
Characterizing X86 and ARM
Serverless Performance Variation:

A Natural Language Processing Case Study

Danielle Lambion, Robert Schmitz, Robert Cordingly, Navid Heydari, Wes Lloyd
University of Washington
Tacoma, Washington, USA

dlambion,rgs1,rcording,navidh2,wlloyd@uw.edu

Abstract
In this paper, we leverage a Natural Language Processing
(NLP) pipeline for topic modeling consisting of three func-
tions for data preprocessing, model training, and inferencing
to analyze serverless platform performance variation. Specifi-
cally, we investigated performance using x86_64 and ARM64
processors over a 24-hour day starting at midnight local
time on four cloud regions across three continents on AWS
Lambda. We identified public cloud resource contention by
leveraging the CPU steal metric, and examined relationships
to NLP pipeline runtime. Intel x86_64 Xeon processors at the
same clock rate as ARM64 processors (Graviton 2) were more
than 23% faster for model training, but ARM64 processors
were faster for data preprocessing and inferencing. Use of
the Intel x86_64 architecture for the NLP pipeline was up to
33.4% more expensive than ARM64 as a result of incentivized
pricing from the cloud provider and slower pipeline runtime
due to greater resource contention for Intel processors.

CCS Concepts: • Computer systems organization →
Cloud computing; • General and reference → Perfor-
mance.

Keywords: FaaS, Topic Modeling, Performance Variation,
Resource Contention, Serverless Computing

ACM Reference Format:
Danielle Lambion, Robert Schmitz, Robert Cordingly, Navid Hey-
dari, Wes Lloyd. 2022. Characterizing X86 and ARM Serverless
Performance Variation: : ANatural Language Processing Case Study.
In Proceedings of 5th Workshop on Hot Topics in Cloud Computing
Performance (HotCloudPerf 2022).ACM, New York, NY, USA, 7 pages.
https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotCloudPerf 2022, April 09, 2022, Beijing, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Serverless function-as-a-service (FaaS) platforms offer an
attractive cloud platform for hosting computational work-
loads integrating support for desirable features including
high availability, fault tolerance, and automatic scaling. As
the popularity of these platforms has grown, cloud providers
have continued to refine and enhance their features to ad-
dress open problems and support additional capabilities [10].
Serverless FaaS platforms abstract many of the configu-

ration and management details from end users to simplify
their use. This abstraction, however, comes with the cost of
reduced observability necessary to conduct root-cause anal-
ysis to troubleshoot performance issues and explain sources
of performance variation. For example, on the AWS Lambda
Serverless FaaS platform, the underlying processor type and
number of shared tenants sharing a physical host is not
disclosed. Processor architecture and multi-tenancy, where
multiple users or workloads share the same host causing
resource contention, have been shown as key factors respon-
sible for performance variation of software deployments in
the cloud [4, 9, 15, 16].
In this paper, we investigate the use of two new features

offered by AWS Lambda to examine the performance varia-
tion for hosting a natural language processing (NLP) pipeline.
First we investigate support for multiple CPU architectures
on AWS Lambda. Developers can now choose to deploy func-
tions to Intel Xeon x86_64 or Graviton2 ARM64 processors.
Secondly, we harness the ability to deploy functions with
container images up to 10GB to more easily package and de-
ploy large applications. Leveraging our NLP pipeline as a use
case, we investigated performance variation for a 24-hour
day across four cloud regions and two CPU architectures
using experiments coordinated to run from midnight to mid-
night in each local timezone.
While the number of tenants sharing cloud servers is of-

ten obscured, the cpuSteal metric, available from the Linux
procfs has been shown to indicate resource contention which
typically correlates with workload performance degrada-
tion [4, 7, 13]. CpuSteal ticks are registered when a virtual
machine (VM) is ready to execute, but the physical CPU is
busy servicing work from other co-located VMs sharing the
physical host, or from the hypervisor itself. In this paper, we

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

HotCloudPerf 2022, April 09, 2022, Beijing, China Schmitz and Lambion, et al.

examine performance over 24 hours across multiple regions
to investigate relationships between cpuSteal and Serverless
FaaS function performance.

