
International Environmental Modeling and Software Society (iEMSs)
 7th Intl. Congress on Env. Modeling and Software, San Diego, CA, USA, 

Daniel P. Ames, Nigel W.T. Quinn and Andrea E. Rizzoli (Eds.)
http://www.iemss.org/society/index.php/iemss-2014-proceedings

The Virtual Machine (VM) Scaler:
An Infrastructure Manager Supporting 

Environmental Modeling on IaaS Clouds

Wes J. Lloydab, Olaf Davidab, Mazdak Arabib, James C. Ascough IIc, Timothy R. Greenc, 
Jack R. Carlsonb, Ken W. Rojasd

a Colorado State University, Dept. of Computer Science
Fort Collins, Colorado 80523 USA

wlloyd@acm.org
b Colorado State University, Dept. of Civil and Environmental Engineering

Fort Collins, Colorado 80523 USA
c USDA-ARS-NPA, Agricultural Systems Research Unit

2150 Centre Ave., Bldg. D, Suite 200, Fort Collins, Colorado 80526 USA
d USDA-NRCS Information Technology Center

2150 Centre Ave., Building A, Fort Collins, Colorado 80526 USA

Abstract:   Infrastructure-as-a-service  (IaaS)  clouds  provide  a  new  medium  for  deployment  of 
environmental  modeling applications.  Harnessing advancements in  virtualization,  IaaS clouds can 
provide dynamic scalable infrastructure to better support scientific modeling computational demands. 
Providing scientific modeling "as-a-service" requires dynamic scaling of server infrastructure to adapt 
to changing user workloads.  This paper presents the Virtual Machine (VM) Scaler, an autonomic  
resource  manager  for  IaaS  Clouds.  We  have  developed  VM-Scaler,  a  REST/JSON-based  web 
services application which supports infrastructure provisioning and management to support scientific  
modeling for the Cloud Services Innovation Platform (CSIP) [Lloyd et al. 2012].  VM-Scaler harnesses 
the  Amazon  Elastic  Compute  Cloud  (EC2)  application  programming  interface  to  support  model-
service  scalability,  cloud  management,  and  infrastructure  configuration  for  supporting  modeling 
workloads.  VM-Scaler provides "cloud control" while abstracting the underlying IaaS cloud from the 
end user. VM-Scaler is extensible to support any EC2 compatible cloud and currently supports the 
Amazon public cloud and Eucalyptus private clouds versions 3.1 and 3.3.   VM-Scaler provides a 
platform  to  improve  scientific  model  deployment  by  supporting  experimentation  with:  hot  spot 
detection schemes, VM management and placement approaches, and model job scheduling/proxy 
services.
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1.      INTRODUCTION

The advent of modern multi-core CPUs, allow today’s compute servers to process many tasks in 
parallel.  These multi-core processors can provide increased performance for environmental modeling 
when: (1) model source code is architected to perform parallel computations to execute using multiple 
cores, or (2) multiple distinct related or unrelated model runs can be computed in parallel.  Service 
based  computing  involves  hosting  a  computational  engine  to  perform  complex  domain-specific 
calculations sometimes referred to as business logic or middleware.   Services operate using web 
based TCP ports  and are therefore referred to  as  web services.   Deployment  of  environmental 
models as web services involves migration of the model computation from the user’s client computers  
to  run  in  a  centralized  modern  datacenter  to  reap  the  benefits  of  faster  hardware  and  server 
scalability.  Users submit model service requests by describing the model parameterization including 
required inputs for the model run.  Many service requests can be processed in parallel.  Updating 
model code is made easier with a centralized deployment model.  We refer to deployment of scientific  
models as web services as modeling-as-a-service.
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Figure 1. Traditional Service Oriented Application Deployment

Figure 2. IaaS Cloud Service Oriented Application Deployment

Infrastructure-as-a-Service  (IaaS) is a type of web service.  Specifically,  IaaS provides compute 
infrastructure, on demand, as a service, to end users.  IaaS is one of the fundamental service types 
enabled by  cloud computing.  IaaS clouds allow  service oriented applications (SOAs) to have 
elastic  infrastructure  where resource  allocations can  be scaled up or  down in  real  time to  meet  
application  demand.   IaaS clouds provide ideal  server  infrastructure  for  providing  modeling-as-a-
service.  One key challenge of providing scientific modeling-as-a-service on demand to end users is 
the requirement to provide both good modeling performance and service availability.  Availability is 
the notion that the modeling service is always available to perspective users.  If  a large spike in 
demand for  a  scientific  model  occurs,  the  modeling  service  should  not  reject  new requests,  but  
continue to accept and process them in a timely manner.

