
International Environmental Modelling and Software Society (iEMSs) 
 2012 International Congress on Environmental Modelling and Software 

Managing Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany 
R. Seppelt, A.A. Voinov, S. Lange,  D. Bankamp  (Eds.) 

http://www.iemss.org/society/index.php/iemss-2012-proceedings 
 

The Cloud Services Innovation Platform – 
Enabling Service-Based Environmental 

Modelling Using Infrastructure-as-a-
Service Cloud Computing 

 
W. Lloydab, O. Davidab

J.C. Ascough IIc, T.R. Greenc, J.R. Carlsond, 
, J. Lyonb, K.W. Rojasd,  

 
a Dept.of Computer Science,b Dept. of Civil and Environmental Engineering, 

Colorado State University Fort Collins, CO 80523 USA, c USDA-ARS, ASRU,  
d USDA-NRCS, 2150 Centre Ave., Bldg. A, Fort Collins, CO 80526 USA 

 
Abstract: Service oriented architectures allow modelling engines to be hosted over 
the Internet abstracting physical hardware configuration and software deployments 
from model users.  Many existing environmental models are deployed as desktop 
applications running on user's personal computers (PCs).  Migration to service-
based modelling centralizes the modelling functions to service hosts on the 
Internet.  Users no longer require high-end PCs to run models and model updates 
encapsulating science advances can be disseminated more rapidly by hosting the 
modelling functions centrally via an Internet host instead of requiring software 
updates to user's PCs. In this paper we present the Cloud Services Innovation 
Platform (CSIP), an Infrastructure-as-a-Service cloud application architecture, used 
to prototype development of distributed and scalable environmental modelling 
services. CSIP aims to provide modelling as a service to support both interactive 
(synchronous) and batch (asynchronous) modelling.  CSIP enables cloud-based 
computing resources to be harnessed for both new and existing environmental 
models supporting the disaggregation of work into subtasks which execute in 
parallel using a scalable number of virtual machines.  This paper presents CSIP’s 
implementation using the RUSLE2 model as a prototype model.  RUSLE2 model 
service benchmarks are presented to demonstrate performance gains from using 
cloud resources.  We also provide benchmarks for virtualization overhead 
observed using popular virtual machine hypervisors and demonstrate how 
application profile characteristics significantly impact performance when virtualized.   
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1. INTRODUCTION 

Computer hardware continues to improve as central processing units (CPUs), 
disks, and memory become faster, more powerful, and less expensive than ever 
before.  Since the early 2000s, as a result of being limited by heat dissipation 
issues CPU design has shifted from increasing clock frequency to adding multiple 
processing cores on each physical chip to gain speed enhancements.  Initially 
CPUs had two cores, then four with today’s CPUs featuring up to 10 processing 
cores per chip.  Additionally, many servers support two or more physical CPUs.  
The introduction of multi-core CPUs has lead to server virtualization, which enables 
multiple, separate operating system instances to run on a single physical server 
with the goal of achieving higher overall server utilization.   

To take advantage of modern CPUs, software applications must be redesigned to 
harness multiple CPU cores.  Scientific models must be re-architected to perform 
parallel computation.  Many scientific models, particularly discrete event 
simulations or models which operate on a time-step interval, are inherently 
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sequential by nature and difficult to compute in parallel.  Dependencies among 
modelling steps require computations to complete before they can proceed, 
making disaggregation of computations into pieces difficult and even impossible for 
the core model.   

To harness computational capacity of multi-core processors three techniques hold 
promise: (1) decomposition of modelling algorithms to enable computation of parts 
of the calculation in parallel, (2) splitting the computation into pieces based on a 
geospatial or time stepping and then merging results together (MapReduce), and 
(3) for composite models which depend on one or more (sub) models, supporting 
models to execute independently in parallel.  

Splitting the work of a computation into pieces so that intermediate results can be 
computed in parallel and then merged together have been led by Google with the 
development of their MapReduce framework and the open source version known 
as Hadoop developed by Yahoo [Dean and Ghemawat 2008].  MapReduce is a 
framework which takes a large compute and/or data intensive workload and splits 
the task into sub-problems which are “mapped” to different computers. Sub-
problems are computed in parallel with results merged together during the “reduce” 
operation. As opposed to requiring expensive supercomputers, the MapReduce 
framework operates using networks of cheap commodity x86-based computers 
making high performance computing-like capabilities available with much lower 
infrastructure costs.  MapReduce can be harnessed for environmental modelling by 
splitting model computations based on geospatial regions or time steps. 

