
1

Serverless Computing: An Investigation of Factors
Influencing Microservice Performance

Wes Lloyd1, Shruti Ramesh4, Swetha Chinthalapati2, Lan Ly3, Shrideep Pallickara5

Institute of Technology

University of Washington
Tacoma, Washington USA

1wlloyd, 2swethach, 3lanly@uw.edu

4Microsoft
Redmond, Washington USA

sr3155@columbia.edu

5Department of Computer Science

Colorado State University
Fort Collins, Colorado USA
shrideep@cs.colostate.edu

Abstract— Serverless computing platforms provide

function(s)-as-a-Service (FaaS) to end users while promising
reduced hosting costs, high availability, fault tolerance, and
dynamic elasticity for hosting individual functions known as
microservices. Serverless Computing environments, unlike
Infrastructure-as-a-Service (IaaS) cloud platforms, abstract
infrastructure management including creation of virtual machines
(VMs), operating system containers, and request load balancing
from users. To conserve cloud server capacity and energy, cloud
providers allow hosting infrastructure to go COLD,
deprovisioning containers when service demand is low freeing
infrastructure to be harnessed by others. In this paper, we present
results from our comprehensive investigation into the factors
which influence microservice performance afforded by serverless
computing. We examine hosting implications related to
infrastructure elasticity, load balancing, provisioning variation,
infrastructure retention, and memory reservation size. We identify
four states of serverless infrastructure including: provider cold,
VM cold, container cold, and warm and demonstrate how
microservice performance varies up to 15x based on these states.

Keywords Resource Management and Performance; Serverless
Computing; Function-as-a-Service; Provisioning Variation;

I. INTRODUCTION

Serverless computing recently has emerged as a compelling
approach for hosting applications in the cloud [1] [2] [3]. While
Infrastructure-as-a-Service (IaaS) clouds provide users with
access to voluminous cloud resources, resource elasticity is
managed at the virtual machine level, often resulting in over-
provisioning of resources leading to increased hosting costs, or
under-provisioning leading to poor application performance.
Serverless computing platforms, referred to as Function(s)-as-a-
Service (FaaS), promise reduced hosting costs, high availability,
fault tolerance, and dynamic elasticity through automatic
provisioning and management of compute infrastructure to host
individual functions known as microservices [4].

 Serverless computing platforms integrate support for
scalability, availability, fault tolerance capabilities directly as
features of the framework. Early adoption of serverless
computing has focused on deployment of lightweight stateless
services for image processing, static processing routines, speech
processing, and event handlers for Internet-of-Things devices
[5]. The promised benefits, however, makes the platform very
compelling for hosting any application. If serverless computing
delivers on its promises, it has the potential to fundamentally
transform how we build and deploy software on the cloud,

driving a paradigm shift rivaling a scale not seen since the
advent of cloud computing itself!

Fundamentally different than application hosting with IaaS
or Platform-as-a-Service (PaaS) clouds, with serverless
computing, applications are decomposed into many
microservices, which are essentially disparate functions.
Serverless environments leverage operating system containers
such as Docker to deploy and scale microservices [6]. Granular
code deployment harnessing containers enables incremental,
rapid scaling of server infrastructure surpassing the elasticity
afforded by dynamically scaling virtual machines (VMs). Cloud
providers can load balance many small container placements
across servers helping to minimize idle server capacity better
than with VM placements [7]. Cloud providers are responsible
for creating, destroying, and load balancing requests across
container pools. Given their small size and footprint, containers
can be aggregated and reprovisioned more rapidly than bulky
VMs. To conserve server real estate and energy, cloud providers
allow infrastructure to go COLD, deprovisioning containers
when service demand is low freeing infrastructure to be
harnessed by others. These efficiencies hold promise for better
server utilization leading to workload consolidation and energy
savings.

 In this paper, we present results of our investigation focused
on identifying factors that influence performance of
microservices deployed to serverless computing platforms. Our
primary goal for this study has been to identify factors
influencing microservice performance to inform practitioners
regarding the nuances of serverless computing infrastructure to
enable better application deployments. We investigate
microservice performance implications related to: infrastructure
elasticity, load balancing, provisioning variation, infrastructure
retention, and memory reservation size.

A. Research Questions

To support our investigation of factors influencing
microservice performance for serverless computing platforms,
we investigate the following research questions:

RQ-1: (Elasticity) What are the performance implications for
leveraging elastic serverless computing infrastructure
for microservice hosting? How is response time
impacted for COLD vs WARM service requests?

 COLD service requests are sent by clients to microservice
hosting platforms where the service hosting infrastructure must

2

be provisioned to respond to these requests. Four types of
function invocations exist relating to infrastructure warm up for
serverless computing infrastructure. These include: (1-provider
cold) the very first service invocation for a given microservice
code release made to the cloud provider, (2-VM cold) the very
first service invocation made to a virtual machine (VM) hosting
one or more containers hosting microservice code, (3-container
cold) the very first service invocation made to an operating
system container hosting microservice code, and (4-warm) a
repeated invocation to a preexisting container hosting
microservice code.

RQ-2: (Load Balancing) How does load balancing vary for
hosting microservices in serverless computing? How
do computational requirements of service requests
impact load balancing, and ultimately microservice
performance?

 Serverless computing platforms automatically load balance
service requests across hosting infrastructure. Cloud providers
typically leverage round robin or load balancing based on CPU
load to distribute incoming resource requests [8]. For serverless
computing, we are interested in understanding how the
computational requirements of individual microservice requests
impact load balancing and ultimately performance.

RQ-3: (Provisioning Variation) What microservice
performance implications result from provisioning
variation of container infrastructure?

 Provisioning variation refers to random deployment
variation of virtual infrastructure across the physical hardware
of cloud datacenters [9] [10]. Provisioning variation results
from the use of load balancing algorithms, which attempt to
place VMs and containers evenly across available infrastructure.
From a user’s point-of-view, however, resource placement may
seem random as resource assignments are made in conjunction
with requests from other users resulting in a greater spread of a
user infrastructure compared with private server deployments.
Consolidating many containers to a single host VM leverages
image caching to reduce cold launch latency, but may lead to
increased resource contention when many simultaneous requests
are hosted on the same VMs. We are interested in understanding
the microservice performance implications for provisioning
variation introduced by the cloud provider.

