invasive” design of OMS3, inspired by web application
frameworks, focuses on: 1) supporting graceful adaptation of
source code from existing environmental models; 2) elevating the
importance of metadata; and 3) avoidance of imposing complex
programming interfaces on a modeler. OMS3 design features for
utilizing components as model building blocks (including ways to
aggregate components into environmental models) are discussed,
followed by a description of how OMS3 arranges complex scenarios
in a concise but scalable approach using domain specific language
(DSL) principles.

2. EMF design goals and constraints

Driving forces for framework adoption within the environ-
mental modeling community include, but are not limited to: saving
time and reducing costs, providing quality assurance and quality
control, re-purposing model solutions for reuse in new models,
ensuring consistency and traceability of model results, and sup-
porting computational scalability to enable complex modeling. The
bottom line is that an EMF should help the developer more effi-
ciently implement and deliver environmental simulation models.
Rizzoli et al. (2008) conclude that a return on investment should be
realized through adopting an EMF.

Designing EMFs has traditionally been fraught with challenges
since a broad variety of modeling approaches, conceptualizations,
and abstractions exist. Addressing a certain modeling domain
helps framework developers meet modeler expectations. There-
fore, framework development requires accommodating software
engineering skill sets of framework users, anticipating target
architectures, supporting high performance computing needs,
and handling constraints of the programming languages and

Please cite this article in press as: David, O., et al., A software engineering perspective on environmental modeling framework design: The Object
Modeling System, Environmental Modelling & Software (2012), doi:10.1016/j.envsoft.2012.03.006

0. David et al. / Environmental Modelling & Software xxx (2012) 1-13 3

software architectures common to the specific modeling domain.
These factors support freedom of choice for a modeler through an
EMF. Existing institutional and cultural settings that may foster or
limit the acceptance of EMFs should also be considered. Further-
more, EMF designs should aim to support model development
while minimizing the divergence from existing modeling prac-
tices within a research organization. Fostering organizational
awareness of software engineering best practices may prove
advantageous before moving to a framework-based modeling
approach. Adopting software coding standards, using version
control systems to manage source code, and performing code peer
reviews can be important steps towards improving model code
development that will eventually help expedite adoption of
modeling frameworks. EMFs should promote the creative talent of
modelers to construct new models and modeling approaches
while eliminating tedious, time-consuming aspects of model
development, commonly understood as the software engineering
aspects.

An EMF should allow the modeler to retain intellectual owner-
ship of models and associated source code. The model source code
should not be “owned” by the framework, i.e., it must exist and be
sustainable outside the framework to ensure independent and
ongoing development. This requirement differs significantly from
other solutions such as web-based applications, graphical user
interfaces, and high performance computing applications. EMFs
should support interaction with existing legacy models. General-
purpose programming languages (e.g., Java, C, FORTRAN) that
have a wide infiltration with active developer communities which
provide free compilers, tools, and development environments
should be given preference over specialized modeling and simu-
lation languages. Adoption of widely available and supported
general purpose languages for model development helps ensure
longevity of model implementations. Using free, open source
programming languages (e.g., the GNU Compiler Collection)
supports collaboration on environmental model development since
they are more widely available at a lower cost than proprietary
languages. EMFs should minimize source code that is required by
infrastructure constraints, underlying platforms, operating
systems, or programming language specifications. Additionally, an
EMF should promote semantic density of modeling solutions, i.e.,
coding is expected to be straightforward and concise for the
modeler even if additional development effort is required on the
part of the framework developer. If the EMF streamlines difficult
and tedious tasks (e.g., database queries, parallelization of algo-
rithms, time/date management, graphing/visualization algo-
rithms), it is more likely to be adopted as this lowers the
programming burden for the modeler. Programming concept
redundancy should be avoided, i.e., if a programming language
provides data types and functions then custom equivalents should
not be reintroduced via the framework. For example, operator
overloading in C++ already provides a language extension path,
therefore developing an extra programming interface for “specific”
data creation or conversion is unnecessary. The likelihood of
adopting an EMF for environmental modeling may be significantly
increased if common, native programming language concepts are
implemented by the framework.

EMF design goals are multi-faceted and often include many
aspects of general software framework development. An EMF
needs to foster development productivity, interoperability with
other modeling tools, protocols, and programming languages,
thereby minimizing the integration effort. The EMF should be
semantically powerful, intuitive to use, and not impose a steep
learning curve. In addition, the EMF should enable flexible model
development rather than enforce complex and rigid development
concepts. Most functional features offered by current EMFs are

closely related to interoperability aspects. Facilitating data
exchange between software units representing parts of a whole
model is a key feature. These units called modules, classes, or
components represent core building blocks supporting the princi-
ples of modular and component-based software construction.
Some modeling frameworks provide class libraries, a library
programming interface, or have a set of classes and recommended
object-oriented design patterns encompassing connectivity. Robust
EMFs should not only enable module connectivity but also manage
data exchange while considering the type and physical scale of
geospatial objects, support conversion based on physical units,
and account for the location of data in distributed computing
environments.

In summary, even though EMFs are yet another technical part of
enabling technology for modeling, their design has to consider
many organizational, intellectual, and social specifics of the scien-
tific community. Furthermore, their adoption for developing envi-
ronmental models is an imprecise process that is often driven by
many internal and external factors, some of which may not be
related to the particular technical strengths and weaknesses of the
framework.

3. Object Modeling System (OMS)

The Object Modeling System (OMS) is a framework for environ-
mental model development that provides a consistent and efficient
way to: 1) create science simulation components; 2) develop,
parameterize, and evaluate environmental models and modify/
adjust them as science advances; and 3) re-purpose environmental
models for emerging customer requirements. OMS is an open source
software project (i.e., all framework code is freely available) enabling
members of the scientific community to collaborate to address
complex issues associated with the design, development, and
application of environmental models. The OMS architecture has
been designed so that it is inter-operable with other frameworks
supporting environmental modeling globally. OMS is currently being
used within the United States for water supply forecasting (Leavesley
et al.,, 2010) and agro-ecosystem modeling projects (Ascough et al.,
2012), and in Northern and Central Africa for groundwater
modeling using isotope traces.

3.1. Development history

The OMS development effort started in the early 2000’s as
avehicle to migrate the design principles of the Modular Modeling
System (MMS) (Leavesley et al., 2006), written in C/Motif, into
a reusable environmental modeling framework. MMS originated
from the Precipitation-Runoff Modeling System (PRMS) hydro-
logic model (Leavesley et al., 1983), a distributed watershed
model. The principles of process-based assembly for PRMS
FORTRAN modules using a C interface were re-created as Java
classes under OMS Version 1 (OMS1, Ahuja et al., 2005) based on
core MMS technologies. PRMS was chosen since it provided the
foundation for MMS and was already disaggregated into compo-
nents (modules) representing physical processes in hydrology.
OMS1 was a procedural system with framework support for daily
model time stepping which focused primarily on data exchange
and management. A simple user interface allowed the definition
of parameter sets represented in data dictionaries. OMS Version 2
(OMS2), initially released in 2004, delivered major improvements
and was integrated into the USDA-Natural Resources Conservation
Service (USDA-NRCS) information technology architecture in
2008. OMS2 harnessed the Netbeans™ rich client platform
application to deliver an integrated modeling development envi-
ronment offering project management, data visualization,

Please cite this article in press as: David, O., et al., A software engineering perspective on environmental modeling framework design: The Object
Modeling System, Environmental Modelling & Software (2012), doi:10.1016/j.envsoft.2012.03.006

4 0. David et al. / Environmental Modelling & Software xxx (2012) 1-13

parameter editing, and a visual model builder. As development
continued, both the OMS2 and Netbeans™ API improved but also
became large and complex. Emerging requirements such as web-
service deployment and the need to support model creation in
other integrated development environments resulted in redesign
of OMS2 in favor of the more flexible and “lightweight” OMS3
framework design. OMS3 (David et al., 2010) provides a new API
which leverages existing concepts of component-based modeling.
The new OMS3 architecture was driven by the need for:
1) elegance and simplicity in component design; 2) performance
and scalability to support implicit multi-threading for component
execution; 3) faster adaptation of legacy code; and 4) flexible tool
extensions to implicitly integrate model calibration and sensi-
tivity/uncertainty analysis methods, resulting in the utilization of
DSLs for simulation setup and execution.