1.1 Research Questions
This paper investigates the following research questions:

RQ-1: (Architecture Performance)What are the perfor-
mance and cost implications of adopting the ARM64 CPU
architecture vs. x86_64 Intel for running a multi-step NLP
pipeline on a commercial serverless FaaS platform?

RQ-2: (Performance Variation) What performance varia-
tion results from the use of alternative cloud regions over a
24-hour day where the state of resource contention is likely
to change to host a multi-step NLP pipeline on a commercial
serverless FaaS platform?

1.2 Contributions
This paper provides the following research contributions:

1. We investigate performance of ARM64 vs x86_64 archi-
tectures for hosting an NLP pipeline on a commercial
FaaS platform. Our results indicate that current perfor-
mance improvements observed on ARM64 processors
are the result of lower resource contention for ARM64
serverless infrastructure.

2. We investigate performance trends for a 24-hour work-
day for hosting an NLP pipeline across four cloud re-
gions in three continents. Severless functions execut-
ing during regular business hours were shown to have
slower runtimes than those executing off hours lead-
ing to slightly higher costs.

3. Leveraging an NLP case study, we examine the utility
of the cpuSteal metric to detect resource contention
on a commercial FaaS platform. CpuSteal is shown to
correlate with NLP pipeline runtime across four cloud
regions over a 24-hour day.

2 Background
On serverless FaaS platforms Jonas et al. identified heteroge-
neous CPUs and noted their potential to complicate perfor-
mancemodeling in [10].Wang et al. identified heterogeneous
VM types on FaaS platforms from AWS, Azure, and Google
in [21]. They observed 4 CPU types and 5 VM configura-
tions (AWS Lambda), 3 CPU types x 3 VM configurations
(Azure functions), and 4 CPU types (Google Cloud Func-
tions). In [4], distinct ratios of heterogeneous CPU types
were identified and then used to create performance mod-
els capable of accounting for performance variation caused
by these heterogeneous CPUs on AWS Lambda and IBM
Cloud Functions. These efforts, however, did not evaluate

performance implications of alternate CPU architectures, i.e.
ARM64 vs. x86_64.

Previous research has identified how provisioning varia-
tion results in varying degrees of function tenancy and con-
sequently resource contention on FaaS platforms [4, 14, 21].
We identified how the number of function “tenants” on hosts,
called “function instances” by Wang, increased when scaling
up the number of concurrent requests on AWS Lambda [14].
Conversely, increasing function memory reduced the num-
ber of tenants on a host. Wang observed that function in-
stance placement across hosts on AWS Lambda used greedy
placement, where concurrent requests are packed onto indi-
vidual hosts until available memory is exhausted. Multiple
functions from a single user account were found to share
hosts, but hosts did not appear to be shared with other users
before the adoption of the Firecracker MicroVM on the plat-
form in 2019 [1]. On Azure Functions, the maximum ob-
served tenancy of function executions was reported to not
exceed 8, while up to 4 user accounts shared VMs. While
these efforts identified the multitenancy, they did not evalu-
ate performance implications from resource contention or
the use of the cpuSteal metric to do so.

Schad in 2010 contributed an extensive evaluation of per-
formance variation of IaaS and object storage platforms on
Amazon EC2 examining instance startup, CPU, memory, disk
I/O, and network I/O performance over multiple months [19].
These early results were before various advancements that
significantly reduced performance overhead of virtual ma-
chines [8]. Later Leitner and Cito measured mean relative
standard deviations for CPU, disk I/O, and memory bench-
marks on VMs deployed to Amazon, Google, Azure, and IBM
clouds for 72 hour periods identifying performance variation
from CPU heterogeneity. Uta and Obaseki followed by emu-
lating network bandwidth variability results from Ballani et
al. to investigate performance implications for six real world
big data workloads [2, 20]. Their work used a private IaaS
cloud to evaluate performance implications of network band-
width limitations that may occur due to resource contention.