RQ-4: (Infrastructure Retention) How long is microservice
infrastructure retained based on utilization, and what
are the performance implications?

 Serverless computing frameworks automatically manage
VMs and operating system containers to host microservice code.
Once a VM participates in hosting a microservice, the Docker
container image can be cached enabling additional container
instances to be created more rapidly. Containers preserved in a
warm state can rapidly service incoming requests, but retaining
infrastructure indefinitely is not feasible as cloud providers must
share server infrastructure amongst all cloud users. We are
interested in quantifying how infrastructure is deprecated to
understand implications for performance as well as derive keep
alive workloads to prevent microservices with strict SLAs from
experiencing longer latencies.

RQ-5: (Memory Reservations) What performance
implications result from microservice memory
reservation size? How do memory reservations impact
container placement?

 Serverless computing platforms abstract most infrastructure
management configuration from end users. Platforms such as
AWS Lambda and Google Cloud Functions allow users to
specify a memory reservation size. Users are then billed for each
function invocation based on memory utilization to the nearest
tenth of a second. For example, Lambda functions can reserve
from 128MB to 1536MB, while Google Cloud Functions can
reserve from 128MB to 2048MB. Azure functions allows users
to create function apps. Function apps share hosting
infrastructure and memory for one or more user functions.
Azure function app hosts are limited 1536MB maximum
memory. Users do not reserve memory for individual functions
and are billed only for memory used in 128MB increments. One
advantage to Azure’s model is that users do not have to
understand the memory requirements of their functions. They
simply deploy their code, and infrastructure is automatically
provisioned for functions up to the 1536MB limit. In contrast,
users deploying microservices to Lambda or Google Cloud
Functions must specify a memory reservation size for function
deployment. These reservations are applied to Docker
containers created to host user functions. Containers are created
to host individual function deployments, and user functions may
or may not share resources of underlying VMs.

B. Contributions

 This paper reports on our investigations of performance
implications for microservice hosting on serverless computing
platforms. This study analyzes performance implications
related to infrastructure elasticity, service request load
balancing, provision variation of hosting infrastructure,
infrastructure retention, and implications of the size of memory
reservations. While originally envisioned for hosting light-
weight event based code, benefits of serverless computing
including autonomous high availability, elasticity, and fault
tolerance makes the platform very compelling for broad use. A
key contribution of this study is a comprehensive profiling of the
performance implications of the autonomic infrastructure
management provided by serverless computing platforms. We
believe our study is the first to investigate many of these
performance implications in depth.

The primary contributions of this paper include:

1. Identification, and performance analysis of the four
states of serverless computing for microservice hosting:
provider cold, VM cold, container cold, and warm.

2. Performance, elasticity, and load balancing analysis
across infrastructure provided by AWS Lambda and
Azure functions, including the use of standard deviation
to quantify fairness of load balancing.

3. Analysis of the performance implications of
provisioning variation of containers deployed across
host VMs.

4. Performance analysis of infrastructure retention and
combined memory and CPU capacity reservations
provided by AWS Lambda for microservices hosting.

3

II. BACKGROUND AND RELATED WORK

A. Motivation for Microservices Architecture

A microservices application architecture provides a means
to develop software applications as a suite of small services [4].
Decomposing functionality of historically large, coupled, and
monolithic applications into compositions of microservices
enables developer agility supporting DevOps software
development processes. Microservices have a small codebase,
are easy to deploy and subsequently scale. Applications which
compose multiple microservices as a mashup offer resilience as
portions of an application can be revised while maintaining
availability of the application at large.

 Aderaldo et al. note that there is a lack of repeatable
empirical research on the design, development, and evaluation
of microservices applications [11]. They provide a set of
requirements towards the development of a microservices
benchmark application equivalent to TPC-W, the webserver and
database benchmark. Kecskemeti et al. offer the ENTICE
approach to decompose monolithic services into microservices
[12]. ENTICE, however, focuses primarily on generation of
dynamic VM images with requisite software libraries to support
decomposition as the work does not apply to serverless
environments directly. Hassan and Bahsoon identify the
importance to balance design tradeoffs in microservices
architecture and propose the use of a self-adaptive feedback
control loop to generate potential application deployments that
trade off criteria such as size, number of microservices, and
satisfaction of non-functional requirements [13]. Granchelli et
al. are able to decompose microservice application architecture
to generate an architectural model of the system given a GitHub
repository and a web container endpoint using MicroART [14].
And Frey et al. apply a genetic algorithm to reduce the search
space of potential deployment configurations for traditional
VM-based cloud applications to rapidly identify optimal
configurations [15]. These efforts have not specifically
considered microservices application deployment to serverless
computing platforms. We are unaware of prior research efforts
that specifically assess performance implications of
microservice deployment to serverless computing platforms.

B. Serverless Computing Frameworks

 Commercially provided serverless computing platforms
provide dynamic scalable infrastructure on-demand to host
microservice applications [16][17][18][19]. Research into best
practices for monolithic application decomposition for
deployment as microservices, however, has not yet considered
deployment to serverless computing environments leaving cost
and performance tradeoffs unexplored [4] [20]. Recently Sill
noted in his IEEE Cloud Computing magazine column that
serverless computing’s adoption of deploying services to
containers is more of a coincidence than a direct consequence of
optimal design [6]. McGrath and Brenner recently presented a
serverless computing framework that runs atop of the Microsoft
Azure cloud and Windows containers [21]. They contribute
metrics to evaluate performance of serverless platforms
including examining scaling and container instance expiration
trends while showing their framework achieves greater
throughput than available commercial frameworks at most
concurrency levels.

