
International Environmental Modeling and Software Society (iEMSs)
 7th Intl. Congress on Env. Modeling and Software, San Diego, CA, USA,

Daniel P. Ames, Nigel W.T. Quinn and Andrea E. Rizzoli (Eds.)
http://www.iemss.org/society/index.php/iemss-2014-proceedings

The Virtual Machine (VM) Scaler:
An Infrastructure Manager Supporting

Environmental Modeling on IaaS Clouds

Wes J. Lloydab, Olaf Davidab, Mazdak Arabib, James C. Ascough IIc, Timothy R. Greenc,
Jack R. Carlsonb, Ken W. Rojasd

a Colorado State University, Dept. of Computer Science
Fort Collins, Colorado 80523 USA

wlloyd@acm.org
b Colorado State University, Dept. of Civil and Environmental Engineering

Fort Collins, Colorado 80523 USA
c USDA-ARS-NPA, Agricultural Systems Research Unit

2150 Centre Ave., Bldg. D, Suite 200, Fort Collins, Colorado 80526 USA
d USDA-NRCS Information Technology Center

2150 Centre Ave., Building A, Fort Collins, Colorado 80526 USA

Abstract: Infrastructure-as-a-service (IaaS) clouds provide a new medium for deployment of
environmental modeling applications. Harnessing advancements in virtualization, IaaS clouds can
provide dynamic scalable infrastructure to better support scientific modeling computational demands.
Providing scientific modeling "as-a-service" requires dynamic scaling of server infrastructure to adapt
to changing user workloads. This paper presents the Virtual Machine (VM) Scaler, an autonomic
resource manager for IaaS Clouds. We have developed VM-Scaler, a REST/JSON-based web
services application which supports infrastructure provisioning and management to support scientific
modeling for the Cloud Services Innovation Platform (CSIP) [Lloyd et al. 2012]. VM-Scaler harnesses
the Amazon Elastic Compute Cloud (EC2) application programming interface to support model-
service scalability, cloud management, and infrastructure configuration for supporting modeling
workloads. VM-Scaler provides "cloud control" while abstracting the underlying IaaS cloud from the
end user. VM-Scaler is extensible to support any EC2 compatible cloud and currently supports the
Amazon public cloud and Eucalyptus private clouds versions 3.1 and 3.3. VM-Scaler provides a
platform to improve scientific model deployment by supporting experimentation with: hot spot
detection schemes, VM management and placement approaches, and model job scheduling/proxy
services.

Keywords: Environmental Modeling; Scientific computing; Cloud computing; IaaS; Virtualization;
Resource Management and Performance;

1. INTRODUCTION

The advent of modern multi-core CPUs, allow today’s compute servers to process many tasks in
parallel. These multi-core processors can provide increased performance for environmental modeling
when: (1) model source code is architected to perform parallel computations to execute using multiple
cores, or (2) multiple distinct related or unrelated model runs can be computed in parallel. Service
based computing involves hosting a computational engine to perform complex domain-specific
calculations sometimes referred to as business logic or middleware. Services operate using web
based TCP ports and are therefore referred to as web services. Deployment of environmental
models as web services involves migration of the model computation from the user’s client computers
to run in a centralized modern datacenter to reap the benefits of faster hardware and server
scalability. Users submit model service requests by describing the model parameterization including
required inputs for the model run. Many service requests can be processed in parallel. Updating
model code is made easier with a centralized deployment model. We refer to deployment of scientific
models as web services as modeling-as-a-service.

1

http://www.iemss.org/society/index.php/iemss-2014-proceedings

Lloyd W. The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

Figure 1. Traditional Service Oriented Application Deployment

Figure 2. IaaS Cloud Service Oriented Application Deployment

Infrastructure-as-a-Service (IaaS) is a type of web service. Specifically, IaaS provides compute
infrastructure, on demand, as a service, to end users. IaaS is one of the fundamental service types
enabled by cloud computing. IaaS clouds allow service oriented applications (SOAs) to have
elastic infrastructure where resource allocations can be scaled up or down in real time to meet
application demand. IaaS clouds provide ideal server infrastructure for providing modeling-as-a-
service. One key challenge of providing scientific modeling-as-a-service on demand to end users is
the requirement to provide both good modeling performance and service availability. Availability is
the notion that the modeling service is always available to perspective users. If a large spike in
demand for a scientific model occurs, the modeling service should not reject new requests, but
continue to accept and process them in a timely manner.

