
1

Container Memory Allocation Discrepancies:
An Investigation on Memory Utilization Gaps for

Container-Based Application Deployments
(Extended Abstract)

3

Garrett Lahmann1, Thom McCann2, Wes Lloyd3

University of Washington
Institute of Technology,

Tacoma, Washington USA
1lahmanng, 3wlloyd@uw.edu

2T-Mobile USA Inc.

Bellevue, Washington USA

Abstract— As cloud architectural platforms evolve,

understanding how to maximize cost efficiency of application
deployments is difficult without the ability to assess cost vs.
performance tradeoffs of new technology platforms. With the
advent of container-based computing, new opportunities for
improving resource utilization efficiency have emerged.
Compared to traditional cloud application deployments hosted
on dedicated virtual machines (VMs), deployments to container
clusters can save significant resources by aggregating application
deployments to a shared pool of VMs. However, the degree of
savings is often uncertain, and hobbled by excessive container
resource allocation reflective of engineers’ instincts to treat them
as individual VMs. As practitioners are accustomed to
performing application deployments to VMs, we are especially
interested in understanding if VM resource allocations (e.g. CPU,
RAM, disk) are appropriate for container deployments. In this
research, we set out to analyze gaps between memory allocation
and memory utilization for application deployments to container
clusters.

Keywords Resource Management and Performance;
Containerization; Application Profiling; IaaS; Multi-Tenancy;

I. INTRODUCTION

For many years now, practitioners have been migrating
software applications to Infrastructure-as-a-Service (IaaS)
cloud platforms. [1] Recently, application packaging and
deployment has been revolutionized through the advent of
application containers such as Docker and Rocket. Application
containers leverage advancements of operating system
containers such as LXC and OpenVZ to focus specifically on
the deployment and hosting of individual application
components with unique container instances. Cloud providers
have also begun to offer container hosting services as an
alternative to traditional IaaS VM hosting. Service examples
include: Amazon Elastic Container Service (ECS), Azure
Container Service (ACS), Azure Kubernetes Service (AKS),
and the IBM Container Service. These services are backed by
either vendor specific container orchestration framework such
as Amazon ECS, or by an open source framework such as
Kubernetes, Docker Swarm, or Apache Mesos/Marathon.

In the public cloud, users leverage container orchestration
frameworks to create container clusters. These frameworks
provide infrastructure management capabilities to enable users
to aggregate hosting of multiple applications across shared

clusters of VMs. The ultimate goal is to better leverage idle
VM resources by moving away from the traditional model of
deploying each application to separate cloud-based VMs.
Moving to a shared resource model for application hosting is
not without problems. VM container hosts must provide
adequate resources with respect to CPU capacity, RAM, and
disk space to support co-located application deployments.
Additionally, resource isolation may become an issue as
resource contention among co-located applications can lead to
unexpected performance variation and/or degradation [2][3][4].

Unlike VMs, application deployments to containers such as
Docker, do not duplicate RAM allocations for redundant
operating system processes. They generally require less RAM
than an equivalent operating system container or VM [5]. This
fact is often overlooked by developers familiar with traditional
VM based application deployments. While significant research
has explored VM placement and resource allocation in public
and private clouds, little research has considered how the agile
nature of containers changes the equation of resource
allocation for container deployments.

In this research, we investigate resource utilization of
containerized application deployments to T-Mobile’s in house
Cloud Container Platform (CCP). CCP provides shared
container clusters using Amazon EC2 VMs that leverage and
extend upon the open source Apache Mesos/Marathon
container orchestration framework to provide application
hosting. We profile live application deployments to CCP to
capture statistics including peak and current memory
utilization, as well as allocation at the container level, and
average memory utilization at the application level. We
capture memory statistics: (1) for static deployments, (2) while
stress testing applications with synthetic workloads, and (3)
when varying container memory allocations to observe
resulting performance implications. We explore memory
allocation vs. utilization for hosting T-Mobile web applications
with a variety of container configurations. Insights from our
analysis are intended to support the development of
performance models that will help to minimize over-
provisioning of container resources through prediction of
containerized application resource requirements.

A. Research Questions

For this research, we investigate the following research
questions:

2

RQ-1: What gap exists, if any, between container memory
allocations, and container memory utilization for
container deployments to container clusters (e.g.
Kubernetes, Apache Mesos/Marathon)? Is memory
typically over-allocated?

RQ-2: From an organizational perspective, is memory over-
allocation intentional, or the result of developer
misjudgment of workload resource needs? How are
memory allocation decisions made?