C. Improving Serverless Application Deployments

Efforts to improve elasticity of cloud computing
infrastructure for application hosting almost exclusively focuses
on IaaS clouds. Considerable work has focused on evaluating
machine learning techniques to support better dynamic scaling
of VMs including Islam et al. [22], and Nikravesh et al. [23] [24]
who evaluate the efficacy of linear regression, neural networks,
and support vector machines to predict resource demand in the
future for threshold based auto scaling. Qu et al. provide high-
availability using low cost spot VMs [25].

Our investigations help inform our understanding of the
factors that influence microservice performance afforded by
serverless computing platforms. These understandings will help
guide practitioners towards making better deployment decisions
while establishing best practices.

III. SERVERLESS COMPUTING PLATFORMS

To investigate research questions described in section 1, we
harness two commercial serverless computing platforms: AWS
Lambda, and Microsoft Azure [16][18].

AWS Lambda, introduced in 2014, harnesses containers
atop of the AWS Linux operating system based on Redhat
Linux. Presently, Lambda officially supports hosting
microservices written in Node.js, Python, Java, and C#.
Lambda’s billing model provides 1 million function invocations
a month for free, while each subsequent 1 million requests costs
approximately 20 cents ($.20 USD). Functions can use up to
400,000 GB-seconds a month for free, after which additional
memory utilization costs approximately 6 cents ($.06 USD) for
each 1 GB of memory reserved per hour. Functions can
individually reserve from 128MB to 1536MB of memory.
Lambda automatically hosts and scales infrastructure to provide
microservices supporting by default up to 1,000 concurrent
requests. As of fall 2017, containers are provided with 2
hyperthreads backed by the Intel Intel(R) Xeon(R) CPU E5-
2666 v3 @ 2.90GHz. Lambda allocates CPU power and other
resources proportional to memory. For example, reserving
256MB of memory allocates approximately twice as much CPU
power to a Lambda function as requesting 128MB of memory,
and half as much CPU power as choosing 512MB of memory.
Docker containers support specification of CPU-period (the
completely fair scheduler-CFS interval), CPU-quota (a CFS
CPU quota), and CPU shares (the share of CPU resources
provided when constrained) [26]. The precise mappings
between Lambda memory and CPU configuration is not
documented. Each container has 512 MB of disk space and can
support up to 250MB of deployed code provided in compressed
format up to 50MB. Microservices execution time is limited to
a maximum of 5 minutes.

 Azure Functions, is a serverless computing platform
provided by Microsoft that allows users to run small pieces of
code or ‘functions’ in the cloud. Azure Functions is derived
from, and built on the Azure App Service, and is a natural
extension of WebJobs with additional features such as dynamic
scaling [27]. Azure Functions automatically creates a function
app for the user. This app hosts one or more individual
functions managed by the Azure App Service. Function apps
hosted by the Azure App Service run using low-privileged
worker processes using a random application identity [28]. The

4

runtime for Functions is the underlying WebJobs SDK host that
performs all operations related to running code including
listening for events, as well as gathering and relaying data [29].

Presently, Functions supports hosting of code in C#, F# and
Node.js. Support for languages such as Python, PHP and Bash
are currently under development. Functions can be run using
two plans, i.e. the Consumption Plan and the App Service Plan.
The type of plan decides how the function/app will scale and
what resources are available to the host [30]. The Consumption
Plan automatically decides the resources required to run the app,
provides dynamic scaling, and bills only according to resources
consumed. Each app is limited to 1.5 GB total memory, and
functions are limited to 10 minutes execution time [31]. In the
App Service Plan, function apps are run on dedicated VMs,
similar to Web Apps. For the App Service Plan the functions
host is always running and it is possible to manually scale out
by adding new VMs, or by enabling auto scaling.

IV. EXPERIMENTAL SETUP

To support experimentation, we developed and deployed
AWS Lambda and Azure functions microservices aimed at
introspecting platform performance and infrastructure
management. We describe the microservices below.

A. Lambda Experimental Microservice

For Lambda, we developed a compute-bound microservice
that performs random math calculations where operations avoid
using stack variables with operands stored in large arrays on the
heap. To vary the degree of memory stress we make the array
size a service parameter. For each calculation, operands are
referenced from a random location in the array. When the array
size is larger, this referencing scheme induces additional page
faults resulting in memory stress. When the array size is small,
the behavior of the function is primarily bound only by random
multiplication and division calculations. While maintaining the
same number of calculations, we observe that larger array sizes
result in microservice failure on Lambda function deployments
with low memory/CPU allocations confirming the efficacy of
our ability to introduce memory stress.

TABLE I. SUMMARY OF CALCULATIONS SERVICE CONFIGURATIONS

Stress Level
of

Calculations
Operand

Array Size
Function

Calls
 1 0 0 0
 2 2,000 100 20
 3 20,000 1,000 20
 4 200,000 10,000 20
 5 500,000 25,000 20
 6 2,000,000 100,000 20
 7 10,000,000 10,000 1,000
 8 10,000,000 100 100,000
 9 6,000,000 20 300,000

To support our experiments, we defined 9 stress levels for

our calculations services each introducing increasing stress and
requiring longer execution time. These stress levels are
described as calculations service configurations in table I. They
reflect the different function parameterizations used in our
experiments. Stress level 1 is used to simply evaluate the

microservice round trip time to execute a calculation free service
call. Stress levels 2 to 9 introduce 2,000 to 10,000,000 random
math operations. Operand array size reflects memory stress.
Three arrays are used to store two multiplication operands and
one division operand. The number of function calls reflects
stress from call stack activity.

Our Lambda testing leveraged the AWS API Gateway and
all of our functions invocations were synchronous. The API
Gateway imposes an unalterable 30-second limit on
synchronous service requests. We performed our Lambda tests
using bash scripts under Ubuntu 16.04 hosted by a c4.2xlarge 8-
vCPU EC2 instance with “High” networking performance. We
pinned our EC2 instances and Lambda functions to run using a
default VPC in the us-east-1e availability zone. The default
configuration for Lambda function deployments is to span
multiple sub-regions for redundancy and fault tolerance. To
eliminate potential performance variability from randomly
communicating across different sub-regions, we elected to fix
our deployment to one sub-region. Please note that Amazon
sub-regions are floating. Each user experiences different
mappings to avoid having users accidentally provision too many
cloud resources in the first sub-region, us-east-1a. High
networking performance is generally considered to be
approximately ~1 Gbps. We harnessed GNU parallel to perform
all requests in parallel and utilized the command-line curl REST
client to instrument all HTTP-POST JSON service requests.
Given the small JSON request/response payloads of our
microservice, we observed little stress on our c4.2xlarge client
instance while performing up to 100 concurrent Lambda service
invocations.