As shown in Fig. 1, OMS3 is comprised of four primary architec-
tural foundations including modeling resources, the system knowl-
edge base, development tools, and modeling products. The OMS3
core consists of an internal metadata knowledge base for model and
simulation creation. A simulation in OMS is defined as a collection of
resources (parameter sets, input data, modeling components, model
execution method, etc.) required to produce desired modeling
outputs. The system supports harnessing metadata from various
sources including natural resources databases (e.g., land use/cover,
soil), web-based data provisioning services, version control systems,
and/or other code repositories, which is incorporated into the
framework knowledge base that various OMS3 development tools
employ to create modeling products. OMS3 modeling products
include science components and complete models, simulations
supporting parameter estimation and sensitivity/uncertainty anal-
ysis, output analysis (e.g., statistical evaluation and graphical visu-
alization) tools, modeling audit trails (i.e., reproducing model results
for legal purposes), and miscellaneous technical/user documenta-
tion. As with any EMF, fully embracing the OMS3 architecture
requires a commitment to a structured model development process
which may include the use of a version control system for model
source code management or databases to store audit trails. Such
features are important for institutionalized adoption of OMS3 but
less critical for adherence by a single modeler.

Calibration
, Model - i
o s Audit Trails
Sensltl\l’!t‘l Application
Analysis

3.2. Framework invasiveness and OMS3

The degree of dependency between a framework and simulation
model code can be described as “framework invasiveness”, defined
by Lloyd et al. (2011a) as the degree to which model code is coupled
to the underlying framework. Framework to modeling code inva-
siveness occurs due to several factors, including the use of a frame-
work API consisting of data types and methods/functions which
developers use to harness framework functionality, the use of
framework-specific data structures (e.g., classes, types, and
constants), or the implementation of framework interfaces and
extension of framework classes. Framework to application inva-
siveness is a type of code coupling; object-oriented coupling
(i.e., coupling between classes in an object-oriented program) has
been shown to correlate inversely with the likelihood of a mistake in
the code (Briand et al., 2000). Mistakes in model code negatively
impact the functional correctness of the code, thereby reducing the
functional aspects of code quality. Other important aspects of model
code quality include “non-functional” quality attributes such as
maintainability, portability/reusability, and understandability. Lloyd
et al. (2011a) demonstrated that code invasiveness incurred by
using a modeling framework is correlated to non-functional code
quality metrics. The impact of this invasiveness can be considered as
the degree of dependency imposed by the modeling framework for
a specific modeling problem.

Why is a non-invasive framework approach important for
OMS3? Most environmental modelers are natural resource scien-
tists frequently with only self-taught experience in programming
and little or no proficiency with software architecture and design.
Most environmental modeling development projects do not have
the luxury of employing experienced software engineers or
computer scientists who are able to understand and apply complex
design patterns, UML diagrams, and advanced object-oriented
techniques such as parameterized types, higher level data struc-
tures and/or object composition. The use of object-oriented design
principles for modeling can be productive for a specific modeling
project that has limited need for external reuse and extensibility.
Extensive use of object-oriented design principles can be difficult
for scientists to adopt in that adoption often entails a steep learning

Visual
Analysis

Documentation

Products

NN/

Models

.|_ oMmS3 [

Ontologies Components
Web
Databases ?
Services

Development

Simulations Tools
Meta data Knowledge
Base
Source
Repositories Resources

Fig. 1. OMS3 principle framework architecture.

Please cite this article in press as: David, O., et al., A software engineering perspective on environmental modeling framework design: The Object
Modeling System, Environmental Modelling & Software (2012), doi:10.1016/j.envsoft.2012.03.006

0. David et al. / Environmental Modelling & Software xxx (2012) 1-13 5

curve requiring management of complex programming concepts
(e.g., polymorphic execution flow in an inheritance hierarchy).
Object-oriented design principles have been promoted for nearly
two decades as a promising technology for supporting environ-
mental modeling. As experience has shown, well-designed object-
oriented models are difficult and time consuming to develop,
particularly with a design objective to support reuse, maintain-
ability, and understandability. Design of complex systems requires
experience, anticipation of future use cases by providing extension
points, freedom to refactor poor aspects of a design, and adequate
time and resources. Environmental modeling perspectives,
concepts, and approaches vary and are not easy to capture in
a single object-oriented design. The environmental modeling
community maintains many legacy models still in use based on
algorithms and equations developed decades ago. What has
changed and continues to change are the hardware and software
infrastructures that house and deliver the output from environ-
mental models. Devices such as smart phones and cloud computing
(described later) are emerging technologies which non-invasive
EMFs can readily support.

EMFs can also be classified as heavyweight or lightweight
based on various design characteristics (Lloyd et al., 2011a). The
primary difference between these framework types is how they
present functionality to the developer. Heavyweight frameworks,
e.g., traditional object-oriented frameworks such as Java’s Swing
Application Framework for graphical user interface development,
provide developers with an API that is can be large and unwieldy
requiring developers to spend considerable time becoming
familiar with before writing model code. The lightweight frame-
work design approach adopted by OMS3 originated from various
web application and enterprise frameworks (Richardson, 2006). In
contrast to heavyweight frameworks, lightweight frameworks
offer functionality to the developer using a variety of techniques
aimed at reducing the API's overall size and developer depen-
dence on the AP A lightweight EMF adapts to an existing model’s
source code, resulting in a less steep learning curve as there is no
complex API to understand or special data types to manage. This
provides several practical implications for environmental
modelers as there is no major paradigm shift since existing
modeling code and libraries are being used. Adopting and using
a lightweight framework is easier since modeling components
used by the lightweight framework can still function and continue
to evolve outside the framework.

Enabled by the lightweight and non-invasive characteristics of
the OMS3 modeling framework, creating a modeling object
becomes a rudimentary task as there are no interfaces to imple-
ment, no classes to extend, no polymorphic methods to override,
and no specialized framework-specific data types to use. OMS3 uses
metadata by means of language annotations to specify and describe
“points of interest” amongst existing data fields and class methods
of the model. To verify the improvement in code quality of using
annotation-based components and models versus traditional API
approaches, Lloyd et al. (2011a) conducted a study comparing the
implementation of several component-based hydrology models
within different languages and EMFs. They applied several code
quality metrics to quantify code characteristics of the different
model implementations and found that the non-invasive frame-
work approach of OMS3 enabled more concise model imple-
mentations, in terms of number of lines of code and lower code
complexity, for environmental model development. For example,
the OMS3 implementation of the Thornthwaite model required
only 295 lines of code whereas other EMFs required between 450
and 1635 lines of code. All of the model implementations had
identical functionality and produced the same modeling results.
Furthermore, implementation of the PRMS model in OMS3

required only 10,163 lines of code compared with 16,997 for OMS2
(Lloyd et al., 2011a). Software engineering research suggests that
reduction in code size typically results in lower model development
and maintenance costs over the lifetime of a model (Briand et al.,
2000). Outside of the environmental modeling domain, similar
success stories have been observed which are currently driving the
popularity of lightweight web services frameworks such as JBoss
Seam and Spring (Yuan et al., 2009).

3.3. OMS3 component-based modeling concepts

Like other modeling frameworks such as OpenMI (Blind and
Gregersen, 2005; Gregersen et al.,, 2007), Common Component
Architecture (CCA) (Bernholdt et al., 2003), Earth System Modeling
Framework (ESMF) (Collins et al., 2005), and Common Modeling
Protocol (CMP) (Moore et al., 2007), OMS3 uses classes as the
fundamental model building block while embracing principles of
component-based software engineering for the model develop-
ment process. The advantages of constructing modular software are
well known in the software engineering field. Individual modules
can be developed using standardized interfaces supporting module
communication. Partitioning a system into modules typically helps
to minimize coupling, which should lead to code that is easier to
maintain.