As the number of CPU cores has increased in modern servers, the overall idle time has increased.
Today dual and quad processor servers can support 40+ individual processing cores. These cores
frequently employ hyper-threading. Hyper-threads provide two execution threads per CPU core,
each of which with its own processor architectural state. These hyper-threads, referred to as logical
processors, can be individually halted, interrupted or directed to execute a specified program,
independent from the other logical processor. Logical processors share execution resources, allowing
one processor to borrow resources from the other if stalled waiting for I/O. The benefit seen from
CPU hyper-threading depends on the application’s balance of computation vs. I/O, but is often 30% or

2

Lloyd W. The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

better. Hyper-threading enables fast execution of many more model runs in parallel, enabling higher
throughput than single threaded CPUs.

It has become difficult for a single operating system instance to fully utilize so many cores. To support
service scalability, modern multi-core servers support server virtualization. Virtualization allows a
single physical server to host many virtual machines (VMs). VMs are implemented using a software
program known as the hypervisor which supports sharing the physical computer’s processor(s),
network and disk resources. Each virtual machine has its own operating system instance providing
isolation. Server virtualization provides partitioning of server resources with the overall goal of
increasing utilization. Increasing server utilization supports datacenter consolidation as redundant idle
servers can be removed saving physical space and electricity. Popular virtualization hypervisors
include kernel-based VMs (KVM), Xen, and the VMware ESX hypervisor. [Barham 2003] [Kivity 2007]
[Camargos 2008].

Historically the components of multi-tier SOAs were deployed on one or more physical servers as in
figure 1. In a cloud based setting, SOAs are now deployed across a set of virtual machine images
(figure 2) instead of being consolidated on a single physical server. Multiple VM instances can be
provisioned for each application tier using these virtual machine images enabling the application
infrastructure to scale based on service demand.

Figure 3. VM-Scaler Cloud Abstraction

Environmental models can be deployed as web services to IaaS clouds using Amazon’s public IaaS
cloud Elastic Compute Cloud application programming interface (EC2-API.). The EC2-API enables
programmatic management of IaaS clouds enabling dynamic management of the server infrastructure
used to host model services [1]. The EC2 API is supported to varying degrees by most open source
private clouds including: Apache CloudStack [Cloudstack 2013], Eucalyptus [Nurmi 2009],
OpenNebula [OpenNebula 2014], and OpenStack [OpenStack 2013].

To support environmental modeling using IaaS Cloud application scaling and infrastructure
management, we have developed the Virtual Machine Scaler (VM-Scaler), a REST/JSON-based web
services application. VM-Scaler supports IaaS cloud infrastructure management for environment
modeling as part of the US Department of Agriculture and Colorado State University’s Cloud Services
Innovation Platform (CSIP) [Lloyd et al. 2012]. VM-Scaler’s support of model infrastructure scalability

3

Lloyd W. The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

for CSIP has been evaluated using the Revised Universal Soil Loss Equation – Version 2 (RUSLE2)
[27], and the Wind Erosion Prediction System (WEPS) [28] as described in Lloyd (2014). RUSLE2
and WEPS are the US Department of Agriculture–Natural Resource Conservation Service standard
models for soil erosion used by over 3,000 county level field offices across the United States.
RUSLE2 and WEPS are used to provide soil erosion modeling services to end users. RUSLE2
contains both empirical and process-based science that predicts rill and interrill soil erosion by rainfall
and runoff. RUSLE2 was developed primarily to guide natural resources conservation planning,
inventory erosion rates, and estimate sediment delivery. The Wind Erosion Prediction System
(WEPS) is a daily simulation model which outputs average soil loss and deposition values for selected
areas and periods of time to predict soil erosion due to wind. WEPS consists of seven sub-models
including: weather, crop growth, decomposition, hydrology, soil, erosion, and tillage.