As the number of CPU cores has increased in modern servers, the overall idle time has increased. 
Today dual and quad processor servers can support 40+ individual processing cores.  These cores 
frequently employ  hyper-threading.   Hyper-threads provide two execution threads per CPU core, 
each of which with its own processor architectural state.  These hyper-threads, referred to as logical 
processors,  can  be  individually  halted,  interrupted  or  directed  to  execute  a  specified  program, 
independent from the other logical processor. Logical processors share execution resources, allowing 
one processor to borrow resources from the other if stalled waiting for I/O.  The benefit seen from 
CPU hyper-threading depends on the application’s balance of computation vs. I/O, but is often 30% or  

2



Lloyd W. The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

better.  Hyper-threading enables fast execution of many more model runs in parallel, enabling higher 
throughput than single threaded CPUs.

It has become difficult for a single operating system instance to fully utilize so many cores.  To support  
service scalability, modern multi-core servers support server  virtualization.  Virtualization allows a 
single physical server to host many virtual machines (VMs).  VMs are implemented using a software 
program known as the  hypervisor which supports  sharing the physical  computer’s  processor(s), 
network and disk resources.   Each virtual machine has its own operating system instance providing 
isolation.   Server  virtualization  provides  partitioning  of  server  resources  with  the  overall  goal  of  
increasing utilization.  Increasing server utilization supports datacenter consolidation as redundant idle 
servers can be removed saving physical  space and electricity.   Popular  virtualization hypervisors 
include kernel-based VMs (KVM), Xen, and the VMware ESX hypervisor.  [Barham 2003] [Kivity 2007]  
[Camargos 2008].

Historically the components of multi-tier SOAs were deployed on one or more physical servers as in 
figure 1.  In a cloud based setting, SOAs are now deployed across a set of virtual machine images  
(figure 2) instead of being consolidated on a single physical server.  Multiple VM instances can be  
provisioned for  each application tier  using these virtual  machine images enabling the application 
infrastructure to scale based on service demand.

Figure 3. VM-Scaler Cloud Abstraction
 
Environmental models can be deployed as web services to IaaS clouds using Amazon’s public IaaS 
cloud Elastic Compute Cloud application programming interface (EC2-API.).  The EC2-API enables 
programmatic management of IaaS clouds enabling dynamic management of the server infrastructure 
used to host model services [1].  The EC2 API is supported to varying degrees by most open source  
private  clouds  including:  Apache  CloudStack  [Cloudstack  2013],  Eucalyptus  [Nurmi  2009], 
OpenNebula [OpenNebula 2014], and OpenStack [OpenStack 2013].

To  support  environmental  modeling  using  IaaS  Cloud  application  scaling  and  infrastructure 
management, we have developed the Virtual Machine Scaler (VM-Scaler), a REST/JSON-based web 
services  application.   VM-Scaler  supports  IaaS cloud  infrastructure management  for  environment 
modeling as part of the US Department of Agriculture and Colorado State University’s Cloud Services 
Innovation Platform (CSIP) [Lloyd et al. 2012].  VM-Scaler’s support of model infrastructure scalability 

3



Lloyd W. The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

for CSIP has been evaluated using the Revised Universal Soil Loss Equation – Version 2 (RUSLE2) 
[27], and the Wind Erosion Prediction System (WEPS) [28] as described in Lloyd (2014).  RUSLE2 
and WEPS are the US Department of Agriculture–Natural Resource Conservation Service standard 
models  for  soil  erosion  used  by  over  3,000  county  level  field  offices  across  the  United  States. 
RUSLE2 and WEPS are used to provide soil  erosion modeling services to end users.   RUSLE2 
contains both empirical and process-based science that predicts rill and interrill soil erosion by rainfall  
and  runoff.   RUSLE2 was developed primarily  to  guide natural  resources conservation  planning, 
inventory  erosion  rates,  and  estimate  sediment  delivery.   The  Wind  Erosion  Prediction  System 
(WEPS) is a daily simulation model which outputs average soil loss and deposition values for selected 
areas and periods of time to predict soil erosion due to wind. WEPS consists of seven sub-models 
including: weather, crop growth, decomposition, hydrology, soil, erosion, and tillage.