The term component refers to self-contained, separated soft-
ware units that implement independent functions in context-
independent manner. In this paper, we refer to components as
modeling entities which implement a single conceptual modeling
concept. A component can be hierarchical in that it may orchestrate
interaction among other finer-grained components through the use
of different categories of annotations in OMS3. Components expose
framework-relevant aspects via metadata, and each component
should provide a sufficient level of complexity within a model’s
component hierarchy. Fig. 2 shows the principle layout of compo-
nents as supported in OMS3 including managing data flow/execu-
tion phases and building component hierarchies. Like many EMFs,
OMS3 provides core features including functional encapsulation
supporting isolation of individual computational aspects into
components, facilitation of directed data flow (input/output slots or
exchange items), and management of various execution states
within components including “Initialize/Run/Finalize” as described
by Peckham (2008).

While object-oriented methods focus on abstraction, encapsula-
tion, and localization of data and methods, their use can also lead to
simulation systems where objects are highly co-dependent. To

Execution phases
(Initialize Run Finalize)

1
| 1
e mm—

‘ ComponentA’ /vy *yy “yy
! t P

—ﬁ—‘_q’ Component]
S e S A4 L I . S

/

/
! / ’

Input data ‘ o Output data
‘ >

! ’
—
2 Component |

AR
C '

Fig. 2. OMS3 component architecture including data flow, execution phases, and
encapsulation.

Please cite this article in press as: David, O., et al., A software engineering perspective on environmental modeling framework design: The Object
Modeling System, Environmental Modelling & Software (2012), doi:10.1016/j.envsoft.2012.03.006

6 0. David et al. / Environmental Modelling & Software xxx (2012) 1-13

remove this limitation, a more streamlined model development
process is supported by OMS3 that emphasizes the component as an
object-oriented software unit which can be developed and tested
independently, and delivered for use as a service. Component
implementations have been shown to support reuse more efficiently
than simply relying on object-oriented language features or methods
(Schmidt, 1999). The following are salient benefits of using compo-
nents for building complex systems:

e Components are designed with a standard, well-defined inter-
face in mind. A published interface hides the implementation of
the component logic and forces an abstraction level which
separates provided functions from implementation.

e Components are self-contained units. They can be developed
and tested individually, and can be packaged and delivered to
be used in multiple applications.

e The use of components simplifies the construction of building
complex models since their use fundamentally changes the
way systems are built. As opposed to programming an entire
model in a “whole-block” monolithic fashion, models can be
composed of “building-block” components that originate from
both new code and legacy code.

Environmental modeling applications have traditionally been
designed as large blocks of hand-crafted code which in turn result
in monolithic models. These models were not designed to be
easily re-purposed if a related application is required in the future.
A major disadvantage of building monolithic simulation models is
that conceptual boundaries within the model are not supported as
there is no separation between concepts in the code. A
component-based modeling approach helps address the challenge
of building complex simulation models by reducing model soft-
ware complexity and overcoming the limitations of monolithic,
highly coupled model implementations. Components were the
main simulation model building blocks in OMS1 which offered
library classes that were over-ridden as subclasses or instantiated
directly (Table 1a). OMS1 defined a limited set of data types that
could be exchanged between model components. This was an
acceptable approach but modelers were limited in their ability to
use and share the data types. For legacy code integration, as well
as for future model development, this constraint is undesirable.
Functionality to support unit, type, and data transformation

Table 1
Comparison of declarations between OMS framework versions.

(a) OMS1 [** Elevation.
@unit ft
@access read

public OMSDouble

elevation;

private Attribute.

Double elevation;

(b) OMS2

/** Elevation.
@unit ft
@access read

*

public void setElevation

(Attribute.Double

e){
elevation = e;

}

@Description

(“Elevation”)

@Unit (ft)

@In public double

elevation;

(c) OMS3

resulted in large amounts of complex framework code. Model
components developed in OMS1 had to be subclasses of frame-
work classes making blending classes from different models
impossible since a delegator/wrapper for existing components
was always needed.

OMS2 simplified component design by allowing models/
components to use interfaces instead of extending classes, i.e., no
framework interface implementation was accessible from within
the modeling component (Table 1b). This “design-by-contract”
implementation allowed OMS2 to offer variants of framework
data types with extensible implementations for unit conversion,
remote data access, data transformations, etc. while being fully
transparent to the component. Switching to interfaces improved
the overall quality and robustness of the framework and resulted
in a reduced API size. However, data types supported by OMS2
were still framework dependent. For OMS Versions 1 and 2,
framework data types for component data transfer objects were
included in addition to the existing Java language counterparts.
This represented type redundancy for double and Double by
providing an OMSDouble class implementation (OMS1) or an
Attribute.Double (OMS2).

OMS3 provides a simplified approach for environmental model
component design. It enables Plain Old Java Objects (POJOs) that are
annotated to be used within the framework (Table 1c). Annotated
POJOs are easy to create since they are basic Java classes enriched
with language level annotations. Annotations provide the frame-
work with metadata to interpret the component as a model building
block. Technologies that enable this framework design include:

e Runtime introspection on class structures, exploring fields,
methods, and their values — enabling exploration of compo-
nent internals to find framework entry points for data flow and
execution.

e Language level annotations on classes, methods, and fields — for
describing data flow fields and tagging Initialize/Run/Finalize
methods.

o Reflective access to object fields and reflective method invocation —
for component-to-component data transfer and indirect method
execution.

Any language or platform that supports the above features, such
as Java or C#, should be sufficient to implement this type of
architecture. OMS3 is a major advancement from Versions 1 and 2
in that it departs from the traditional API-based framework
approach for component design in favor of a more lightweight,
non-invasive implementation (Lloyd et al., 2011a). The following
section introduces the concept of annotations as implemented in
OMS3.

3.4. OMS3 annotations

Programming language annotations define and capture meta-
data to describe elements such as classes, fields, or methods. In
OMS3, framework functionality is integrated as annotations to
facilitate component connectivity and provide for data flow.
Annotations are non-invasive to the simulation model code and
represent a native construct of the Java platform and language.
They introduce a language extension mechanism that is not avail-
able in traditional languages such as C or C++. In C# annotations
are called attributes; the Groovy programming language also
supports annotations similar to Java. Non-invasive lightweight
framework principles based on plain objects have proven success-
ful in other application domains (e.g., Richardson, 2006) and can be
used to help improve environmental modeling. There are three
categories of annotations in OMS3 (Table 2):

Please cite this article in press as: David, O., et al., A software engineering perspective on environmental modeling framework design: The Object
Modeling System, Environmental Modelling & Software (2012), doi:10.1016/j.envsoft.2012.03.006

0. David et al. / Environmental Modelling & Software xxx (2012) 1-13 7

Table 2
Example declaration of the Hydrologic Response Unit (HRU) area parameter in
OMS3.

@Description("HRU area, Area of each HRU")
@Role(“PARAMETER")

@Unit(“hectare”)

@Bound (“nhru”)

@In public double[] hru_area;

1. Mandatory Execution Annotations provide essential information
for component execution. They describe method invocation
points and data flow between components. Examples are @In
or @Out for describing input and output “ports.”

2. Supporting Execution Annotations support component execu-
tion by providing additional information about data flow,
physical units (@Unit), and range constraints (@Range) that
might be used during execution.

3. Documentation Annotations are used to create documentation,
and map to databases/archives and other content management
systems and tools. Examples are @Description, @Author, @Ver-
sionInfo, etc.