CSIP provides a common Java-based framework for providing REST/JSON based modeling-as-a-
service to end users. VM-Scaler harnesses the Amazon EC2 API to support scaling server
infrastructure and management of the underlying clouds to enable modeling-as-a-service [Amazon
EC2 API reference, 2014]. VM-Scaler currently supports Amazon EC2, and Eucalyptus versions 3.1
and 3.3. VM-Scaler provides cloud control while abstracting the underlying IaaS cloud and can be
extended to support any EC2 compatible cloud (figure 3). VM-Scaler provides a platform for
supporting scalable environmental model services and supports: (1) profiling resource requirements of
modeling workloads, (2) experimentation with hot spot detection schemes, (3) investigation of VM
management/placement approaches, and (4) development of custom model request scheduling/proxy
services. The remainder of this paper describes features provided by VM-Scaler which help support
environmental modeling services using public, private, and hybrid IaaS cloud resources.

2. THE VIRTUAL MACHINE SCALER

VM-Scaler is a REST/JSON Java-based web application installed to any web application container
such as Apache Tomcat or Glassfish. VM-Scaler can be hosted by a virtual machine (VM) or physical
machine (PM) having network connectivity to the managed cloud. Upon initialization VM-Scaler
probes the host cloud and collects metadata including location and state information for all PMs
(private clouds only) and VMs. An object model is constructed in memory to represent the state of the
cloud. The Eucalyptus implementation also determines the Eucalyptus round-robin VM launch
sequence to identify which node is expected to receive the next VM launch request. VM-Scaler
service requests are formulated using JSON objects. Service specific JSON objects are used to
describe meta-data for the requested operations. VM-Scaler is easily extensible to support new
services as needed. Table 1 describes existing VM-Scaler services.

2.1. Resource Utilization Data Collection

An agent is installed to all infrastructure VMs and PMs (if accessible) to send resource utilization (RU)
data to VM-Scaler at fixed intervals. The default interval is 15-seconds. The RU data collection agent
is extensible and presently collects resource utilization statistics for (18) parameters as described in
table 2. RU data is used to calculate resource use for: (1) the last 15-second interval, (2) the previous
one minute average, and (3) a historical lifetime average. One minute averages are presently used to
perform hot spot detection. (see section 2.4)

2.2 Model Workload Resource Utilization Check-pointing

VM-Scaler supports resource utilization checkpoint for environmental model workloads. Resource
utilization check-pointing can be used to obtain the total resource utilization profile for a modelling
workload. RU profiles can help determine the required machine resources to accomplish similar
modeling workloads. RU profiles help quantify the heft or weight of modelling workloads in terms of
the resource requirements needed to execute. RU profiles quantify resource usage for all eighteen
resource utilization statistics described in table 2. Understanding the total CPU time, disk, and
network I/O required for a batch of modelling is particularly useful if looking to schedule many similar
model runs as is the case for calibration or monte carlo simulations.

4

Lloyd W. The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

Table 1. VM-Scaler Services

Statistic Description
P/V CPU time CPU time in ms
P/V cpu usr CPU time in user mode in ms
P/V cpu krn CPU time in kernel mode in ms
P/V cpu_idle CPU idle time in ms
P/V Contextsw Number of context switches
P/V cpu_io_wait CPU time waiting for I/O to complete
P/V cpu_sint_time CPU time servicing soft interrupts
V Dsr Disk sector reads (1 sector = 512 bytes)
V Dsreads Number of completed disk reads
V Drm Number of adjacent disk reads merged
V Readtime Time in ms spent reading from disk
V Dsw Disk sector writes (1 sector = 512 bytes)
V Dswrites Number of completed disk writes
V Dwm Number of adjacent disk writes merged
V Writetime Time in ms spent writing to disk
P/V Nbr Network bytes sent
P/V Nbs Network bytes received
P/V Loadavg Avg # of running processes in last 60 sec

Table 2. Resource Utilization Statistics

2.3 Scaling Tasks

VM-Scaler provides horizontal scaling of application infrastructure by increasing the allocated number
of VMs to service a particular tier of a multi-tier SOA. When application hot spots are detected one or
more VMs can be launched in parallel in response. A service request is issued to describe the
requested scaling task using a JSON object. The JSON object identifies the base VM, the initial VM
which provides implementation of a particular application tier. The JSON object includes a VM-type
meta-data tag to identify VMs launched to support the tier. An image-id identifies which virtual
machine image to launch in response to hot spots. The VM-size attribute specifies the size and type
for new VMs, for example m1.xlarge, m2.4xlarge. An access key is included and also the host
zone/region and the VM security group are identified.