In this paper, we introduce CSIP, the Cloud Services Innovation Platform which 
uses a modelling engine deployed using Infrastructure-as-a-Service Cloud (IaaS) 
based virtual machines (VMs) to enable multi-core parallel model computation.  
This approach provides models as services and supports executing many 
simultaneous model runs for existing legacy models in parallel without re-
architecting model code.  Further, CSIP's architecture consisting of a scalable pool 
of distributed worker VMs is positioned to support map-reduce style disaggregation 
of modelling computation.  Models with independent time and spatial stepping, 
such as discrete event simulations, are excellent candidates to harness the 
distributed parallel features of CSIP.  The Object Modelling System version 3 
framework within CSIP provides the basis for supporting parallel distributed 
modelling computation for individual computational steps within a model [David 
2010].   
 
2. RELATED WORK 

Prior to cloud computing, scientific computing and modelling had largely been 
supported by supercomputers, grids, and computer clusters.  Supercomputers 
incorporate many thousands interconnected processors in close proximity which 
support massively parallel computation.  Grid computers are loosely coupled, 
heterogeneous, and geographically dispersed computers unified together using 
common middleware and the internet.  A computer cluster is similar to a grid 
computer except that computers are co-located in close proximity and 
interconnected with a high speed local network.  Cloud computing is similar in that 
cloud systems consist of a large number of interconnected computers supported by 
middleware, but individual computers have varying physical characteristics and 
variable geographic proximity.  Further cloud systems use VMs to partition multi-
core and multi-processor servers and share disk and network resources.   

High-performance computing (HPC) involves the use of supercomputers and 
computer clusters to support modelling and solve advanced computational 
problems with varying degrees of coupled sub-processes running in parallel.  
Several studies have investigated migration of HPC applications to cloud-based 
environments.  Regola and Ducom [2010] compared performance of three types of 
VMs: Open-VZ, EC2 XEN, and KVM for running HPC/MPI applications.  They 
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identified KVM's I/O performance was sub-optimal and only Open-VZ exhibited I/O 
performance comparable to physical computers.  El-Khamra et al. [2010] observed 
a large variability in network I/O performance across EC2 nodes running HPC/MPI 
applications.  Jackson et al. [2010] compared performance of running a number of 
HPC applications on 2 compute clusters, a super computer and Amazon’s Elastic 
Compute Cloud (EC2).  Jackson et al. reported that their cloud based EC2 system 
was several orders of magnitude slower than both cluster systems.  However 
closer analysis of their experimental design shows this was not a fair test as their 
EC2 system had substantially less computational resources than the cluster 
systems.  Their shared file system consisted of only a single VM hosting an elastic 
block storage (EBS) volume shared with Linux‘s network file system (NFS) for all 
VMs.  This design is not scalable or capable of performance comparable to the 
cluster computing systems leading the authors' claims of poor HPC application 
performance under EC2 being questionable.  Collectively these studies identified 
the inability to control where EC2 VMs are physically located when launched in the 
cloud.  Often VMs were not on the same local area network resulting in a large 
variance for inter-VM communication performance. 

Ailamaki et al. [2010] identified key scientific data management challenges for 
modern distributed systems including complexity of data representation and 
processing, and support for large volumes of collected data and meta-data.  Cloud 
based modelling systems hosting scientific data must make design tradeoffs 
between consistency and availability.  Data replicated across VMs to improve 
access latency and throughput is difficult to update.  When all copies of changed 
data are updated, availability and consistency are sacrificed.  Scientific modellers 
must make design decisions balancing availability and consistency with 
performance when developing these distributed data systems.  Data which does 
not require replication to improve throughput can use a simple approach of 
sharding (splitting) data across VMs to distribute database load across separate 
VMs.  Queries operating on multiple separate shards require special techniques to 
complete.  Research and development of distributed relational databases is active 
and ongoing having been encouraged by the proliferation of cloud computing 
[Bernstein et al. 2011]. 