In OMS3, all parameter and variable declarations within
a component are supplemented through the use of annotations. For
example declaration of the parameter “hru_area”, the physical area of
a Hydrologic Response Unit (HRU), includes information about its
role as a parameter, description or definition, unit of measure, the
bounding dimension of its array size, and use as a double precision
input array (Table 2). Listing 1 shows a simple component for lookup
table computation in the OMS/J2K watershed model (Ascough et al.,
2012). All annotations start with an (@) symbol and have the
following features in OMS3:

e OMS3 package dependencies only exist for annotations
(oms3.annotations.*). No API calls are required, a characteristic
which supports the Inversion of Control design pattern.

e Annotations enable automatic generation of component
documentation. Individual fields are annotated to describe
their specific purpose. Data flow annotations are used to
generate documentation.

e A component adheres to the Initialize/Run/Finalize cycle by

tagging methods with corresponding annotations. The compute

method of a component is “tagged” with the @Execute anno-
tation making the name of the method insignificant.

Data flow indications (i.e., component linkages) are provided

using the @In and @Out annotations. No explicit marshaling or

un-marshaling of component variables is needed, ie. an
assignment is sufficient to pass them on to the receiving
component.

With respect to data flow, it should be noted that OMS3 explicitly
manages the data transfer protocol between connected components.
It has no knowledge about the semantics or structure of transferred
data, which could be a multi-dimensional array, a scalar parameter,
a time representing calendar object, a database connection, etc. Any
data type can be exchanged across components, a feature provided
by Java’s “reflection mechanism.” This results in conceptually simple
and clean transfer of data while providing maximum flexibility for
the modeler. In cases where transformation of data during an
exchange is desired because of otherwise incompatible data types,
physical units, scales, or resolution, a service provider interface (SPI)
exists to allow altering the exchanged data objects.

In summary, annotations provide an integrated and contextually
safe method for capturing modeling metadata including units,

ranges, etc. The Java platform provides API support for annotations
making them easier to comprehend, manage, and process than
other metadata representation schemes, for example XML.
Although not discussed in this paper, the annotation-based
approach for component integration in OMS3 is also supported
for programming languages such as FORTRAN, C, or C++, allowing
for the same descriptive integration scheme within those
languages.

3.5. OMS3 multi-threading support

Another core design aspect of OMS3-based components is
support for multi-threading, a common technique to parallelize
internal processing within a software application on one machine.
Unlocking multi-threading for mainstream environmental
modeling techniques is challenging due to the inherent complexity,
however, it is highly advantageous given the fact that almost all
modern day computers have multi-core CPUs, thus supporting
parallel computations. This requires EMFs to support multiple
execution threads to fully utilize available processing resources and
enable hierarchical scaling of environmental models. For environ-
mental modeling applications, OMS3 code is executed using indi-
vidual threads which are managed by the framework runtime.
Thread communication occurs through data flow between the @Out
annotated fields of one component to the @In annotated fields of
another component. The component executes when all inputs are
present and satisfied. This is accomplished by native language
synchronization features using wait() or notify(). OMS3 mediates
data flow using a producer/consumer-like synchronization pattern,
and protects itself from dead-locks caused by incorrect specification
of @In and @0Out methods. OMS3 execution is multithreaded by
design, i.e., each model component is executed in its own separate
thread. Once all input fields have valid values, the component runs
the execution method (@Execute). No explicit specification of
execution order is required because this design supports implicit
parallelism at the component level. In addition, no explicit knowl-
edge of parallelization mechanics and threading patterns is required
for a model developer. To our knowledge, this is unique for existing
EMFs, however workflow systems provide for similar concepts.

In addition to multi-threading, support for hierarchical scaling is
a major function provided by OMS3. That is, OMS3-based models
implicitly scale to cluster and cloud-based environments without
code changes. Additionally, geospatial models can share core model
data structures (e.g., an HRU) and process them in parallel within
a model. Studies currently are being conducted as described in
Section 4 to evaluate scalability for different models, model data
sets, and deployment configurations using multi-core, cluster, and
cloud-based infrastructures.

3.6. OMS3 domain specific language (DSL) simulation capability

OMS3 departs from the desktop-based integrated modeling
development environment in OMS2 by allowing flexible integra-
tion into different development environments and general plat-
form integration (e.g., JGrass, web-services, etc.). The power of DSLs
is leveraged to provide a flexible integration layer above the
components for modeling and simulations. A DSL, in contrast to
a general purpose programming language, is a programming
language or specification language dedicated to a particular
problem domain, a particular problem representation approach,
and/or a particular solution technique (Deursen van, 1997; Deursen
van et al., 2000). DSLs provide data and configuration to a program
and let users write business rules for a particular task. The DSL
approach is motivated by the desire to allow coding without
actually promoting it. OMS3 takes advantage of the DSL “builder

Please cite this article in press as: David, O., et al., A software engineering perspective on environmental modeling framework design: The Object
Modeling System, Environmental Modelling & Software (2012), doi:10.1016/j.envsoft.2012.03.006

8 0. David et al. / Environmental Modelling & Software xxx (2012) 1-13

design-pattern” as provided by the Groovy programming language
(Dearle, 2010). This “Simulation DSL” allows the creation and
configuration of runtime simulations for OMS3; however, the
Simulation DSL is not inherently bound to the framework.

What constitutes a simulation in the OMS3 context? A simula-
tion defines the resources needed to run an environmental model
for a given purpose. A basic simulation in OMS3 consists of: 1) the
component executable binaries, 2) model-specific parameters and
other (e.g., climate) input data in files or databases, 3) strategies for
handling model output, and 4) performance evaluation methods,
e.g., simple graphing/plotting or formal evaluation statistics.
Additional information and resources may be required if the
simulation includes parameter estimation, sensitivity analysis, or
uncertainty analysis.

Listing 2 shows a typical Simulation DSL file (*.sim) for OMS3
which is directly executable within the OMS3 runtime state. It has
a hierarchical structure resembling some XML design approaches
with two significant differences: 1) it is not as verbose as XML and
is executable as a script, and 2) it may contain programming
statements as accepted in the Java/Groovy programming language.
The ability to parse a Simulation DSL is part of the OMS3 and
underlying Groovy runtime. The “*.sim” file defines the model by
listing all model components, defining connectivity of component
fields, and providing initial parameter definitions. The simulation
script file in Listing 2, as used within the Thornthwaite monthly
water balance model presented in Lloyd et al. (2011a), provides
underlying knowledge about component connectivity. Model
components, shown as blue boxes, are specified within the
components{} section in Fig. 3. Connectivity arrows are all connect
{} statements, indicating data flow from source to target.

The connect{} section lists line by line data flow handled by the
system. For example, the line <’climate.temp’ 'soil.temp’> in Fig. 3
connects the ‘temp’ output field (@0ut annotated) of the ‘climate’
component with the ‘temp’ input field (@In annotated) of the ‘soil’
component. This is the only information required from a modeler to
define and establish data flow between components using @In and
@Out to annotate component fields. The entries in each line follow
the ‘<object>.<field>’ notation. The field name can be omitted in

Monthly Input

Latitude

| \ \

Parameter

Soil Moisture Capacity

the target reference if it exists in both components with the same
name. The system performs conversions of field types if both the
source and target field types are different, but a conversion service
is offered by OMS3. Two components can be connected using fields
which are type incompatible. For example, one component
providing an Open GIS Consortium (OGC) simple feature collection
as output can seamlessly feed into another one requiring “well
known text” (ASCII encoding of geometries) input if a conversion
class or service exists and is offered via a SPI. The same mechanism
is also used for unit conversion or alignment of temporal/spatial
scales between fields.

Listing 3 shows a Simulation DSL file for the PRMS (Leavesley et al.,
2006) Java-based model used for the USDA-NRCS water supply
forecasting system in the western United States. The PRMS model has
been configured for parameter estimation using the USGS Luca
parameter estimation method (Hay and Umemoto, 2006). OMS3/
Luca is a multi-objective, stepwise, automated procedure for model
calibration that uses the Shuffled Complex Evolution global search
algorithm to calibrate OMS3-based models. As shown in Listing 3, in
addition to the standard simulation elements such as outputstrategy,
resource, model, output, parameter, etc., a Luca DSL simulation,
executable within OMS3, defines additional elements for the cali-
bration parameter bounds for each step or objective function type.
Besides Luca, there are other available OMS3 DSL simulation types
such as Fourier Amplitude Sensitivity Test sensitivity analysis
(Saltelli, 2002), Dynamically Dimensioned Search parameter esti-
mation (Tolson and Shoemaker, 2007), and Ensemble Streamflow
Prediction (Kim et al., 2006).