CSIP provides a common Java-based framework for providing REST/JSON based modeling-as-a-
service  to  end  users.   VM-Scaler  harnesses  the  Amazon  EC2  API  to  support  scaling  server 
infrastructure and management of the underlying clouds to enable modeling-as-a-service [Amazon 
EC2 API reference, 2014].  VM-Scaler currently supports Amazon EC2, and Eucalyptus versions 3.1 
and 3.3.  VM-Scaler provides cloud control while abstracting the underlying IaaS cloud and can be  
extended  to  support  any  EC2  compatible  cloud  (figure  3).   VM-Scaler  provides  a  platform  for  
supporting scalable environmental model services and supports: (1) profiling resource requirements of 
modeling workloads, (2) experimentation with hot spot detection schemes, (3) investigation of VM 
management/placement approaches, and (4) development of custom model request scheduling/proxy 
services.  The remainder of this paper describes features provided by VM-Scaler which help support 
environmental modeling services using public, private, and hybrid IaaS cloud resources.

2.     THE VIRTUAL MACHINE SCALER 

VM-Scaler is a REST/JSON Java-based web application installed to any web application container 
such as Apache Tomcat or Glassfish.  VM-Scaler can be hosted by a virtual machine (VM) or physical  
machine  (PM)  having  network  connectivity  to  the  managed cloud.   Upon initialization  VM-Scaler 
probes the host  cloud and collects  metadata including location and state information for  all  PMs 
(private clouds only) and VMs.  An object model is constructed in memory to represent the state of the 
cloud.   The  Eucalyptus  implementation  also  determines  the  Eucalyptus  round-robin  VM  launch 
sequence to identify which node is expected to receive the next  VM launch request.   VM-Scaler 
service requests are formulated using JSON objects.  Service specific JSON objects are used to 
describe meta-data for  the requested operations.   VM-Scaler  is  easily  extensible  to support  new 
services as needed.  Table 1 describes existing VM-Scaler services.

2.1. Resource Utilization Data Collection

An agent is installed to all infrastructure VMs and PMs (if accessible) to send resource utilization (RU) 
data to VM-Scaler at fixed intervals.  The default interval is 15-seconds.  The RU data collection agent  
is extensible and presently collects resource utilization statistics for (18) parameters as described in 
table 2.  RU data is used to calculate resource use for: (1) the last 15-second interval, (2) the previous 
one minute average, and (3) a historical lifetime average.  One minute averages are presently used to 
perform hot spot detection. (see section 2.4)

2.2  Model Workload Resource Utilization Check-pointing

VM-Scaler supports resource utilization checkpoint for environmental model workloads.  Resource 
utilization check-pointing can be used to obtain the total resource utilization profile for a modelling 
workload.  RU profiles can help determine the required machine resources to accomplish similar 
modeling workloads.  RU profiles help quantify the heft or weight of modelling workloads in terms of 
the resource requirements needed to execute.  RU profiles quantify resource usage for all eighteen 
resource  utilization  statistics  described  in  table  2.   Understanding  the  total  CPU time,  disk,  and 
network I/O required for a batch of modelling is particularly useful if looking to schedule many similar  
model runs as is the case for calibration or monte carlo simulations.
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Table 1. VM-Scaler Services

Statistic Description 
P/V CPU time CPU time in ms
P/V cpu usr CPU time in user mode in ms
P/V cpu krn CPU time in kernel mode in ms
P/V cpu_idle CPU idle time in ms
P/V Contextsw Number of context switches
P/V cpu_io_wait CPU time waiting for I/O to complete
P/V cpu_sint_time CPU time servicing soft interrupts
V Dsr Disk sector reads (1 sector = 512 bytes)
V Dsreads Number of completed disk reads
V Drm Number of adjacent disk reads merged
V Readtime Time in ms spent reading from disk
V Dsw Disk sector writes (1 sector = 512 bytes)
V Dswrites Number of completed disk writes
V Dwm Number of adjacent disk writes merged
V Writetime Time in ms spent writing to disk
P/V Nbr Network bytes sent
P/V Nbs Network bytes received
P/V Loadavg Avg # of running processes in last 60 sec

Table 2. Resource Utilization Statistics

2.3  Scaling Tasks

VM-Scaler provides horizontal scaling of application infrastructure by increasing the allocated number 
of VMs to service a particular tier of a multi-tier SOA.  When application hot spots are detected one or  
more VMs can be launched in parallel in response.   A service request is issued to describe the  
requested scaling task using a JSON object.  The JSON object identifies the base VM, the initial VM 
which provides implementation of a particular application tier.  The JSON object includes a VM-type  
meta-data  tag  to  identify  VMs launched to  support  the  tier.   An image-id  identifies  which  virtual 
machine image to launch in response to hot spots.  The VM-size attribute specifies the size and type 
for  new VMs,  for  example m1.xlarge,  m2.4xlarge.   An access key is  included and also the host 
zone/region and the VM security group are identified.