Our calculations microservice provided a compute-bound
workload to exercise AWS Lambda. Additionally, we
augmented our microservice to introspect the Lambda execution
environment.

Container Identification: Each Lambda function is hosted
in a Docker container with a local 512MB filesystem. When a
service request is received by a container we check for the
presence of a temporary file. If the temporary file is not present,
we create it and stamp the container with a universally unique
identifier (UUID) by writing to this temp file. When the
container is retained for subsequent service requests, the UUID
serves to identify new vs. recycled containers. In the service
response, we report the unique UUID and whether the request
generated a new container.

Host Identification: Docker containers provide access to the
/proc filesystem of the Linux host. We determined the hosts run
Amazon Linux VMs. By inspecting /proc/cpuinfo we
identify that Docker containers leverage the Intel Xeon E5-2666
v3 @ 2.90GHz CPU. This is the same CPU as used by c4/m4/r4
EC2 instances, Amazon’s 4th generation of VMs. We also
identified that each container has access to two vCPUs. We are
interested in knowing how many Docker containers run on each
AWS Lambda host VM. We leverage “btime” in
/proc/stat to identify the boot time of the VM in seconds
since the epoch, January 1, 1970. Using this technique, we are
able to identify when the Docker containers used to host a
Lambda function “appear” to leverage the same host (VM).

5

While this technique does not guarantee that we’ve found host
affinity, statistically it is highly reliable.

Let’s consider the probability that two VMs boot and
initialize their “btime” variable at the same exact same second.
To establish probability, we consider the infrastructure used to
host 132 trials of 100-concurrent requests for the 12 memory
reservation levels described in table II. For this workload, we
observed a range of boot times across the 91 unique VMs that
participated in hosting these Lambda service requests. We
measured the uptime for VMs to establish their estimated
lifetime. For these 91 VMs, we observed VM uptime to range
from a minimum of 17 minutes and 45 seconds, to a
maximum of 3 hours and 26 minutes. The average uptime
was approximately 2 hours and 8 minutes. The VM uptime here
spans a range of 11,302 seconds. If we consider the probability
of a VM receiving a given boot time in this 11,302 second range
to be 1/11,302, then the probability of any given boot time is just
P(boot_timeA) = 0.00008848. The probability of two VMs
having the same boot_time will be P (boot_timeA ∩ boot_timeB)
= 7.8*10-9. While it is unlikely that VMs are launched entirely
randomly by Lambda, actual probability will likely be higher as
VMs are inevitably launched in groups. We deem our approach
as suitable to identify host affinity and its efficacy is verified
through successful use throughout all of our experiments.

Client Testing: Our clients process service outputs to
determine the number of service requests processed by each
container and host. We capture the uptime, and number of new
containers generated. We also calculate the standard deviation
of service requests distributed to both containers and hosts.
When the standard deviation of this distribution is zero, it
identifies perfectly even balancing of requests across
infrastructure akin to round-robin. As the standard deviation of
load balancing increases, this indicates discontinuity. For
example, if 4 hosts participate in 100 service requests, and the
distribution of requests is: 10, 5, 2, and 83, then the standard
deviation is 38.8. This uneven distribution of requests will stress
the 4th node unevenly, potentially leading to performance
degradation. We capture standard deviation in our test scripts to
identify fairness of service request load balancing. Our testing
also captures average service execution time for all requests, and
the quantity of requests serviced by individual containers and
hosts. Using this approach, we can clearly see when new hosts
(VMs) and containers join the infrastructure pool for a
microservice.

In section 1, we described three types of COLD runs:
provider cold, VM cold, and container cold. Each type of
COLD run using Docker results in different performance
overheads. Provider cold runs force the container image to be
initially built/compiled requiring the most time. VM cold runs
force the container image to be transferred to new hosts, while
for container cold, images are already cached at the host and
overhead is limited to container initialization time for creating
new containers. Making a configuration change in Lambda is
sufficient to generate container cold tests. Creating a new
function is required to force requests to be provider cold, while
we observed that waiting ~40+ minutes between requests is
nearly infallible to generate VM cold runs. Given the reliance
of serverless computing infrastructure on Docker container

infrastructure, the significance of container initialization
overhead cannot be overlooked! This reliance is not limited
to only the AWS Lambda serverless computing platform [2]
[19] [21].

B. Azure Functions Experimental Microservice

For Functions, we developed an Http-Triggered Functions
App, that contains a single function written in C#. The function
logs the App Service Instance Id and the current worker process
Id to an Azure Table [32], to provide information about the App
Service Instance that services individual microservice requests.
We utilized the Consumption Plan to assess automatically
provided infrastructure for our Functions App. Function Apps
store files on a file share in a separate storage account, thereby
allowing files to be easily mounted onto new App Service
instances as the app scales. We harnessed the Visual Studio
Team System (VSTS) to implement performance load tests and
to provide stress on our functions for the experiments [33].

We investigated COLD and WARM performance of our
functions app. COLD runs measure the behavior of functions
when provisioned for the very first time with newly assigned
App Service Instances. We observed that once an App Service
Instance was assigned to the function app, it’s lifespan was at
least 12 hours. Restarting the function app, or changing the code
executed by the function did not assign a new app service
instance. To force COLD runs, we created a new function app
for each COLD run. We leveraged a URL-based load test, to
perform stress tests against our function endpoint for a specified
duration of time and with a given concurrency. For concurrency
testing we scaled the number of requests as follows: 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200. For COLD
runs we tested a load duration of 2 minutes, while for WARM
runs we tested 2, 5, and 10 minutes for each test.