To summarize, Simulation DSLs are easily adjustable to new
simulation types (e.g., parameter estimation or uncertainty analysis
methodology) and provide the model user with a high degree of
freedom in setting up complex simulations (e.g., batch processing
of multiple watersheds for stream flow or water quality prediction).
DSL scripts allow very concise and understandable expressions
although they can contain “traditional” programming code. This
flexibility makes them very attractive for simulation integration
and superior to “data-only” static representations for capturing
modeling metadata such as XML.

Monthly Oufput

Runoff Factor |

v |

| Surface Runoff

\

Precipitation

SoilMoisture |——

e | Soil Moisture
Actual ET

: -
\ ;
<

| =

Snow | Show Storage

—

|| Climate |/

_ | Potential ET| Output |

| Temperatur%l : > HamonET
| | \J daylen
Daylen

| Month |

I
L Monthly Controller

A -
f | |
' | /o
Runoff ; | Runoff

Fig. 3. Thornthwaite model components and data flow (from Lloyd et al., 2011a).

Please cite this article in press as: David, O., et al., A software engineering perspective on environmental modeling framework design: The Object
Modeling System, Environmental Modelling & Software (2012), doi:10.1016/j.envsoft.2012.03.006

0. David et al. / Environmental Modelling & Software xxx (2012) 1-13 9

4. OMS3 applications
4.1. Cloud Services Innovation Platform (CSIP)

Recent attention has been directed towards enabling OMS3 to
seamlessly scale models through the use of cloud infrastructures
and service-oriented architectures (SOAs). Cloud computing is
emerging as a viable and attractive solution for scientific
computing (Hoffa et al., 2008). The main goal is to scale parallel
processing of components beyond individual computers to harness
networks of virtual computers while not requiring significant code
changes. For that purpose, the USDA-NRCS has initiated the Cloud
Services Innovation Platform (CSIP) (Fig. 4).

The goal of CSIP is to develop a scalable, modular, cost effective,
and open deployment platform for simulation models to deliver
legacy and research simulation models as cloud-based web-
services. To provide developers with a robust SOA environment,
CSIP incorporates existing USDA infrastructure components
including OMS3 and soil, management, climate, and other data-
bases to support environmental modeling within both managed
private clouds and public clouds (e.g., Amazon EC2 or Rackspace). A
primary research goal for CSIP development is to gain experience
and implement sustainable strategies for model and data services
in a cloud environment. The use of OMS3-based annotation inter-
faces under CSIP accelerates the migration of legacy environmental
models for resultant cloud-based deployment.

Initial CSIP research has developed a web-service implementa-
tion of the RUSLE2 (Revised Universal Soil Loss Equation Version 2,
Foster et al., 2001) model for estimating sediment production on
upland areas. This effort is in support of the USDA-NRCS Conser-
vation Delivery Streamlining Initiative program in collaboration
with the USDA-ARS. CSIP is currently leveraged to run field- and
watershed-scale models in a scalable compute cloud environment
to assist the USDA Conservation Effects Assessment Program
(Duriancik et al., 2008). RUSLE2 has historically been used as
a Windows™-based desktop application to guide conservation
planning and inventory erosion rates over large areas. The model
provides a reusable computational engine that can be used without
a user interface for model runs in other applications. RUSLE2’s

Web-Based
Access
Services

Database
Management
Systems

Object
Modeling
System 3

Cloud
Services
Integration
Platform

Cloud
Computing
Services

Business
Activity
Monitoring

Fig. 4. Cloud Services Innovation Platform (CSIP) software architecture.

computational engine was integrated into an OMS3 model to
support efficient execution and was enhanced using innovative
non-relational database approaches. The resulting RUSLE2/OMS3
erosion component was embedded into a RESTful web service
(Richardson and Ruby, 2007) for input data management; data
retrieval for soils, climate and management records; data conver-
sion; and data caching. A single server manages access to cloud-
based compute nodes. RUSLE2 model tests on the order of 100K+
model runs has been completed using hundreds of cloud nodes to
verify the utility of a cloud-based deployment (Lloyd et al., 2011b).

To demonstrate cloud-based support for environmental
modeling, a prototype application was developed to showcase
running the RUSLE2 model under CSIP from an Android™ mobile
device (Fig. 5). The interactive workflow shows the parameteriza-
tion of RUSLE2 erosion transects by accepting manual input or
using USGS elevation services. Mobile mapping features are utilized
to visualize location information available via global positioning
system, transect direction, or latitude/longitude information. CSIP-
based geospatial databases are queried to determine location-
specific land use/land cover management options. Model runs are
performed using CSIP supported by cloud compute node(s). Upon
model completion, the mobile device displays erosion values for
the given input parameters.

CSIP development remains ongoing. The flexibility offered by
OMS3 components using the annotation-based integration method
was essential for a RESTful web services development. RESTful
service definition is enabled using web-service specific annotations
on the OMS3 modeling components.

4.2. Water supply forecasting and watershed modeling

There are several operational and research-focused OMS3 model
applications to date. The National Water and Climate Center of the
USDA-NRCS is augmenting seasonal, regression-equation based
water supply forecasts with shorter-term forecasts based on the use
of distributed-parameter, physical process hydrologic models and
an Ensemble Streamflow Prediction (ESP) methodology. The
primary ESP model base (Leavesley et al., 2010) is built using OMS3
and the PRMS hydrological watershed model. The model base will
be used to address a wide variety of water-user requests for more
information on the volume and timing of water availability and to
improve water supply forecast accuracy. The PRMS/ESP method-
ology is a modified version of the ESP procedure developed by the
National Weather Service (Day, 1985) which uses historical or
synthesized meteorological data as an analog for the future with the
timeseries data used as model input to simulate future stream flow.

A visualization tool running under OMS3 is available for
visual display of user-selected ESP output traces. The tool
performs a frequency analysis on the peaks and/or volumes of
the simulated hydrograph traces and displays a list of all the
historic years used with their associated probability of exceed-
ance. Different options are available in applying frequency
analysis. One assumes that all years in the historic database have
an equal likelihood of occurrence. Alternative schemes for
weighting user-defined periods, based on user assumptions or
a priori information, are also being investigated. El Nifio, La Nifia,
and Pacific Decadal Oscillation (PDO) periods have been identi-
fied in the ESP procedure, and these can be sorted and extracted
separately for analysis. The PRMS/ESP tool running under OMS3
will provide timely forecasts for use by the agricultural
community in the western United States where snowmelt is
a major source of water supply.

Another modeling application currently being developed under
the OMS3 framework is the component-oriented AgES-W (Agro-
Ecosystem-Watershed) model. AgES-W is a fully distributed

Please cite this article in press as: David, O., et al., A software engineering perspective on environmental modeling framework design: The Object
Modeling System, Environmental Modelling & Software (2012), doi:10.1016/j.envsoft.2012.03.006

10 0. David et al. / Environmental Modelling & Software xxx (2012) 1-13

NRCS Rusle2 CSIP.