Three additional configurable scaling parameters include: min_time_to_scale_again,
min_time_to_scale_after_failure, and max_VM_launch_time. Min_time_to_scale_again
provides a time buffer before scaling again, allowing time to consider the impact of recent resource
additions. This parameter helps to eliminate the ping-pong effect described in [Kejariwal 2013] and is
equivalent to Amazon Scaling Group cool-down periods [Auto Scaling Concepts 2013].
Max_VM_launch_time provides a maximum time limit before terminating launches that appear to have
stalled. This supports handling launch failures by reissuing stalled launch requests.
Min_time_to_scale_after_failure provides an alternate wait time when VM launch failures occur.

2.4 Hot Spot Detection

VM-Scaler supports both resource utilization threshold and application performance model-based hot
spot detection. Threshold based scaling is triggered when resource utilization variables exceed
configured thresholds. This application agnostic approach is reactive to current system conditions
and supports experimentation because the hot spot detection scheme can remain constant while VM
scheduling algorithms or the application being tested are changed. By default scaling thresholds can
be specified for one-minute averages of: maximum CPU time, minimum CPU idle time, maximum
number of context switches, and maximum load average. Application performance model hot spot
detection uses trends in resource utilization to predict average model execution time. Predictions are

5

Lloyd W. The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

made for average model execution time for 1, 2, and 3 time steps in the future where a time step is 15
seconds. Scaling thresholds trigger hot spot detection when future predicted model execution time
exceeds set values.

2.5 Least-Busy VM Placement

For Eucalyptus private IaaS clouds, VM-Scaler supports controlling the placement of new VM’s to
specific physical hosts. New VM launches can specify a specific host, use the default host provided
by Eucalyptus round-robin, or harness VM-Scaler’s Least-Busy VM placement algorithm. VM
placement to the Least-Busy physical machine is based on using our BusyMetric which aggregates
total host resource utilization to determine the best candidates for hosting new VM’s by quantifying
host busyness [Lloyd 2014]. The busy metric double weights CPU time for environmental modelling
since most models are CPU-bound in nature. Disk sector reads/writes, network bytes received/sent
and host occupancy are also included in the Busy Metric calculation. Busyness is quantified relative
to the observed maximum system value for each resource utilization measure. Maximums are
determined through stress testing.

For example:

cputimen=
cputime obs1sec

cputimemax ⁡1sec

 (1)

Our Busy-Metric is expressed as:

(2∙ cputimen)+dsr n+dswn+nbrn+nbsn+(
2∙ HostedVMs

PM cores

)

7
 (2)

Each additional VM hosted linearly increases the value of the Busy-Metric by:

e (ln PMcores−1.2528)
 (3)

The Busy-Metric provides an approach to rank available capacity of physical host machines. Our goal
has been to develop a general metric which supports new VM placements based on quantifying the
total shared load of private cloud host machines. Many variations of our busy metric are possible by
using unique resource variable weights based on specific resource requirements of different
environmental models.

2.6 Model Request Job Scheduling

VM-Scaler supports using the Busy-Metric described in section 2.4 to perform model run
scheduling/proxy services. Incoming model requests can be routed to the Least-Busy VM. This
provides an alternative to both round-robin load balancing and least-connection load balancing.
Round-robin load balancing is supported using the HAProxy load balancer [HAProxy 2014], by evenly
distributing model requests to the pool of modelling-engine VMs. Least-connection load balancing
supported by HAProxy, distributes model requests by evenly balancing the number of active
concurrent sessions at each modelling engine VM at any given time. VM-Scaler’s Least-busy load
balancing routes incoming model requests to run on the modelling engine VM with the most available
resources as quantified using the Busy-Metric. Least-Busy job scheduling is a black-box job
scheduler which does consider details of the model parameterization to perform the scheduling.
Future work plans to investigate the development of white-box job schedulers which harness model
parameterization details of incoming model requests to predict model resource and execution time
requirements before execution. Harnessing predictions should improve model execution scheduling
and reduce model execution times by minimizing server idle time during model workload execution
which occurs between scheduled jobs that presently goes to waste.