 For each microservice invocation the App Service Instance
Id and Worker Process Id responding to the request were
recorded in an Azure Table. We were able to capture the Service
Instance Id from the environment variable
WEBSITE_INSTANCE_ID set by Kudu in the Azure runtime
environment [34]. We used the Power BI Desktop to view and
analyze the data captured into our Azure Tables.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Docker Performance Comparison

AWS Lambda hosts microservice code using fleets of
Docker containers that are dynamically provisioned based on
client demand. To compare performance of Lambda with
“equivalent” infrastructure to gauge overhead of the platform,
we harnessed Docker-Machine, a tool that enables remote hosts
and containers to be provisioned on-the-fly [35]. Aided by
Docker-Machine, we deployed our Calculations service code
into our own Docker container independent of Lambda on EC2.
The motivation for using Docker-machine was to emulate TCP
networking overhead similar to that incurred by the AWS API
Gateway and Lambda function invocation. For both Docker-
Machine and Lambda testing, we harnessed a c4.2xlarge 8
vCPU EC2 instance with “High” 1-Gigabit networking as a test
client. We observed minimal load on our client while running
remote tests.

6

TABLE II. DOCKER-MACHINE CONFIGURATIONS:
MEMORY QUOTA AND MAXIMUM CPU CAPACITY

Memory
(MB)

Expected
CPU%

128 16.6%
256 33.3%
384 50.0%
512 66.6%
640 83.3%
768 100.0%
896 116.7%
1024 133.3%
1152 150.0%
1280 166.60%
1408 183.30%
1536 200.00%

Lambda states that every time memory is doubled, the CPU

capacity is doubled [16]. Using this guideline, we calculated
plausible ratios of memory and CPU resource allocations
shown in Table II. To calculate these ratios, we assume that
when Lambda has access to the maximum allowable memory
(1536 MB), it will have full access to the two reported Intel
Xeon CPU E5-2666 v3 @ 2.90GHz vCPUs. We use the
allocations in Table II to constrain our Docker containers by
providing “--cpus” and “--memory” settings to Docker-
Machine for container creation to enable our performance
comparison.

Fig. 1: Cold Performance:
Docker-Machine vs. AWS Lambda

We performed container cold and container warm test runs
by hosting individual containers for 1 or 12 concurrent runs on
a c4.8xlarge 36 vCPU EC2 instance. We evaluate Docker-
Machine performance for 1 thread and 12 threads, because from
our memory testing experiments (RQ-5) we observed that the
average number of runs per container in Lambda across all tests
was ~12.3. Our ultimate goal is to evaluate whether the
serverless computing platform "overhead" is reasonable
compared to an equivalent implementation using remote

Docker containers to host code. Figure 1 details a COLD
performance comparison, while figure 2 shows a WARM
performance comparison. We observe that Lambda’s WARM
performance is quite good given the comparison to our Docker-
Machine analog, while container cold performance could be
improved. When hosting 12-threads per host, Docker-Machine
outperformed Lambda for COLD runs when containers
reserved 640MB or less. Lambda performance excelled beyond
Docker-Machine performance for 12-thread COLD tests at
768MB and above. For WARM runs Lambda clearly
outperforms out Docker-Machine analog for all tests. For
memory configurations of 512MB and above, however, the
performance slowdown averaged around a somewhat
manageable ~41%. We posit that our Docker-Machine analog
could match Lambda performance if we slightly reduce the
number of containers per host.

Fig. 2: Warm Performance:
Docker-Machine vs. AWS Lambda

B. Elasticity (RQ-1)

To investigate RQ-1, we evaluated COLD performance of our
Calculation service at stress level #4 on AWS Lambda with a
128MB deployment. We performed from 1 to 100 concurrent
requests. We tested 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60,
70, 80, 90, and 100 concurrent requests with a 10-second sleep
between requests. By making an “advanced” configuration
change to our Lambda function through the UI or CLI we were
able to force runs to be container cold. Configuration changes
such as modifying the container memory size or function
timeout were sufficient to force containers to be deprecated
forcing the platform to create new containers. Figure 3 shows
container cold performance with an increasing number of
concurrent requests.

For this slowly scaling workload the cloud provider creates
the initial infrastructure and slowly scales up. For cold service
execution, from 1 to 100 requests, performance degraded by a
factor of 3.8x. From 10 requests to 100, performance degrades
by a factor of 2.6x. Cold service hosting required one Docker
container for every request, and these containers leveraged from
1 to 7 host VMs as shown in figure 4. For this experiment VMs
hosted an average of 11.3 service requests.

7

Fig. 3: AWS Lambda Container cold
Calculation Service Scaling Performance

Fig. 4: AWS Lambda - Calculation Service Cold Scaling
Test: Infrastructure Elasticity and Load Balancing

Fig. 5: AWS Lambda: Stress Level vs.
 Calculation Service Performance

C. Load Balancing (RQ-2)

To investigate load balancing of warm service requests, we
executed 10 sets of 100 concurrent requests using each of the
calculation service stress levels described in table I. Each level
reflects an increasing amount of required CPU time. Services
requests were hosted using 128 MB containers on AWS Lambda
with 10 seconds sleep between test sets. From level 1 to level 9,
average service execution time increased by a factor of ~ 78x.

Performance is shown in figure 5 where the x-axis has been
plotted using a log scale.

Fig. 6: AWS Lambda: Infrastructure Elasticity and Load
Balancing vs. Microservice CPU Stress

Figure 6 shows infrastructure utilized by AWS Lambda to
host 100 concurrent requests for our Calculation Service. Stress
level 1 only required an average of 39 containers with each
completing an average of ~3 requests. Each stress level required
an increasing number of containers for hosting, with stress levels
5 and above requiring one container for each microservice
request. The number of hosts (VMs) used to execute our service
requests did not appear to vary based on the stress level of our
service with 5 to 9 hosts being used. Load balancing of service
requests across containers improved to a standard deviation of 0
for stress levels 5 and above, while the standard deviation of load
balancing only improved slightly for service request distribution
across VM hosts.