RQ-3: For observed instances of container memory
overallocation, to what extent can memory allocations
be safely reduced to match memory utilization before
impacting application performance?

RQ-4: Is there a trend of memory over-allocation for specific
application components hosted by containers? (e.g.
redis, nginx, relational databases, application servers,
microservices hosting, etc.)

Our workshop presentation will discuss findings on the
following topics:

 Docker container memory allocation and
utilization data from T-Mobile Cloud Container
Platform application deployments

 Software architectures of our container-hosted
applications

 Use of Linux /proc filesystem, collectd_docker,
and the docker stats API to obtain memory
utilization data/metrics

 The case for providing the ability to modify
resource allocations of container deployments
(e.g. Docker update) in container orchestration
frameworks including what features are provided
by existing frameworks (e.g. Kubernetes, Apache
Mesos/Marathon), what features are lacking, and
the potential for in-situ resource allocation
changes to mitigate memory allocation challenges
in real time

B. Contributions

In this research, we investigate how container resource
allocations are presently determined, and identify gaps between
resource allocations and utilization of real-world application
deployments to container clusters. We argue that the best
practices for container resource allocation should not
simply be construed as the same as for VM resource
allocation. Given the agile nature of container deployments,
their average lifetime, and the ease of dynamically adapting
memory and CPU allocations, we argue that fine-grained
container resource allocations are both feasible and desirable.
By leveraging data from 27 application deployments at T-
Mobile, we contribute a real-world case study that investigates
issues of cloud resource allocation and management pertaining
to containerization.

II. EXPERIMENTAL APPROACH

As of early 2018, across four environments including
production, staging, development, and performance lab, T-
Mobile’s CCP manages 1200-1800 docker containers deployed
across 400-600 VM container hosts to support 27 application
deployments at any given time. CCP’s Docker containers are

hosted on Amazon AWS EC2 instances sized from m4.2xlarge
to m4.4xlarge. With 8 and 16 vCPUs, as well as 32 and 64GB
of RAM respectively [2], these instances are currently
provisioned with an average of 4 Docker containers due to the
bottlenecking metric: allocated memory. It is estimated based
on initial observations that the average number of containers
per instance could be increased to as many as 8 given more
stringent virtual memory allocation.

Metrics are collected every 30-seconds using a preinstalled
collectd_docker plugin on each Docker host. Collectd_docker
leverages the Docker Stats API for real time data collection at
the container level. Collected metrics include: memory
allocation, memory utilization, and peak usage. Capturing this
data enables statistical analysis and modeling to support
investigation of our research questions 1-4.

Figure 1 below depicts the percent of memory utilization vs
allocation for 21 applications deployed to the CCP staging
container cluster on EC2. The graph depicts average memory
utilization for all containers of each application at an arbitrary
point in time. Average utilization per application in staging
is just 4.64%, and per container 5.15%.

FIGURE 1: % MEMORY UTILIZATION FOR CCP APPLICATIONS

REFERENCES

[1] Lloyd W, Pallickara S, David O, Lyon J, Arabi M, Rojas K.
Migration of multi-tier applications to infrastructure-as-a-service
clouds: An investigation using kernel-based virtual machines. Proc
12th IEEE/ACM Int. Conf. on Grid Computing (GRID 2011), Sept.
2011, pp. 137-144.

[2] J. Schad, J. Dittrich, J. Quiane-Ruiz, Runtime measurements in the
cloud: observing, analyzing, and reducing variance, Proc. of the
VLDB Endowment, v. 3, no.1-2, Singapore, Sept. 2010, pp. 460-
471.

[3] Lloyd W, Pallickara S, David O, Arabi M, Rojas K. Mitigating
Resource Contention and Heterogeneity in Public Clouds for
Scientific Modeling Services. In Proc. 2017 IEEE Int. Conf. on
Cloud Engineering (IC2E), Apr 2017, pp. 159-166.

[4] Xavier MG, Neves MV, Rossi FD, Ferreto TC, Lange T, De Rose
CA. Performance evaluation of container-based virtualization for
high performance computing environments. In 2013 21st Euromicro
Int. Conf. on Parallel, Distributed and Network-Based Processing
(PDP), Feb 2013, pp. 233-240.

[5] W. Felter, A. Ferreira, R. Rajamony and J. Rubio, “An Updated
Performance Comparison of Virtual Machines and Linux
Containers”, in Performance Analysis of Systems and Software
(ISPASS), 2015 IEEE Int. Symposium on, Philadelphia, PA, USA,
29-31 March 2015.