Ginzburg and Freedman investigated diurnal patters in
function performance on the AWS Lambda serverless FaaS
platform [7]. Their work primarily focused on evaluating in-
traregion performance variation on us-east-1 (Virginia) over
1-week. They examined inter-region performance variation
by comparing performance of two regions: ap-northeast-2
and us-east-1. Their results, however, were limited to identi-
fying that a cache benchmark exhibited a 11% end-to-end per-
formance difference, and that us-east-1 had consistently bet-
ter networking performance. More importantly their work
identified a relationship between function performance and
cpuSteal reporting an 𝑅2 between 0.4 and 0.6 varying di-
urnally. The authors demonstrated how better performing
function instances could be found and then exploited using
short-running performance tests. This approach yielded a
cost savings from 2 to 8%. Additionally, the authors identified

Characterizing X86 and ARM Serverless Performance Variation HotCloudPerf 2022, April 09, 2022, Beijing, China

the potential to exploit function instances across different
cloud regions to leverage favorable diurnal patterns for cost
savings.
We extend on Ginzburg’s work by examining FaaS per-

formance variation for a multi-function NLP pipeline across
four regions in three continents resulting from CPU archi-
tecture, time of day, and resource contention. Our results
reinforce the utility of cpuSteal as metric to infer FaaS re-
source contention. Additionally, our case study has been
performed after the maximum function memory size was
increased from 3GB to 10GB on AWS Lambda and we also
leverage Docker container support in our case study.

Amazon S3
(app output)

Amazon ECR AWS Lambda
(P / T / Q)

Amazon S3
(train/test data)

Figure 1. Switchboard style application design using a single
AWS Lambda function.

3 Methodology
3.1 Natural Language Processing Case Study
To investigate FaaS performance variation, we leveraged a
Natural Language Processing (NLP) application use case for
topic modeling deployed and executed on AWS Lambda. Our
application consists of functions implemented in Python
and deployed using AWS Lambda’s support for deploying a
read-only container image [17]. Our NLP pipeline use case is
interesting to study because it provides a compute intensive
workflow where every function in the application requires
several minutes of processing, enabling us to examine per-
formance metrics over long periods.
Our NLP use case is a topic modeling application for

news headlines developed in Python3 using the Natural Lan-
guage Toolkit (NLTK) and Gensim libraries [3, 18]. We used
a dataset of approximately 1.1 million news headlines from
Australia’s ABC News [12]. This application is composed of
three separate functions. Our three functions stored interme-
diate workflow data in an Amazon Simple Storage Service

(S3) bucket. The dataset consisted of a single 63MB CSV file
where each sample contains a news article headline and its
publication date. News headlines were split into a training
and testing dataset and stored in another S3 bucket.

The preprocessing (P) function loaded and prepared data
for model training. This step removed stopwords and tok-
enized strings. The word tokens were then stemmed and
lemmatized. A dictionary was created from the processed
token words and was used to create a frequency-inverse
document frequency (TF-IDF) model. The dictionary and
the TF-IDF model from preprocessing were stored in the
intermediate S3 bucket and provided as input for function 2.
The training (T) function trained a latent Dirichlet allo-

cation (LDA) topic model using the output from the data
preprocessing step. The trained model was cached in the
intermediate S3 bucket to be queried by future users by func-
tion 3.

The query (Q) function queried the model for topics with
new headlines. This step used headlines as strings provided
in a CSV file from the testing dataset. These strings were
tokenized, lemmatized, and word stemmed. The model gen-
erated in the training step was queried with the processed
token words from the query headlines. This step outputs
the input CSV file with an appended column containing top-
ics obtained from the provided news headlines and a score
rating the quality of topic match to the headline.