D. Provisioning Variation (RQ-3)

To evaluate the impact of container placement across host
VMs on service performance we captured data from our
experiment examining elasticity for RQ-1. We computed a
linear regression and found there is a very strong relationship
(R2=.9886) between the number of containers per host VM and
the resulting COLD service performance. The data used for this
regression is from stress level #4 service requests performed on
128 MB Docker containers. Figure 7 shows our regression plot.

 This stress of container initialization on the host is
significant. When microservice infrastructure is initialized
placing too many containers on the same host directly
correlates with poor performance. We hypothesize that
container initialization requires substantial network and disk I/O
contributing to poor performance.

Next, we next tested 3,000 concurrent WARM requests at
stress level #9 while configuring our Lambda service to use 512
MB of memory. Due to client limitations, sending 3,000
requests required approximately ~1.6 minutes. This workload
harnessed 218 containers across 47 host VMs where each
container processed an average of 13.76 runs, and each VM an
average of 63.83 runs. Linear regressions were, between
containers per host (VM) and (1) average WARM service
execution time (R2=0.53), and (2) the number of requests per
host (R2=.063). These relationships, though not as strong as for

8

COLD service execution with 128 MB containers, are still clear.
We observed the maximum number of containers per host drop
from ~26 for 128MB containers, to just ~12 containers for
512MB containers. Increasing container memory from 128MB
to 512MB provided a performance improvement of 6.5x for our
Calculations Service at Stress Level 9. Amazon suggests we
should observe a 4x increase in CPU performance as
performance is doubled twice from 128-to-256MB and 256-to-
512MB. The additional performance improve could be
attributed to fewer containers per host.

Fig. 7: AWS Lambda - Linear Regression: Container
Placement vs. Container Cold Performance – Stress Level 4

E. Infrastructure Retention (RQ-4)

We investigated how serverless computing infrastructure is
retained over time to host microservices. Given our
observations of poor performance for COLD service execution
time seen while investigating RQ-1 and RQ-3 we already know
how important infrastructure retention will be for service
performance. For RQ-4 we sought to quantify precisely how
much infrastructure (hosts and containers) is retained, and for
how long. We also investigated the microservice performance
implications of infrastructure retention. To test container
retention, we executed sets of 100 concurrent Calculation
Service requests at Stress Level 4 on Lambda configured to use
128 MB Docker containers. Warming the service created 100
containers across 5 hosts. We then sent subsequent sets of 100
concurrent requests interspersed with .166, 1, 5, 10, 15, 20, 25,
30, 35, 40, and 45-minute idle periods. We captured the number
of new and recycled containers and hosts (VMs) involved in the
test sets.

When testing after 40 minutes of inactivity, no containers or
VMs were recycled and all infrastructure was reinitialized from
the VM cold state. For Stress Level 4 warm service execution
time required only an average of 1.005 seconds. When all
infrastructure is VM cold, average service execution time

increased over 15x to 15.573 seconds! Service execution time
increased as follows: 10 min ~ 2x, 15 min ~ 5x, 20 min ~ 6.9x,
25 min ~ 9.3x, 30 min ~ 13.4x, 35 min ~ 14.1x. After just 10
minutes of idle time 41.8% of the containers had to be recreated.
An open question is, does infrastructure retention vary
throughout the day based on system load? Cloud providers
should consider opportunistically retaining infrastructure
for longer periods when there is idle capacity to help offset
the performance costs of container initialization.

Fig. 8: AWS Lambda: Microservice Performance and
Recycled Containers (%) for Long Duration Retention Tests

Fig. 9: AWS Lambda: New vs. Recycled Host VMs
for Long Duration Retention Tests

 For RQ-2, we observed that Stress Level 5 or higher is
sufficient to involve all containers of 128MB size in service sets
of concurrent service requests. If infrastructure is fully retained
within 5 minutes, then executing 8,640 service sets a month at
5-minute intervals should help retain infrastructure.
Complicating this service “warming” is a recent report that host
VMs are recycled every ~4 hours [36]. Avoiding microservice
performance degradation from infrastructure deprecation may
require redundant service endpoints.

F. Memory Reservation (RQ-5)

Lambda supports reserving memory from 128MB to
1536MB in 64MB increments. Additionally, CPU capacity is
scaled proportional to memory with capacity doubling when
memory is doubled presumably as we estimate in Table II. To
investigate RQ-5, we are interested in examining how these
capacity adjustments impact container density on VM hosts and

9

service performance. We tested the following memory
increments in MB: 128, 256, 384, 512, 640, 768, 896, 1024,
1152, 1280, 1408, and 1536 using our Calculation Service at
Stress Level 4. We warmed infrastructure first, and then
performed 10 sets of 100 concurrent runs for each memory
configuration. We paused for 10 seconds between every set and
performed 10 batches for a total of 1,200 sets. Graphs presented
here represent averages across the batch of tests. Performance
vs. memory reservation size is shown in figure 10, while figure
11 shows memory reservation size vs. active hosts (VMs).

Fig. 10: AWS Lambda: Memory Reservation Size
vs. Service Performance

We observed a ~4x performance boost for average COLD
service execution time when increasing the function’s memory
reservation from 128MB to 1536MB. This is in contrast to the
expected increase of 12x, if each time memory is doubled,
performance doubles. For WARM service execution time, we
observed only a 1.55x performance improvement. Memory
configurations of 512MB achieve this improvement. Reserving
(and paying for) memory beyond 512MB was not helpful to
improve our WARM service performance. We posit that for our
simple calculation service much of the execution time is actually
overhead, and adding additional memory and CPU power is not
sufficient to increasing the speed of Lambda framework
overhead. Our results demonstrate the importance to profile
microservice functions to determine an optimal memory
reservation. Ad hoc tuning may be insufficient to guess an
optimal memory and CPU performance setting. Users with
minimal cost constraints or for hosting microservices with very
light load, may opt to simply allocate the maximum memory to
provide optimal COLD service performance.