Three  additional  configurable  scaling  parameters  include:  min_time_to_scale_again, 
min_time_to_scale_after_failure,  and  max_VM_launch_time.   Min_time_to_scale_again 
provides a time buffer before scaling again, allowing time to consider the impact of recent resource 
additions.  This parameter helps to eliminate the ping-pong effect described in [Kejariwal 2013] and is  
equivalent  to  Amazon  Scaling  Group  cool-down  periods  [Auto  Scaling  Concepts  2013]. 
Max_VM_launch_time provides a maximum time limit before terminating launches that appear to have 
stalled.   This  supports  handling  launch  failures  by  reissuing  stalled  launch  requests. 
Min_time_to_scale_after_failure provides an alternate wait time when VM launch failures occur. 

2.4  Hot Spot Detection

VM-Scaler supports both resource utilization threshold and application performance model-based hot 
spot  detection.   Threshold  based scaling  is  triggered  when resource  utilization  variables  exceed 
configured thresholds.  This application agnostic approach is reactive to current system conditions 
and supports experimentation because the hot spot detection scheme can remain constant while VM 
scheduling algorithms or the application being tested are changed.  By default scaling thresholds can 
be specified for one-minute averages of: maximum CPU time, minimum CPU idle time, maximum 
number of context switches, and maximum load average.  Application performance model hot spot 
detection uses trends in resource utilization to predict average model execution time.  Predictions are 
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made for average model execution time for 1, 2, and 3 time steps in the future where a time step is 15  
seconds.  Scaling thresholds trigger hot spot detection when future predicted model execution time 
exceeds set values.  

2.5  Least-Busy VM Placement

For Eucalyptus private IaaS clouds, VM-Scaler supports controlling the placement of new VM’s to 
specific physical hosts.  New VM launches can specify a specific host, use the default host provided 
by  Eucalyptus  round-robin,  or  harness  VM-Scaler’s  Least-Busy  VM  placement  algorithm.   VM 
placement to the Least-Busy physical machine is based on using our BusyMetric which aggregates 
total host resource utilization to determine the best candidates for hosting new VM’s by quantifying 
host busyness [Lloyd 2014].  The busy metric double weights CPU time for environmental modelling 
since most models are CPU-bound in nature.  Disk sector reads/writes, network bytes received/sent 
and host occupancy are also included in the Busy Metric calculation.  Busyness is quantified relative 
to  the  observed  maximum  system  value  for  each  resource  utilization  measure.  Maximums  are 
determined through stress testing.

For example:

cputimen=
cputime obs1sec

cputimemax ⁡1sec

                                   (1)

Our Busy-Metric is expressed as:

( 2∙ cputimen )+dsr n+dswn+nbrn+nbsn+(
2∙ HostedVMs

PM cores

)

7
    (2)

Each additional VM hosted linearly increases the value of the Busy-Metric by:

e (ln PMcores−1.2528 )
                                                         (3)

The Busy-Metric provides an approach to rank available capacity of physical host machines.  Our goal  
has been to develop a general metric which supports new VM placements based on quantifying the 
total shared load of private cloud host machines.  Many variations of our busy metric are possible by 
using  unique  resource  variable  weights  based  on  specific  resource  requirements  of  different 
environmental models.  

2.6  Model Request Job Scheduling

VM-Scaler  supports  using  the  Busy-Metric  described  in  section  2.4  to  perform  model  run 
scheduling/proxy services.   Incoming model requests can be routed to the Least-Busy VM.  This 
provides  an  alternative  to  both  round-robin  load  balancing  and  least-connection  load  balancing. 
Round-robin load balancing is supported using the HAProxy load balancer [HAProxy 2014], by evenly 
distributing model requests to the pool of modelling-engine VMs.  Least-connection load balancing 
supported  by  HAProxy,  distributes  model  requests  by  evenly  balancing  the  number  of  active 
concurrent sessions at each modelling engine VM at any given time.  VM-Scaler’s Least-busy load 
balancing routes incoming model requests to run on the modelling engine VM with the most available  
resources  as  quantified  using  the  Busy-Metric.   Least-Busy  job  scheduling  is  a  black-box  job 
scheduler  which  does consider  details  of  the  model  parameterization  to  perform the  scheduling. 
Future work plans to investigate the development of white-box job schedulers which harness model  
parameterization details of incoming model requests to predict model resource and execution time 
requirements before execution.  Harnessing predictions should improve model execution scheduling 
and reduce model execution times by minimizing server idle time during model workload execution 
which occurs between scheduled jobs that presently goes to waste.