3.2 Serverless Application Implementation
The application was packaged into a Docker container image
along with the Serverless Application Analytics Framework
(SAAF) [4] to collect profiling data when deployed to AWS
Lambda. ADocker imagewas used as the underlying package
for deploying the code to AWS Lambda due to the limited file
size of deploying Lambda functions using zip files (i.e. 50MB
compressed and 250MB uncompressed) as Docker container
images can be up to 10GB [17]. Docker images were deployed
to the AWS Elastic Container Registry (ECR). Compilation of
Docker images for both ARM64 and x86_64 was performed
on an AWS EC2 spot-instance c5d.large (x86_64) running
Ubuntu 20.04 using Docker’s buildx CLI add-on along with
QEMU for non-native architecture support [11].
Each step in the application pipeline could be called in-

dependently by sending JSON data specifying the function
to be executed. A single Lambda function deployment was
created for each CPU architecture and used to run the NLP
pipeline and obtain performance metrics. Each Lambda func-
tion was configured to have a 10 minute timeout due to the
long processing time needed for each step in the application.
The deployed Lambda functions were each allocated 2560MB
(2.5GB) of memory as the application’s P function required
a large amount of memory. An Identity and Access Manage-
ment (IAM) role was attached to each Lambda function with
an Amazon S3 access policy to allow for data retrieval and
creation using AWS S3 buckets.

HotCloudPerf 2022, April 09, 2022, Beijing, China Schmitz and Lambion, et al.

An S3 bucket was created for each Lambda function to
store all output files from each function execution. Additional
S3 buckets were created for each region to store training
and testing data. The S3 buckets and Docker container im-
ages were co-located in the same regions as their dependent
Lambda functions to minimize resource cost and network
latency for each case study.

To minimize function cold starts, we leveraged the switch-
board architecture design pattern depicted in Figure 1 [5].
Code for three separate functions was combined into a sin-
gle Lambda function. A JSON payload parameter was used
to determine which code path to execute. By adopting the
switchboard design which combines all of our functions into
a single deployment package, the initial call to the pipeline’s
P function initializes the aggregate function’s runtime en-
vironment, known as a function instance. This function in-
stance is then available and pre-warmed to execute the T
function and Q function without cold start initialization. This
design will increase the total number of function warm starts
to effectively decrease the overall runtime of the application
to enable cost reductions due to the sequential nature of the
NLP pipeline.

3.3 Experimental Approach
Four regions were selected for our case studies: Asia Pacific:
Tokyo (ap-northeast-1), Europe: Frankfort (eu-central-1), US
East: Ohio (us-east-2), and US West: Oregon (us-west-2).
These regions were selected to provide a variety of time-
zones across three continents. In each region, we deployed a
c6gd.large (arm64) AWS EC2 spot instance which provided
2 vCPUs and 4 GB memory for use as a client to run experi-
ments and collect results.
A (Bash) shell script was used as a wrapper for the AWS

CLI to execute each application step in series (i.e. prepro-
cessing, training, query) and to collect the container metrics
returned from SAAF with a two second delay between func-
tion calls. The shell script removed any output file artifacts
from the S3 buckets between runs. A Linux cron job was
used to schedule the start of the experiments across all four
regions.

Performance variation was measured over a 24-hour day
starting at 12:00 a.m. local time in each region. Profiling met-
rics collected during testing were measured from the time the
Lambda function started executing the FaaS function’s code
until the function completed. Our runtime metrics measured
server-side runtime of the FaaS functions code therefore ex-
cluding network latency between the client and server and
any infrastructure initialization that occurs before the FaaS
function executes. We note that even though infrastructure
initialization time was not captured in the runtime measure-
ment, cold function runtime is slower than warm function
runtime due to the unfavorable state of memory caches when
first executing unseen code. We performed approximately
112 pipeline executions for each CPU architecture/region

Table 1. NLP pipeline function comparison - us-east-2

Function P P T T Q Q
Architecture ARM64 x86_64 ARM64 x86_64 ARM64 x86_64

pageFaults/min 159638 148821 37368 45973 4656 3964
contextSwitch/min 9494 8174 1016 1151 933 982

max memory 1954 1947 1009 1014 377 477
runtime (s) 159.21 170.45 225 182 361 392.3

pair consisting of 3 function calls. Overall we experienced
approximately 3.86% function cold starts while continuously
running eight instances of the pipeline for 24 hours.