 Interesting behavior is seen in figure 11 regarding the
number of host VMs. WARM and COLD 128MB deployments
are shown to leverage a large number of hosts. Immediately, the
number of hosts plummets at 256MB particularly for WARM
runs. The unusual use of additional VMs for 128MB was
limited to our investigation of RQ-5. When we executed similar
tests at Stress Level 4 with 100 concurrent requests for other
experiments only 5 to 7 host VMs were used. We determined
that the use of additional hosts appears to be opportunistic in
nature. These hosts were present from previous 1536MB tests
and were reused for the subsequent 128MB test. While we
typically observed around ~26 requests per host for WARM
Service Level 4 requests against 128 MB containers, for this
experiment the average number of requests per hosts was just

1.8! COLD requests per host dropped from approximately 20 to
just 4.8. This “host hangover” effect was replicated every time
(10 times) in repeated experimental runs. This effect helped to
cut cold initialization average service execution time in half!

Fig. 11: AWS Lambda: Memory Reservation Size
vs. Number of Hosts

G. Microsoft Azure Functions Elasticity (RQ-1)

 To investigate elasticity of infrastructure provided by the
Azure Functions platform we performed scaling tests to
measure service performance and infrastructure scalability for
COLD service tests. We evaluated infrastructure scaling by
performing a two-minute scaling load test. We increased
concurrency every six seconds using the steps: 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 200. Average
execution time of our Azure function barely increased from 1
to 50 concurrent requests. Beyond 50 concurrent requests,
average service execution time increased rapidly as shown in
Figure 12. Cold service hosting utilized one worker process for
each request while leveraging from 1 to 4 host VMs to host app
service instances.

Fig 12: Azure Functions: Average Execution Time vs.
 Number of Concurrent Runs

 Next, we investigated the number of App Service instances
involved in hosting our microservice scaling workloads for
WARM infrastructure. For this test, we did not create a new
function app before each run, but reused our existing app to
preserve previous infrastructure. For this test, we generated a
continuous scaling load for 2, 5, and 10 minutes with scaling
steps at ~ 6, 15, and 30 seconds respectively. We observed the

10

number of App Service Instances that participate in hosting our
scaling workloads as shown in Figure 13. We observed that for
our 5-minute test, ~10% more App Instances were used, and for
our 10-minute scaling test, ~90% additional App Instances were
used. Given additional time, Azure Functions created additional
App Instances as additional VMs were available ultimately
enabling better microservice performance.

Fig 13: Azure Functions: Number of App Service Instances
vs. Number of Concurrent Runs

VI. CONCLUSIONS

In this study, we report our investigations on the
performance implications of microservice hosting using
Serverless Computing Infrastructure. Specifically, we profile
microservice hosting and analyze implications of infrastructure
elasticity, load balancing, provisioning variation, infrastructure
retention, and memory reservations. For elasticity (RQ-1), we
found that extra infrastructure is provisioned to compensate
for initialization overhead of COLD service requests.
Docker container initialization overhead significantly burdens
serverless computing platforms, especially for VM cold
initialization. Future service requests against WARM
infrastructure do not always reuse extraneous infrastructure
created in response to COLD initialization stress, with higher
reuse rates corresponding with higher stress levels of
microservice requests. With respect to load balancing of
requests against serverless infrastructure (RQ-2), we observed
well balanced distribution across containers and host VMs for
COLD service invocations and for WARM service invocation at
higher calculation stress levels. For low stress WARM service
invocations, load distribution was uneven across hosts. This
uneven use of infrastructure may lead to early deprecation if
client workloads do not utilize all nodes.

Our investigations on provisioning variation (RQ-3) found
that when too many container initialization requests go to
individual host VMs, COLD service performance degrades up
to 4.6x times. Once a VM participates in microservice hosting
and the container image is cached, there is a tendency to stack
containers at the host. We observed up to 26 collocated
containers with a memory reservation size of 128MB, and ~12
containers at higher memory reservation sizes. Regarding
infrastructure retention (RQ-4), we identified four unique states
of serverless computing infrastructure: provider cold, VM cold,
container cold, and warm. After 10 minutes, we observed that

containers were deprecated first, followed by VMs, producing
service performance degradation approaching 15x after 40
minutes of inactivity. After 40 minutes all original hosting
infrastructure for the microservice, containers and VMs, are
no longer used. We observed an average uptime of VMs
participating in Lambda microservice hosting to be 2 hours and
8 minutes.

Regarding memory reservation sizes (RQ-5), we discovered
that the coupling of memory and CPU power by Lambda
significantly constrained microservice performance for low
memory reservation sizes. To compensate Lambda allocates
and retains as many as 4x more containers to host microservice
workloads when memory reservation size is small. With
WARM infrastructure, we observed performance improvements
when increasing memory reservation size until reaching 512 to
640MB. Beyond this we observed diminishing returns as adding
additional memory (and CPU power) did not significantly
improve microservice performance. Determining the optimal
memory reservation size for microservices hosting requires
benchmarking behavior on the platform. Platform users
without cost constraints may consider using the highest
available memory reservation size 1536MB to ensure optimal
COLD and WARM service performance.

VII. ACKNOWLEDGEMENTS

 Cloud computing resources were provided by the AWS
Cloud Credits for Research, and a Microsoft Azure for Research
award.

REFERENCES
[1] Yan M., Castro P., Cheng P., Ishakian V., Building a Chatbot with

Serverless Computing. In Proceedings of the 1st International
ACM Workshop on Mashups of Things and APIs, Trento, Italy,
Dec 2016, 5 p.

[2] Hendrickson S., Sturdevant S., Harter T., Venkataramani V.,
Arpaci-Dusseau A.C., Arpaci-Dusseau R.H., Serverless
computation with openlambda. In Procedings of the 8th USENIX
Conference on Hot Topics in Cloud Computing (Hot Cloud '16),
Denver, CO, June 2016, 7p.

[3] Baldini I., Castro P., Chang K., Cheng P., Fink S., Ishakian V.,
Mitchell N., Muthusamy V., Rabbah R., Slominski A., Suter P.,
Serverless Computing: Current Trends and Open Problems.,
arXiv preprint arXiv:1706.03178. June 2017, 20 p.