6

Lloyd W. The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

2.7 VM Pools

VM-Scaler supports VM pools to support recycling VMs in cases when the launch latency time is
high. For environmental modelling, VM launch latency is the time required to launch and initialize a
new modelling engine VM before it is ready to perform model computations. Launch latency time
varies based on the type and size of the VM image, as well as the host cloud and its underlying
hardware. For example, on Amazon EC2, using faster VM types such as c3.xlarge generally enables
more rapid VM launch and initialization times compared to slower instance types such as m1.large.
Similarly, on a private cloud, VM instance types assigned more computational and memory resources
typically initialize more rapidly. Launch latency will vary by cloud and the specifics of the VM being
provisioned and should be benchmarked to establish baseline time requirements for dynamic scaling.

When dynamically scaling the modelling tier of an SOA it may be necessary to rapidly increase the
number of worker VMs in response model demand. To support dynamic scaling when new VMs
cannot be launched fast enough, VMs can be prelaunched and reserved for later use using VM-Scaler
VM pools. Prelaunched VMs are referred to as spare VMs. A key cost / performance trade-off
concerns identifying the number of spare VMs to allocate versus the supported magnitude of model
service demand spikes. When too many spare VMs are provisioned hosting costs are high, but
scalability performance is excellent. Conversely when too few spare VMs are provisioned the model
service may become slow, unavailable, or crash in response to demand spikes.

VM pools help support the use of Amazon public cloud spot instances for environmental modeling.
Amazon Spot instances are low-cost VMs which are billed at a fluctuating auction price rather than the
standard going rate. Prices may be as low as 1/8 to 1/9 the cost of full dedicated instances with the
caveat being these instances may terminate at any instant when the bid price is exceeded due to
heavy demand. Amazon spot instances have very long launch latency times since two separate
Amazon EC2 operations are required to provision a VM. An initial call places a spot market bid, and if
the bid is successful a VM launch operation occurs. For CSIP, launch latency times of 4-5 minutes
per VM is not unusual. With such long launch latency times dynamic scaling using amazon spot
instances is generally not practical without prelaunching VMs.

VM pools also support reusing VM instances for dynamic scaling in lieu of Amazon’s billing model.
Amazon bills hourly for VM usage. Even if a VM is only needed for 1 minute, the user is charged for
an entire hour. For dynamic scaling it is useful then to recapture idle VMs for the duration of the billing
cycle in case there is a future opportunity for use.

3. SUMMARY AND CONCLUSIONS

By harnessing infrastructure-as-a-service cloud computing, server infrastructure supporting
environmental model services can dynamically scale based on user demand to deliver: (1) high
availability, (2) high throughput (requests/second) and (3) fast model execution times.

In this paper we have presented the VM-Scaler, a cloud agnostic autonomic resource manager which
supports infrastructure management for multi-tier service oriented applications. VM-Scaler supports
dynamic infrastructure scaling for both new and legacy environmental models supporting their
deployment as web-based model services enabling model computation “as-a-service”, on demand, for
users. VM-Scaler supports model service scalability on both private and public clouds by providing
key features including: resource utilization data collection, model workload resource utilization check-
pointing, dynamic scaling tasks, hot spot detection, Least-Busy VM placement, Job Scheduling, and
VM pools. VM-Scaler supports many features in-gratis which are typically pay-for-use infrastructure
services in public clouds including resource utilization data collection and dynamic scaling. The utility
of VM-Scaler has been demonstrated in support of the USDA’s Cloud Services Innovation Platform
(CSIP) and development remains ongoing.