4 Results
4.1 NLP Pipeline Function Comparison
We profiled each of our NLP pipeline functions with SAAF
to evaluate differences in computational requirements us-
ing the us-east-2 (Ohio) region. We measured the maximum
function memory utilization by testing each function sepa-
rately by making a cold function call. In addition we profiled
runtime, the average number of memory page faults per
minute, and the average CPU context switches per minute
on x86_64 vs. ARM64 as shown in Table 1. In us-east-2, the
ARM64 architecture provided faster runtime for the P and Q
functions (7.3% and 8.9%), while x86_64 provided faster run-
time for the T function (23.6%). Figure 2 depicts the average
values for Linux CPU profiling metrics for each function for
x86_64 versus ARM64. Values are averages for observations
from us-east-2. None of the functions exhibited significant
CPU kernel, I/O wait, or interrupt service time.

Runtime:
159 s

Runtime:
171 s

Runtime:
225 s Runtime:

182 s

Runtime:
363 s

Runtime:
395 s

Preprocess
ARM64

Preprocess
x86_64

Train
ARM64

Train
x86_64

Query
ARM64

Query
x86_64

0

200

400

600

800

1000
CPU Idle CPU User

Function

C
P

U
 T

im
e

(s
)

Figure 2. CPU time profile for the NLP pipeline

4.2 Performance Implications of CPU Architecture
To investigate RQ-1, we executed our NLP pipeline for 24
hours across four AWS regions and calculated global average
runtime metrics as shown in Table 2. While the global min-
imum x86_64 Intel Xeon (2.5 GHz) performance was 15%
faster than ARM, Intel global average runtime was 1.7%
slower (p=1.0725e-06). This performance improvement pro-
vided by ARM64, however, appears to be the result of lower

Characterizing X86 and ARM Serverless Performance Variation HotCloudPerf 2022, April 09, 2022, Beijing, China

Table 2. CPU architecture runtime comparison - all regions

metric arm64(s) arm64 (%intel) x86_64(s) x86_64 (%arm)
min runtime 692.59 115.64 598.9 86.47
max runtime 799.5 85.40 936.2 117.10
avg runtime 735.07 98.31 747.74 101.72

runtime spread 106.91 31.70 337.3 315.50
stdev runtime 18.15 35.24 51.51 283.80

CV (%) 2.47 35.85 6.89 278.95
cost-10k runs $245.02 78.64 $311.56 127.15

Table 3. CPU steal across AWS regions for x86_64

metric/region us-east-2 us-west-2 eu-central-1 ap-northeast-1
avg cpuSteal/min 8.89 18.26 4.24 4.79
% of eu-central-1 209.7 431.6 100.0 113.0

𝑅2 runtime 0.618 0.379 0.427 0.39
Pearson (r) 0.7861 0.6157 0.6537 0.6249

resource contention for ARM64 CPUs onAWS Lambda. To in-
vestigate this resource contention, we leveraged the cpuSteal
metric as in [7, 13].
While we presume that resource contention for ARM

based resources on AWS Lambda to be quite low, when we
inspected ARM64 cpuSteal, only 0 values were reported by
the Linux procfs. We hypothesized that cpuSteal may not be
reported by Graviton 2 processors. To verify, we launched
a c6g ec2 dedicated host based on the Graviton 2 ARM64
processor and placed 2 x c6g.8xlarge 32 vCPUs VMs on it
to guarantee VM multi-tenancy. We then ran the stress tool
to generate CPU contention by overprovisioning the tool
to exercise 64 cores on both VMs for several minutes. The
cpuSteal metric in the /proc/stat file remained at 0 for the
duration of the test. We believe that cpuSteal may not oc-
cur with Graviton 2 processors because unlike Intel Xeons,
Graviton 2 does not support hyperthreading, and all CPU
cores are physical cores [6]. This suggests that both EC2 and
Lambda do not overprovision Graviton 2 processors when
placing VMs and functions, a decision that should lead to
lower performance variation in the cloud as CPU cores are
not simultaneously shared.
We observed NLP pipeline runtime on ARM CPUs ex-

hibited a global Coefficient of Variation (CV) of only 2.47%
compared to 6.89% on x86_64 which was 279% higher. The
runtime spread, the difference between maximum and min-
imum runtime, was 3.14x greater on Intel than ARM con-
firming that ARM offered more stable performance. These
performance differences led to substantial cost savings run-
ning our pipeline using the ARM64 architecture. AWS heav-
ily discounts the use of their ARM CPUs so that Intel CPU
time costs 25% more than ARM on Lambda. This discount
combined with slightly slower Intel performance, results
in x86_64 pipeline executions costing 27.15% more for an
estimated 10,000 runs.