6



Lloyd W. The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

2.7  VM Pools

VM-Scaler supports VM pools to support recycling VMs in cases when the  launch latency time is 
high.  For environmental modelling, VM launch latency is the time required to launch and initialize a  
new modelling engine VM before it is ready to perform model computations.  Launch latency time 
varies based on the type and size of the VM image, as well as the host cloud and its underlying  
hardware.  For example, on Amazon EC2, using faster VM types such as c3.xlarge generally enables 
more rapid VM launch and initialization times compared to slower instance types such as m1.large.  
Similarly, on a private cloud, VM instance types assigned more computational and memory resources 
typically initialize more rapidly.  Launch latency will vary by cloud and the specifics of the VM being 
provisioned and should be benchmarked to establish baseline time requirements for dynamic scaling.

When dynamically scaling the modelling tier of an SOA it may be necessary to rapidly increase the 
number of worker VMs in response model demand.  To support dynamic scaling when new VMs 
cannot be launched fast enough, VMs can be prelaunched and reserved for later use using VM-Scaler 
VM pools.   Prelaunched VMs are referred to as spare VMs.  A key cost /  performance trade-off  
concerns identifying the number of spare VMs to allocate versus the supported magnitude of model 
service demand spikes.   When too many spare VMs are provisioned hosting costs are high,  but 
scalability performance is excellent.  Conversely when too few spare VMs are provisioned the model 
service may become slow, unavailable, or crash in response to demand spikes.

VM pools help support the use of Amazon public cloud spot instances for environmental modeling. 
Amazon Spot instances are low-cost VMs which are billed at a fluctuating auction price rather than the 
standard going rate.  Prices may be as low as 1/8 to 1/9 the cost of full dedicated instances with the  
caveat being these instances may terminate at any instant when the bid price is exceeded due to 
heavy demand.  Amazon spot instances have very long launch latency times since two separate 
Amazon EC2 operations are required to provision a VM.  An initial call places a spot market bid, and if  
the bid is successful a VM launch operation occurs.  For CSIP, launch latency times of 4-5 minutes 
per VM is not unusual.  With such long launch latency times dynamic scaling using amazon spot 
instances is generally not practical without prelaunching VMs.

VM pools also support reusing VM instances for dynamic scaling in lieu of Amazon’s billing model.  
Amazon bills hourly for VM usage.  Even if a VM is only needed for 1 minute, the user is charged for 
an entire hour.  For dynamic scaling it is useful then to recapture idle VMs for the duration of the billing 
cycle in case there is a future opportunity for use.

3. SUMMARY AND CONCLUSIONS

By  harnessing  infrastructure-as-a-service  cloud  computing,  server  infrastructure  supporting 
environmental  model  services  can  dynamically  scale  based on  user  demand to  deliver:  (1)  high 
availability, (2) high throughput (requests/second) and (3) fast model execution times.  

In this paper we have presented the VM-Scaler, a cloud agnostic autonomic resource manager which 
supports infrastructure management for multi-tier service oriented applications.  VM-Scaler supports 
dynamic  infrastructure  scaling  for  both  new  and  legacy  environmental  models  supporting  their  
deployment as web-based model services enabling model computation “as-a-service”, on demand, for 
users.  VM-Scaler supports model service scalability on both private and public clouds by providing 
key features including: resource utilization data collection, model workload resource utilization check-
pointing, dynamic scaling tasks, hot spot detection, Least-Busy VM placement, Job Scheduling, and 
VM pools.  VM-Scaler supports many features in-gratis which are typically pay-for-use infrastructure  
services in public clouds including resource utilization data collection and dynamic scaling.  The utility 
of VM-Scaler has been demonstrated in support of the USDA’s Cloud Services Innovation Platform 
(CSIP) and development remains ongoing.
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