Ostermann et al. [2009] identified challenges of harnessing cloud computing for 
scientific computing including integration of cloud resources within existing 
environments (Grids, Clusters, Hybrid clouds), virtualization overhead, scheduler 
awareness of VM start-up, security, and re-architecting applications for cloud 
environment(s).  Our work with CSIP involves re-architecting environmental models 
for cloud deployment, quantification of overhead resulting from the use of virtual 
computers, and development of data services to provision required data to support 
real-time modelling key challenges identified by Ailamaki and Ostermann. 
 
3. CLOUD SERVICES INNOVATION PLATFORM  

To prototype and develop the Cloud Services Innovation Platform (CSIP), two 
private clouds were built using Eucalyptus, an IaaS virtual infrastructure manager 
[Nurmi et al. 2009].  Eucalyptus is an open source framework which provides an 
implementation of the IaaS architecture.  Eucalyptus supports two common cloud 
application programming interfaces (APIs) developed by Amazon, elastic compute 
cloud (EC2) and simple storage service (S3).  EC2 is an API which enables 
management of virtual computing infrastructure.  VMs can be launched, destroyed, 
modified, etc. as needed programmatically using the EC2 API.  S3 is an API which 
supports a non-SQL, non-relational simple storage system and is is essentially a 
cloud-based key value datastore.  Recent advances in cloud computing have 
encouraged the evolution of distributed database technologies as the need for 
these new data systems has become increasingly important [Bernstein et al. 2011; 
Brantner et al. 2008]. Harnessing Eucalyptus as an open source private cloud 
technology has enabled CSIP development off-line, free from pay-for-use services.  
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Eucalyptus has enabled low cost experimentation with VM image compositions, 
development of resource scaling approaches, performance benchmarking/testing, 
and security design/implementation.  With a design based on the industry standard 
EC2 API, CSIP can be deployed and hosted publicly by a number of IaaS cloud 
providers. 
 
3.1 CSIP Design 

Two Eucalyptus 2.0 IaaS private clouds were built and hosted by Colorado State 
University’s Civil Engineering department in cooperation with the US Department of 
Agriculture (USDA).  These private clouds, unlike Amazon EC2, were installed 
using the engineering college’s local area network and were isolated to prevent 
outside access.  One cloud consisted of 9 SUN X6270 blade servers on the same 
chassis sharing a private 1 Giga-bit VLAN services.  Each blade server was 
equipped with dual Intel Xeon X5560-quad core 2.8 GHz CPUs, 24GB ram, and 
two 15000rpm hard disk drives of 145GB and 465GB capacity.  A second cloud 
was built using a variety of surplus DELL Poweredge servers and commodity PCs.  
Both clouds employed a single server to host cloud services including the 
Eucalyptus cloud-controller (CC), cluster-controller (CLC), walrus (virtual machine 
image) server, and storage-controller (SC).  All other machines were configured as 
Eucalyptus node-controllers (NCs) to support hosting one or more VMs using 
either the XEN or KVM hypervisor [Kivity et al. 2007; Barham 2003].  A hypervisor 
is a virtual machine monitor which manages running multiple operating systems 
separately on a single physical host computer.  XEN and KVM are two common 
open source hypervisors.  XEN supports paravirtualization (partial-virtualization) 
which enables VMs to have nearly direct access to the host computer's physical 
disk and network devices to enable faster performance [Camargos et al. 2008; 
Armstrong and Djemame 2011; Barham 2003].  A disadvantage of XEN's 
paravirtualization is that all guest VMs must use operating systems with special 
modifications to run.  Virtualization of Microsoft Windows using XEN 
paravirtualization, for example, is not supported.  The kernel-based virtual machine 
(KVM) hypervisor supports full virtualization of the underlying operating system 
which allows VMs to run any operating system without requiring a special patched 
version.  KVM has gained popularity with recent enhancements to Intel/AMD x86-
based CPUs which provide special extensions to enhance performance and better 
support full virtualization of guest operating systems without modification.  These 
extensions are required by KVM and allow device simulation overhead to be 
reduced to provide improved performance similar to XEN [Kivity 2007; Raj et al. 
2009].   

The CentOS 5.6 Linux (2.6.18-274) 64-bit was used as the host operating system 
for cloud nodes running the XEN hypervisor, and Ubuntu 10.10 Linux (2.6.35-22) 
was the host operating system for cloud nodes running the KVM hypervisor.  VM 
guests ran Ubuntu Linux (2.6.31-22) 32 and 64-bit server 9.10.  One cloud used 
Eucalyptus-based managed mode networking with a managed Ethernet switch 
providing isolating VMs on their own private VLANs.  The other cloud used 
Eucalyptus-based managed mode networking without VLAN support due to the 
absence of a managed Ethernet switch. 
 