NRCS Ruslez CSIP:

CMZ 6asingle Veassingle Crop
Templatesiegetables/Frutivegetables.
spring wioplasticNo-TH,

M2 64singe Yearssingle Crop
TemplatesiForages, K
established:HAY.64

Mz 6asingie vearsi
TemplaesSeybeansco
production;Spring Plow

Select Managment

M2 6 single Yeorssingle Crop
TemplatesiCorn, Slage\Corn,lage fow
production:Spring Chisel 64

ayiGirass,coolseason,

e crop
ans, grainlow
64

OUTPUT
t-value 5.0

Run RUSLE2 Model

& degrade _ 36.1202324622411

30

About Rusie2 Get Current Location slope-

Manual Transect Location-Based Remote RUSLE2 RUSLE 2
Parameter Definition - Management Model Execution Simulation
Selection USGS Selection in CSIP/OMS3 Results
Elevation
Service

Fig. 5. CSIP/OMS3-based mobile RUSLE2 erosion model application.

simulation of water quantity and quality in large watersheds
(Ascough et al., 2010). AgES-W consists of Java-based simulation
components (80+ representing interception; snow processes; soil
water balance; nutrient (nitrogen and phosphorus) cycling; erosion;
lateral flow and groundwater movement; and runoff concentration,
flood, and chemical routing in channels) from the J2K-S (Krause
et al,, 2009), SWAT, RZWQM2, and WEPP models. AgES-W simu-
lates conjunctive stream flow and groundwater interaction, carried
out by HRUs which are connected by a lateral routing scheme to
simulate lateral water transport processes. This permits fully
distributed hydrological modeling of river basins. AgES-W perfor-
mance for stream flow prediction was evaluated recently (Ascough
et al, in press) for the Cedar Creek Watershed in northeastern
Indiana, USA, one of 14 benchmark watersheds in the USDA-ARS
Conservation Effects Assessment Project watershed assessment
study. Future plans are to enhance AgES-W for: 1) diverse cropping
system responses to water deficits, 2) model uncertainty analyses
and scaling, and 3) plant responses to atmospheric CO,. New OMS3
tools currently under development to facilitate AgES-W application
include HRU delineation, new sensitivity/uncertainty analysis
methods and spatial visualization tools, and web-based cloud
computing as described in the previous section.

5. Summary and conclusions

Environmental modeling frameworks streamline and accel-
erate the model development and implementation process;
however an initial learning curve for EMF-based modeling always
exists. Resource and in-kind institutional support is important for
the acceptance of an EMF, but it is up to the modeler to adopt an
EMF so that it becomes an integral part of the model development
workflow. Apart from social and cultural barriers, EMF developers
are further challenged technically to develop frameworks which
are less cumbersome for modelers to adopt. Web service and
database framework projects outside the modeling community
have demonstrated that model developers will adopt a software
development framework if it is easily understood, enables
seamless integration of existing codebases and workflows, and
does not invalidate existing institutional software development
practices.

For the above reasons, designing EMFs and associated program-
ming interfaces is an extremely challenging task. Numerous

modeling frameworks are currently under development worldwide
with the primary purpose of integrating existing and future envi-
ronmental models into common, inter-operable, and flexible
systems. One such framework, the Object Modeling System Version 3
(OMS3), represents a persuasive choice for adoption with its inherent
non-invasive and scalable implementation. OMS3 development
leverages successful framework designs and software engineering
principles originating from various general purpose and web-based
application frameworks. In OMS3, the internal complexity of the
framework has been reduced by adopting a lightweight design,
thereby resulting in a less steep learning curve as there are fewer
complex technical details for the model developer to absorb. Paral-
lelism in OMS3 is achieved using multi-threading on multi-core CPUs
and research is ongoing to further extend the scalability of OMS3 by
adopting MapReduce-based large-scale distributed computing
environments (Dean and Ghemawat, 2004) such as Hadoop™. OMS3
can be considered a non-invasive modeling framework for
component-based model and simulation development on multiple
platforms. As shown by Lloyd et al. (2011a), the straightforward
component integration structure allows rapid implementation of
new models and an easier adaptation of existing models and
components. Other studies have shown that this approach leads to
models with less overhead and a more intuitive design. By embracing
the use of non-intrusive language annotations for modeling meta-
data specification and framework integration in favor of traditional
APIs, OMS3-based models keep their identity outside of the modeling
framework. Annotations enable multi-purposing of components,
which is difficult to accomplish with a traditional API design. In
OMS3, annotations provide component connectivity, data trans-
formation, unit conversion, and automated generated of model
documentation. In addition to the Java programming language, the
annotation-based approach for component integration in OMS3 is
also supported for programming languages such as FORTRAN, C,
C++, and C#.

OMS3 introduces an extensible and lightweight layer for simu-
lation description that is expressed as a Simulation DSL based on
the Groovy framework. DSL elements are simple to define and use
for basic model applications, or for more complex setups for
parameter estimation, sensitivity/uncertainty analysis, etc. The use
of DSLs for “programmable” configuration eliminates core
programming language “noise” and is efficacious for many different
types of modeling applications (e.g., distributed watershed

Please cite this article in press as: David, O., et al., A software engineering perspective on environmental modeling framework design: The Object
Modeling System, Environmental Modelling & Software (2012), doi:10.1016/j.envsoft.2012.03.006

0. David et al. / Environmental Modelling & Software xxx (2012) 1-13 1

modeling to support automated setup of multiple batch model
runs).

In summary, the overall development goal of OMS3 has been to
provide features to make it easier for modelers to create
contemporary, inter-operable, scalable and lightweight models by
fully leveraging computing resources, data stores, and infra-
structure opportunities. By harnessing lightweight framework
design principles, model development can become a more effi-
cient and rewarding exercise for scientists while model users can
experience the benefits of scalable, contemporary modeling
applications.

Acknowledgments

We would like to thank the Departments of Civil and Environ-
mental Engineering and Computer Science at Colorado State
University for contributing to research and development of the
OMS framework, and the Department of Geography at Friedrich
Schiller University for contributing to development of associated
OMS-based environmental models.

Listing 1.
Simulation component example in OMS3.

package climate;

import oms3.annotations.*;
import static oms3.annotations.Role.*;

@Author
(name = "Peter Krause, Sven Kralisch")
@Description
("Calculates land use state variables")
@Keywords
("1jo")
@Sourcelnfo
("$HeadURL: http://svn.javaforge.com/svn/oms/branches/oms3.prj.ceap/src/
climate/CalcLanduseStateVars.java $")
@VersionInfo
("$1d: CalcLanduseStateVars.java 1050 2010-03-08 18:03:03Z ascough $")
@License
("http://[www.gnu.org/licenses/gpl-2.0.html")
@Status
(Status.TESTED)

public class CalcLanduseStateVars {

@Description("Attribute Elevation")
@In public double elevation;

@Description("Array of state variables LAI)
@In public double[] LAI;

@Description("effHeight")
@In public double[] effHeight;

@Description("Leaf Area Index Array")
@Out public double[] LAlArray;

@Description("Effective Height Array")
@Out public double[] effHArray;

@Execute
public void compute() {
LAlArray = new double[366];
effHArray = new double[366];
for(inti = 0; i < 366; i++){
LAIArray[i] = calcLAI(LAI elevation, i+1);
effHArray[i] = calcEffHeight(effHeight,elevation, i+1);
}
}
|| code for calcLAI and calcEffHeight
}

Listing 2.
Simulation DSL example in OMS3 for the Thornthwaite monthly
water balance model.

sim(name:"TW") {

build(targets:"all")
|/ define output strategy: output base dir and
/| the strategy NUMBERED|SIMPLE | TIME
outputstrategy(dir: "$oms_prj/output”, scheme:SIMPLE)
|| define model

model(iter:"climate.moreData") {
components { |/ listing of all model components
climate ’tw.Climate’
daylen ‘tw.Daylen’
et 'tw.HamonET’
out ’'tw.Output’
runoff ’tw.Runoff’
snow 'tw.Snow’
soil 'tw.SoilMoisture’

connect { // component connectivity: ‘source’ ‘target’
/| climate
‘climate.temp’ ’soil.temp’
‘climate.temp’ ’et.temp’
‘climate.temp’ ’snow.temp’
‘climate.precip’ ’soil.precip’
‘climate.precip’ ’'snow.precip’
‘climate.time’ ’'daylen.time’
‘climate.time’ ‘et.time’
‘climate.time’ ’out.time’