[4] Microservices, https://martinfowler.com/articles/microservices
.html

[5] Openwhisk common use cases, https://console.bluemix.net/docs/
openwhisk/openwhisk_use_cases.html#openwhisk_common_
use_cases

[6] Sill A. The design and architecture of microservices. IEEE Cloud
Computing. 2016 Sep;3(5):76-80.

[7] H. Liu, A Measurement Study of Server Utilization in Public
Clouds, Proc. 9th IEEE International Conference on Cloud and
Green Computing (CAG’11), Sydney, Australia, Dec 2011,
pp.435-442.

[8] AWS Documentation: Concepts – Auto Scaling , 2013,
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide
/AS_Concepts.html

[9] M. Rehman, M. Sakr, Initial Findings for Provisioning Variation
in Cloud Computing, Proc. of the IEEE 2nd Intl. Conf. on Cloud
Computing Technology and Science (CloudCom '10),
Indianapolis, IN, USA, Nov 30 - Dec 3, 2010, pp. 473-479.

11

[10] W. Lloyd et al., Performance implications of multi-tier
application deployments on IaaS clouds: Towards performance
modeling, Future Generation Computer Systems, v.29, n.5, 2013,
pp.1254-1264.

[11] Aderaldo C., Mendonça N., Pahl C., Jamshidi P., Benchmark
requirements for microservices architecture research. In
Proceedings of the 1st International Workshop on Establishing
the Community-Wide Infrastructure for Architecture-Based
Software Engineering, May 2017, pp. 8-13.

[12] Kecskemeti G., Marosi A., Kertesz A., The ENTICE approach to
decompose monolithic services into microservices. In
International Conference on High Performance Computing &
Simulation (HPCS 2016), July 2016, pp. 591-596.

[13] Hassan S., Bahsoon R., Microservices and their design trade-offs:
A self-adaptive roadmap. In 2016 IEEE International Conference
on Services Computing (SCC 2016), June 2016, pp. 813-818.

[14] Granchelli G., Cardarelli M., Di Francesco P., Malavolta I.,
Iovino L., Di Salle A., Towards Recovering the Software
Architecture of Microservice-Based Systems. In 2017 IEEE
International Conference on Software Architecture Workshops
(ICSAW 2017), April 2017, pp. 46-53.

[15] Frey S., Fittkau F., Hasselbring W., Search-based genetic
optimization for deployment and reconfiguration of software in
the cloud. In Proceedings of the 2013 International Conference
on Software Engineering (ICSE 2013), May 2013, pp. 512-521.

[16] AWS Lambda – Serverless Compute,
https://aws.amazon.com/lambda/

[17] OpenWhisk, https://console.bluemix.net/openwhisk/
[18] Azure Functions – Serverless Architecture, https://

azure.microsoft.com/en-us/services/functions/

[19] Cloud Functions – Serverless Environments to Build and Connect
Cloud Services | Google Cloud Platform, https://cloud.
google.com/functions/

[20] Serverless Architectures, https://martinfowler.com/articles/
serverless.html

[21] McGrath G., Brenner P., Serverless Computing: Design,
Implementation, and Performance. In IEEE 37th International
Conference on Distributed Computing Systems Workshops
(ICDCSW 2017), June 2017, pp. 405-410.

[22] Islam S., Keung J., Lee K., Liu A., Empirical prediction models
for adaptive resource provisioning in the cloud. Future
Generation Computer Systems. 2012 Jan 31;28(1):155-62.

[23] Nikravesh A., Ajila S., Lung C., Towards an autonomic auto-
scaling prediction system for cloud resource provisioning. In
Proceedings of the 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, May
2015, pp. 35-45.

[24] Nikravesh AY, Ajila SA, Lung CH. Measuring prediction
sensitivity of a cloud auto-scaling system. In IEEE 38th
International Computer Software and Applications Conference
Workshops (COMPSACW 2014), July 2014, pp. 690-695.

[25] Qu C., Calheiros R., Buyya R., A reliable and cost-efficient auto-
scaling system for web applications using heterogeneous spot
instances. Journal of Network and Computer Applications. 2016
Apr 30;65:167-80.

[26] Limit a container’s resources, https://docs.Docker.com
/engine/admin/ resource_constraints/#configure-the-default-cfs-
scheduler.

[27] Understanding AWS Lambda Coldstarts, https://www.
iopipe.com/2016/09/understanding-aws-lambda-coldstarts/

[28] Choose between Flow, Logic Apps, Functions, and WebJobs,
https://docs.microsoft.com/en-us/azure/azure-functions/
functions-compare-logic-apps-ms-flow-webjobs

[29] Operating system functionality on Azure App Service , https://
docs.microsoft.com/en-us/azure/app-service/web-sitesavailable-
operating-system-functionality#file-access

[30] Making Azure Functions more “serverless”, https://
blogs.msdn.microsoft.com/appserviceteam/2016/11/15/making-
azure-functions-more-serverless/

[31] Guidance for developing Azure Functions, https://docs.
microsoft.com/en-us/azure/azure-functions/functions-reference

[32] Test your Azure web app performance under load from the Azure
portal, https://docs.microsoft.com/en-us/vsts/load-test/app-
service-web-app-performance-test

[33] Azure Functions hosting plans comparison ,
https://docs.microsoft.com/en-us/azure/azure-functions/
functions-scale

[34] Azure runtime environment, https://github.com/projectkudu/
kudu/wiki /Azure-runtime-environment

[35] Docker Machine, https://docs.Docker.com/machine/.
[36] Understanding AWS Lambda Coldstarts, https://www.iopipe

.com/2016/09/understanding-aws-lambda-coldstarts/

References appear on page 11 in accordance with the IC2E submission guidelines available at: http://conferences.computer.org/
IC2E/2018/cfp.htm#research-track: “Full research track papers should not exceed 10 pages double column, including figures, and
tables. References can be additional pages.”