7

Lloyd W. The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

4. REFERENCES

Amazon Cloudwatch Namespaces, Dimensions, and Metrics Reference, 2014,
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CW_Support_For_AWS.
html (last accessed 20.03.14)

Amazon Elastic Compute Cloud API Reference, 2014, http://docs.aws.amazon.com/AWSEC2/latest/
APIReference/ (last accessed 20.03.14)

Auto Scaling Concepts – Auto Scaling, 2013, http://docs.aws.amazon.com/AutoScaling/latest
/DeveloperGuide/AS_Concepts.html (last accessed 20.03.14)

Barham, P., et al., 2003. Xen and the art of virtualization. In: Proc. 19th ACM Symposium on
Operating Systems Principles (SOSP '03), Bolton Landing, NY, USA, Oct 19-22, 2003, 14 p.

Camargos, F., Girard, G., Ligneris, B. Virtualization of Linux servers. In: Proc. 2008 Linux Symposium,
Ottawa, Ontario, Canada, July 23-26, 2008, pp. 63-76.

CloudStack Admin. Guide, 2013, http://incubator.apache.org/cloudstack/docs/en-
US/Apache_CloudStack/4.0.1-incubating/html/Admin_Guide, last accessed (20.03.14)

Hagen, L. A wind erosion prediction system to meet user needs. In: Journal of Soil and Water
Conservation Mar/Apr 1991, vol. 46, iss. 2, pp. 105-111.

HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer, http://haproxy.1wt.eu/, last
accessed (20.03.14)

Kejariwal, A. Techniques for Optimizing Cloud Footprint. In: Proc. 1st IEEE Int. Conf. on Cloud Eng
(IC2E 2013), Mar 25-27, 2013, pp. 258-268.

Kivity, A. et al. kvm: the Linux Virtual Machine Monitor. In: Proc. 2007 Ottawa Linux Symposium (OLS
2007), Ottawa, Canada, June 27-30, 2007, pp. 225-230.

Llorente, R et al. 2011. On the Management of Virtual Machines for Cloud Infrastructures (ch. 6), in
Cloud Computing: Principles and Paradigms, J Wiley & Sons, Inc., Hoboken, NJ, USA.

Lloyd, W., David, O., Lyon, J., Rojas, K., Ascough, J., Green, T., Carlson, J. The Cloud Services
Innovation Platform – Enabling Service-Based Environmental Modelling Using IaaS Cloud
Computing. In: Proc. iEMSs 2012 Int. Cong on Env.Modeling and Software, Germany, July 2012,
8 p.

Lloyd, W., Pallickara, S., David, O., Arabi, M., Rojas, K. Dynamic Scaling for Service Oriented
Applications: Implications of Virtual Machine Placement on IaaS Clouds. In: Proc. 2nd IEEE Int.
Conf. on Cloud Engineering (IC2E 2014), Mar 10-14, 2014, pp. 271-276.

Nurmi, D. et al. The Eucalyptus open-source cloud-computing system. In: Proc. IEEE International
Symposium on Cluster Computing and the Grid (CCGRID 2009), Shanghai, China, May 18-21,
8p.

OpenNebula – Flexible Enterprise Cloud Made Simple, 2014, http://opennebula.org/documentation/
(last accessed 20.03.14)

OpenStack Compute Admin. Manual-Essex (2012.1), 2013, http://docs.openstack.org/essex/
openstack-compute/admin/content/index.html (last accessed 20.03.14).

U.S. Department of Agriculture - Agricultural Research Service, Revised Universal Soil Loss Equation
Ver. 2 (RUSLE2), 2008, http://www.ars.usda.gov/SP2UserFiles/Place/64080510/RUSLE/
RUSLE2_Science_Doc.pdf (last accessed 20.03.14).

8

http://www.ars.usda.gov/SP2UserFiles/Place/64080510/RUSLE/
http://docs.openstack.org/essex/
http://docs.aws.amazon.com/AutoScaling/latest

	2. THE VIRTUAL MACHINE SCALER
	2.1. Resource Utilization Data Collection
	2.2 Model Workload Resource Utilization Check-pointing
	2.3 Scaling Tasks
	2.4 Hot Spot Detection
	2.5 Least-Busy VM Placement
	2.6 Model Request Job Scheduling
	2.7 VM Pools

	3. SUMMARY AND CONCLUSIONS
	4. REFERENCES