3.2 Model Prototype and Testing 

The Revised Universal Soil Loss Equation – Version 2 (RUSLE2) (2008), an 
erosion model, was deployed as a cloud-based web service and used as a proof of 
concept prototype for the development and testing of CSIP.  RUSLE2 is a field to 
small watershed model of soil movement by sheet and rill erosion processes. It 
uses empirical equations to calculate detachment of soil particles by the impact of 
rain and the force of water as it moves over a hillslope. RUSLE2 calculates erosion 
on a collection of linear segments representing areas of uniform surface properties 
(management, soil, and geometry). These segments are connected into a flow 
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network and process-based equations are used to track sediment as it moves 
downhill through this network, as well as through each segment – deposition is 
handled by a system of coupled non-linear equations which are solved iteratively. 
Calculation is done on a daily time step using either long-term average climate 
data, or real or simulated data on individual storms. These calculations are broken 
up into several hundred functions which are dynamically scheduled on a flow 
control engine. RUSLE2 was primarily developed to guide conservation planning, 
inventory erosion rates, and estimate sediment delivery and is the USDA-NRCS 
agency standard model for sheet and rill erosion modelling used by over 3,000 field 
offices across the United States. 

RUSLE2 was originally developed using Microsoft Visual C++ as a Microsoft 
Windows desktop application.  To operate as a cloud-based web service a 
command line modelling engine called RomeShell was added to RUSLE2.   The 
Object Modelling System 3.0 (OMS 3.0) framework [Ajuha 2005; David, 2010] 
provides middleware to facilitate interaction with the RUSLE2 modelling engine.  
OMS was developed by the USDA–ARS in cooperation with Colorado State 
University and supports component-oriented simulation model development in 
Java, C/C++ and FORTRAN.  OMS provides numerous tools supporting data 
retrieval, GIS, graphical visualization, statistical analysis and model calibration.  
The windows emulator WINE [WineHQ 2012] is used to run RUSLE2 on the Linux 
platform.  RUSLE2 model services have been developed as JAX-RS RESTful web 
services hosted by the Apache Tomcat [Apache 2012] application server.  
JavaScript Object Notation (JSON) is used to encode input and output data 
objects.   

The RUSLE2 web service supports both individual model runs and ensemble runs 
which consist of groups of modelling requests bundled together.  To invoke the 
web service a client sends a JSON object including parameters for management 
practice, slope length, steepness, latitude, and longitude.  Model results are 
computed and returned as a JSON object.  Ensemble runs are processed by 
dividing groups of modelling requests into individual requests which are then resent 
to the web service, similar to the “map” function of MapReduce [Dean and 
Ghemawat 2008].  A configurable number of worker threads concurrently executes 
individual runs of the ensemble, and upon completion results are combined 
(reduced) into a single JSON response object and returned.  A random test 
generation program written in Java was used to generate ensemble tests 
consisting of 100 randomized model-runs.  Latitude and longitude coordinates 
were randomly selected from a bounding box encompassing most of the U.S. state 
of Tennessee.  Slope length, steepness, and the management practice parameters 
were randomly selected.  Randomization of latitude and longitude for slope location 
resulted in various spatial query execution times due to the varying complexity of 
geometry present at random points.  To test ensemble complexity we generated 20 
ensemble test sets of 100 model runs each.  We observed the characteristics of 
the ensemble execution speed (e.g. slow, medium, or fast) of different ensembles 
was preserved when repeating the tests indicating that ensemble tests exhibit a 
complexity or difficulty characteristic (R²=.914, df=18, p=5·10-11).  Before executing 
each ensemble test, a randomized 25 model-run ensemble test was run to warm 
up the system and results were discarded.  The warm-up test was warranted after 
observing that during initialization PostgreSQL performance was consistently 
slower for initial spatial queries performed on start-up .   
 