/| daylen
‘daylen.daylen’ ’et.daylen’
‘daylen.daylen’ ’out.daylen’

// soil

'soil.surfaceRunoff ’out.surfaceRunoff’
'soil.surfaceRunoff 'runoff.surfaceRunoff’
'soil.soilMoistStor’ ’out.soilMoistStor’
'soil.actET” ’out.actET’

/| PET

‘et.potET" ’'soil.potET’
‘et.potET" ’snow.potET’
‘et.potET" ’'out.potET’

/| Snow
'snow.snowStorage’ ’out.snowStorage’
'snow.snowMelt’ ‘runoff.snowMelt’

/| runoff
‘runoff.runoff ’out.runoff’

parameter { [/ initial model parameter ‘comp.field’ value
"climate.climatelnput’ "$oms_prj/data/climate.csv”
‘out.outFile’ "$oms_prj/output/TW/out/output.csv”
‘runoff.runoffFactor’ 0.5
‘daylen.latitude’ 35.0
*soil.soilMoistStorCap’ 200.0

}

/| model efficiency (optional)
efficiency(obs:"precip”,sim:"runoff",
precip:"precip”, methods:NS+ABSDIF+TRMSE)
/| compute annual summary for runoff on-the-fly’ (optional
summary(time:"time", var:"runoff”,
moments:COUNT+MEAN-+MIN, period:YEARLY)
analysis(title:"Model output™) {
timeseries(title:"Monthly waterbalance", view: COMBINED) {
x(file:"%last/output.csv”, table:"tw", column:"date")
y(file:"%last/output.csv”, table:"tw", column:"runoff")
y(file:"%last/output.csv", table:"tw", column:"daylen")
}
}
}

Please cite this article in press as: David, O., et al., A software engineering perspective on environmental modeling framework design: The Object
Modeling System, Environmental Modelling & Software (2012), doi:10.1016/j.envsoft.2012.03.006

http://svn.javaforge.com/svn/oms/branches/oms3.prj.ceap/src/climate/CalcLanduseStateVars.java
http://svn.javaforge.com/svn/oms/branches/oms3.prj.ceap/src/climate/CalcLanduseStateVars.java
http://www.gnu.org/licenses/gpl-2.0.html

12 0. David et al. / Environmental Modelling & Software xxx (2012) 1-13

Listing 3.
Simulation DSL example in OMS3 for Luca parameter estimation.

/* Luca calibration.*/
luca(name: "EFC-luca”) {

/| define output strategy: output base dir and
|/ the strategy NUMBERED|SIMPLE|DATE
outputstrategy(dir: "$work/output”, scheme:NUMBERED)

/| for class loading: model location
resource "$work/dist/* jar"

/| define model

model(classname:"model.PrmsDd]h") {

|/ parameter

parameter (file:"$work/data/efc/params_lucatest.csv") {
inputFile "$work/data/efc/data_lucatest.csv"
outFile "out.csv"

sumFile "basinsum.csv"

out "summary.txt"

startTime "1980-10-01"
endTime "1984-09-30"
}

}

output(time:"date", vars:"basin_cfs,runoff[0]",
fformat="7.3f", file:"out1.csv")

calibration_start "1981-10-01" // Calibration start date

rounds 2 /| calibration rounds, default 1

/| step definitions
step(name:”Et param”) {
parameter {
jh_coef(lower:0.001, upper:0.02, strategy:MEAN)
}
optimization(simulated:"out1.csv|EFC-luca|basin_cfs",
observed:"$work/data/efc/data_lucatest.csv|obs|runoff[0]") {
of(method:ABSDIF, timestep:DAILY)
}
}

step(name:”soil param” {
parameter {
ssrcoef_sq(lower:0.001, upper:0.4, strategy:MEAN)
soil2gw_max(lower:0.001, upper:0.4, strategy:MEAN)
}
optimization(simulated:"out1.csv|EFC-luca|basin_cfs",
observed:"$work/data/efc/data_lucatest.csv|obs|runoff[0]") {
of(method:ABSDIF, timestep:DAILY)
}
}
}

References

Ahuja, LR, Rojas, KW., Hanson,].D., Shaffer, M., Ma, L. (Eds.), 2000. The Root Zone
Water Quality Model. Water Resources Publications LLC, Highlands Ranch, CO
USA.

Ahuja, LR, Ascough II,].C., David, O., 2005. Developing natural resource modeling
using the object modeling system: feasibility and challenges. Advances in
Geosciences 4, 29—36.

Argent, R., 2004. An overview of model integration for environmental applications
— components, frameworks and semantics. Environmental Modelling & Soft-
ware 19 (3), 219—234.

Arnold,].G., Allen, P.M., Bernhardt, G., 1993. A comprehensive surface-groundwater
flow model. Journal of Hydrology 142, 47—69.

Ascough 11, J.C.,, David, O., Krause, P., Fink, M., Kralisch, S., Kipka, H., Wetzel, M., 2010.
Integrated agricultural system modeling using OMS 3: component driven
stream flow and nutrient dynamics simulations. In: Swayne, D.A., Yang, W.,
Voinov, A.A., Rizzoli, A., Filatova, T. (Eds.), Proc. Fifth Biennial Conference of the
International Environmental Modelling and Software Society, Modelling for
Environment’s Sake, ISBN 978-88-9035-741-1, pp. 1089—1097. Ottawa, Canada,
July 5-8, 2010.

Ascough 11, J.C,, David, O., Krause, P, Heathman, G.C, Kralisch, S., Larose, M.,
Ahuja, LR, Kipka, H., 2012. Development and application of a modular
watershed-scale hydrologic model using the Object Modeling System: Runoff
response evaluation. Transactions of the ASABE 55 (1), 117—-135.

Bernholdt, D.E., Elwasif, W.R., Kohl, J.S., Epperly, T.G.W., 2003. A component archi-
tecture for high-performance computing. In: Proc. of the Workshop on
Performance Optimization for High-Level Languages and Libraries (POHLL-02).
New York, NY, 22 June, 2003.

Blind, M., Gregersen, J.B., 2005. Towards an Open Modeling Interface (OpenMI) the
HarmonET project. Advances in Geosciences 4, 69—74.

Briand, L.C., Wust,]., Daly, J., Porter, D.V., 2000. Exploring the relationships between
design measures and software quality in object-oriented systems. Journal of
Systems & Software 15 (3), 245—273.

Collins, N., Theurich, G., DeLuca, C., Suarez, M., Trayanov, A., Balaji, V., Li, P, Yang, W.,
Hill, C., da Silva, A., 2005. Design and implementation of components in the
earth system modeling framework. International Journal of High Performance
Computing Applications Fall/Winter 2005 19, 341—350.

David, O., Ascough II,]J.C., Leavesley, G., Ahuja, LR, 2010. Rethinking
modeling framework design: object modeling system 3.0. In: Swayne, D.A.,
Yang, W., Voinov, A.A. Rizzoli, A., Filatova, T. (Eds.), Proc. Fifth Biennial
Conference of the International Environmental Modelling and Software
Society. Modelling for Environment’s Sake, Ottawa, Canada, July 5-8, 2010,
pp. 1183-1191.

Day, G.N., 1985. Extended streamflow forecasting using NWSRFS. Journal of Water
Resources Planning and Management (ASCE) 111, 157—170.

Dean,], Ghemawat, S., 2004. MapReduce: Simplified Data Processing on Large
Clusters. Sixth Symposium on Operating System Design and Implementation,
San Francisco, CA, December, 2004.

Dearle, F, 2010. Groovy for Domain-Specific Languages. Packt Publishing,
Birmingham, UK, 312 pp.

Deursen van, A., Klint, P, Visser, J., 2000. Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Notices 35 (6), 26—36.

Deursen van, A., 1997. Domain-specific languages versus object-oriented frame-
works: a financial engineering case study. In: Smalltalk and Java in Industry and
Academia, STJA’97. [lmenau Technical University, pp. 35—39.