4. EVALUATION 

Available versions of the XEN and KVM hypervisors were tested to determine 
which version(s) and configurations provided optimal performance.  Virtualization 
tests are important to understand the implications of modelling using virtual 
machines and the results presented here can help guide others wishing to harness 
cloud-based virtualization to host computations.  Ten trials of an identical 100-
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model run RUSLE2 ensemble test were executed and the average ensemble 
execution times are shown in Table 1.  Version 3.4.3 of the XEN hypervisor was 
the fastest among those tested resulting in approximately 49% overhead versus 
the physical hardware.  For KVM using disk virtio drivers provided the best 
observed performance but overall KVM was significantly slower than XEN for the 
RUSLE2 model showing more than 100% overhead for all KVM configurations 
tested.   

Table 1. Hypervisor performance testing. 
Hypervisor Average Time (sec) Normalized Performance 

Physical server 15.65 100.00% 

XEN 3.1 25.39 162.24% 

XEN 3.4.3 23.35 149.20% 

XEN 4.0.1 26.2 167.41% 

XEN 4.1.1 27.04 172.78% 

XEN 3.4.3 w/ full virtualization 32.1 205.11% 

KVM disk virtio 31.86 203.58% 

KVM no virtio 32.39 206.96% 

KVM net virtio 35.36 225.94% 

VM resource utilization statistics were captured using a profiling script to capture 
CPU time, disk sector reads and writes (disk sector=512 bytes), and network bytes 
sent/received.  To calculate total application resource utilization, statistics from all 
VMs hosting application components were added.   For experimentation we used 
two versions of RUSLE2 which perform differently from a machine resources 
perspective.  We identify the standard RUSLE2 model as the model-bound (m-
bound) model, because model performance was largely bound by model 
computations.  The second variant is known as the database-bound (d-bound) 
model, where model performance was bound by spatial database queries.  For the 
“d-bound” model two spatial database queries were modified to perform an 
unnecessary join against a nested query, as opposed to a table, and this greatly 
slowed spatial database performance.  Application profiles for the “d-bound” vs. 
“m-bound” models are shown in figure 1. 

 
Figure 1. RUSLE2 model application profiles. 

Virtualization performance of a model depends on each model's unique application 
profile.  An application's profile consists of the CPU, disk input/output (I/O), and 
network I/O requirements to perform model computation.  Virtualization 
performance of the RUSLE2 model was largely limited by the extensive quantity of 
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required disk I/O operations.  Scientific models with less disk I/O requirements 
which are primarily processor intensive should have less virtualization overhead 
than what we observed for the RUSLE2 model.  Our “d-bound” model running 
under KVM required 111.7% (115.98 sec) to complete a 100-model run ensemble, 
whereas our “m-bound” model required 189.2% (29.5 sec).  The “m-bound” model, 
as shown in Figure 1, had more file I/O operations which explains the higher 
overhead. 

Figure 2 shows RUSLE2 model performance when the number of model worker 
VMs was scaled from 1 to 16.  For this test, 8 physical host computers were used 
and each worker VM was allocated 8 virtual CPU cores. Correspondingly we 
allocated 8 worker threads per worker VM in support of parallel model 
computations.  We initially placed one worker VM on each physical host node.  
After scaling to 8 worker VMs (64 threads), a second worker VM was assigned to 
each physical host.  The second set of worker VMs ran in contention with the initial 
set reducing performance gains.  Ideally we would have had 16 physical machines 
to run each worker in isolation.  With 16 worker VMs each worker was assigned 
only 6 or 7 individual model runs from the 100-run ensemble to calculate.  Scaling 
beyond 12 worker VMs did not appear to provide performance improvements.  
Scaling the number of VMs did not provide linear performance gains as a point of 
diminishing returns was quickly reached.  This result indicates the presence of 
scaling bottlenecks, which require application and or virtual infrastructure 
configuration changes to overcome (Lloyd et al. 2011).  Deploying environmental 
models using cloud infrastructure such as Amazon EC2 enables scaling to a large 
number of VMs, models must be re-architected to take advantage of this capacity.  

 
Figure 2. RUSLE2 scaled model performance. 

 
5. CONCLUSIONS 

CSIP provides application infrastructure to support migration of environmental 
models to operate as cloud-based model services.  RUSLE2 has been deployed as 
a prototype model and we have benchmarked VM hypervisor performance, 
virtualization overhead, and computational scalability.  IaaS cloud technology 
shows promise for improving model performance by harnessing rapid scaling of 
computational resources to harness capabilities of today’s CPUs. 
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