Duriancik, LF.,, Bucks, D., Dobrowolski, J.P., Drewes, T., Eckles, S.D., Jolley, L.,
Kellogg, R.L.,, Lund, D., Makuch, J.R., O’'Neill, M.P.,, Rewa, C.A., Walbridge, M.R.,
Parry, R., Weltz, M.A., 2008. The first five years of the conservation effects
assessment project. Journal of Soil and Water Conservation 63 (6),
185A—197A.

Flanagan, D.C.,, Nearing, M.A. (Eds.), 1995. USDA-Water Erosion Prediction Project:
Hillslope Profile and Watershed Model Documentation. NSERL Report No. 10.
West Lafayette, IN: USDA-ARS National Soil Erosion Research Laboratory.

Foster, G.R.,, Yoder, D.C., Weesies, G.A., Toy, TJ., 2001. The design philosophy behind
RUSLE2: evolution of an empirical model. In: Ascough II, J.C., Flanagan, D.C.
(Eds.), Soil Erosion Research for the 21st Century, Proc. Int. Symp., 3—5 January
2001, Honolulu, HI, USA. ASAE, St. Joseph, MI, pp. 95—98.

Gregersen,].B., Gijsbers, PJ.A.,, Westen, SJ.P, 2007. OpenMI: Open modelling
interface. Journal of Hydroinformatics 9 (3), 175—191.

Hay, L.E., Umemoto, M., 2006. Multiple-objective Stepwise Calibration Using Luca,
U.S. Geological Survey Open-file Report 2006-1323, 25 pp.

Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., Good, J., 2008.
On the Use of Cloud Computing for Scientific Workflows. SWBES 2008, Indi-
anapolis, IN. 10—12 December 2008.

Kim, Y.-O., Jeong, D., Ko, L.H., 2006. Combining rainfall-runoff model outputs for
improving ensemble streamflow prediction. Journal of Hydrologic Engineering
11 (6), 578—588.

Krause, P., Bende-Michl, U., Fink, M., Helmschrot, J., Kralisch, S., Kiinne, A., 2009.
Parameter sensitivity analysis of the JAMS/]2000-S model to improve water and
nutrient transport process simulation — a case study for the Duck catchment in
Tasmania. In: Anderssen, R.S., Braddock, R.D., Newham, L.T.H. (Eds.), 18th World
IMACS Congress and MODSIMO9 International Congress on Modelling and
Simulation. Modelling and Simulation Society of Australia and New Zealand and
International Association for Mathematics and Computers in Simulation, July
2009, ISBN 978-0-9758400-7-8, pp. 3179—3186.

Leavesley, G.H., Lichty, RW., Troutman, B.M., Saindon, L.G., 1983. Precipitation-
Runoff Modeling System — User’s Manual. U.S. Geol. Surv. Water Resour. Invest.
Rep. 83-4238.

Leavesley, G.H., Markstrom, S.L., Viger, R.J., 2006. USGS modular modeling system
(MMS) — Precipitation-runoff modeling system (PRMS). In: Singh, V.P,
Frevert, D.K. (Eds.), Watershed Models. CRC Press, Boca Raton, FL,
pp. 159-177.

Leavesley, G., David, O., Garen, D., Goodbody, A., Lea, J., Marron,]J., Perkins, T.,
Strobel, M., Tama, R., 2010. A Modeling Framework for Improved Agricultural
Water-supply Forecasting. In: Proc. Joint 9th Federal Interagency Sedimentation
Conference and 4th Federal Interagency Hydrologic Modeling Conference, June
27 — July 1, 2010, Las Vegas, Nevada.

Lloyd, W., David, O., Ascough II, J.C., Rojas, KW.,, Carlson, J.R., Leavesley, G.H.,
Krause, P, Green, T.R., Ahuja, L.R,, 2011a. Environmental modeling framework
invasiveness: analysis and implications. Environmental Modelling & Software
26 (10), 1240—1250.

Lloyd, WJJ., Pallickara, S., David, O., Lyon,]., Rojas, K., 2011b. An Exploratory Inves-
tigation on the Migration of Multi-tier Applications to Virtualized Cloud-based
Infrastructures. Paper presented at Grid 2011: The 12th IEEE/ACM International
Conference on Grid Computing, 21—23 September, Lyon, France.

Moore, A.D., Holzworth, D.P., Herrmann, N.I, Huth, N.I, Robertson, M.J., 2007.
The Common Modelling Protocol: a hierarchical framework for simulation
of agricultural and environmental systems. Agricultural Systems 95 (1-3),
37-48.

Please cite this article in press as: David, O., et al., A software engineering perspective on environmental modeling framework design: The Object
Modeling System, Environmental Modelling & Software (2012), doi:10.1016/j.envsoft.2012.03.006

0. David et al. / Environmental Modelling & Software xxx (2012) 1-13 13

Peckham, S., 2008. CSDMS Handbook of Concepts and Protocols: A Guide for Code
Contributors. http://csdms.colorado.edu/wiki/Help:Tools_CSDMS_Handbook
(accessed 2.02.12.).

Richardson, L., Ruby, S., 2007. RESTful Web Services. O'Reilly Media, Sebastopol, CA,
448 pp.

Richardson, C., 2006. POJOs in Action: Developing Enterprise Applications with
Lightweight Frameworks. Manning Publications Co., Greenwich, CT, 456 pp.
Rizzoli, A.E., Leavesley, G.H., Ascough II, J.C,, Argent, R.M., Athanasiadis, LN.,
Brilhante, V.C,, Claeys, F.H., David, O., Donatelli, M., Gijsbers, P., Havlik, D.,
Kassahun, A., Krause, P., Quinn, N.W.,, Scholten, H., Sojda, R.S., Villa, F,, 2008.
Chap. 7: integrated modelling frameworks for environmental assessment
and decision support. In: Jakeman, AJ., Voinov, A.A., Rizzoli, A.E., Chen, S.H.
(Eds.), 2008. Environmental Modelling and Software and Decision

Support — Developments in Integrated Environmental Assessment (DIEA),
vol. 3. Elsevier, The Netherlands, pp. 101-118.

Saltelli, A., 2002. Making best use of model evaluations to compute sensitivity
indices. Computer Physics Communications 145 (2), 280—297. doi:10.1016/
50010-4655(02)00280-1.

Schmidt, D.C., 1999. Why software reuse has failed and how to make it work for you.
C++ Report 11 (1), 1999.

Tolson, B.A., Shoemaker, C.A., 2007. Dynamically dimensioned search algorithm for
computationally efficient watershed model calibration. Water Resources
Research 43, W01413. doi:10.1029/2005WR004723.

Yuan, M.J. Orshalick, J.,, Heute, T., 2009. Seam Framework: Experience the
Evolution of Java EE, second ed. Prentice Hall Publishers, Upper Saddle River,
NJ, 504 pp.

Please cite this article in press as: David, O., et al., A software engineering perspective on environmental modeling framework design: The Object
Modeling System, Environmental Modelling & Software (2012), doi:10.1016/j.envsoft.2012.03.006

http://csdms.colorado.edu/wiki/Help:Tools_CSDMS_Handbook

	A software engineering perspective on environmental modeling framework design: The Object Modeling System
	1. Introduction
	2. EMF design goals and constraints
	3. Object Modeling System (OMS)
	3.1. Development history
	3.2. Framework invasiveness and OMS3
	3.3. OMS3 component-based modeling concepts
	3.4. OMS3 annotations
	3.5. OMS3 multi-threading support
	3.6. OMS3 domain specific language (DSL) simulation capability

	4. OMS3 applications
	4.1. Cloud Services Innovation Platform (CSIP)
	4.2. Water supply forecasting and watershed modeling

	5. Summary and conclusions
	Acknowledgments
	Listing 1. Simulation component example in OMS3.
	Listing 2. Simulation DSL example in OMS3 for the Thornthwaite monthly water balance model.
	Listing 3. Simulation DSL example in OMS3 for Luca parameter estimation.
	References