0 5 10 15 20
600

650

700

750

800

850

900

950
Asia Europe US East US West

Local Time (h)

P
ip

el
in

e
R

un
tim

e
(s

)

Figure 3. x86_64 CPU architecture runtimes in four regions.

0 5 10 15 20
600

650

700

750

800

850

900

950
Asia Europe US East US West

Local Time (h)

P
ip

el
in

e
R

un
tim

e
(s

)

Figure 4.ARM64 CPU architecture runtimes in four regions.

4.3 24-Hour Global Performance Variation
To investigate performance variation of our NLP pipeline
in support of RQ-2, we executed our pipeline continuously
over the course of a regular business day across four regions
on three continents on both the x86_64 and ARM64 CPU
architectures. Observations were obtained on Wednesday,
January 19, 2022 starting at 12:00 a.m. local time in each re-
gion. Global 24-hour performance on Intel x86_64 processors
is shown in Figure 3 and on ARM64 processors in Figure
4. We have used the same y-axis scale on both figures to
highlight the differences between performance variation on
x86_64 vs. ARM64.

Over a 24-hour day we found that NLP pipeline perfor-
mance on x86_64 processors in us-west-2 had significantly
slower performance (4.3%) than average Intel performance
across all regions (p=1.6-e09). Conversely, NLP pipeline per-
formance on x86_64 processors in eu-central-1 had signifi-
cantly faster performance (2.9%) than average Intel perfor-
mance across all regions (p=.00002). For ARM64 processors,
NLP pipeline performance on ARM in us-east-2 had signif-
icantly slower performance (1.4%) than other regions for
ARM (p=1.5e-13). Conversely, NLP pipeline performance on
ARM in us-west-2 had significantly faster performance (0.7%)
than other regions for ARM (p=.0007). The fastest Intel re-
gion, eu-central-1 was on average faster than all of the ARM
regions. This suggests that when Intel CPUs had slower run-
time the major contributing factor was resource contention.

HotCloudPerf 2022, April 09, 2022, Beijing, China Schmitz and Lambion, et al.

To confirm this, we compared the average cpuSteal ticks per
minute in us-west-2 (slowest region) to ticks in eu-central-1
(fastest region). We observed average cpuSteal per minute
of 18.26 in us-west-2, but only 4.24 cpuSteal per minute in
eu-central-1, which is approximately 4.3x more cpuSteal
(slowest vs. fastest region). We summarize cpuSteal statistics
in Table 3. We found that cpuSteal predicted pipeline run-
time with 𝑅2 from .38 to .62 which corroborates with earlier
AWS Lambda measurements [7]. We depict the global linear
regression between average cpuSteal per minute with NLP
pipeline runtime in Figure 5. The graph shows how longer
runtimes on the right side of the graph corresponded with
higher cpuSteal. Figure 6 depicts how cpuSteal varied over a
full 24-hour day across AWS regions. While us-east-2 had
larger spikes indicating more severe resource contention,
us-west-2 had consistently higher cpuSteal. Comparatively,
cpuSteal in eu-central-1 and ap-northeast-1 is relatively low.

600 650 700 750 800 850 900
0

20

40

60

80

100

120
US East Asia Europe US West Regression Fit

Pipeline Runtime (s)

C
PU

 S
te

al
 p

er
 M

in
ut

e

Figure 5. x86_64 CPU steal linear regression with runtime

0 5 10 15 20
0

50

100

150

200

Asia Europe US East US West

Local Time (h)

C
P

U
 S

te
al

 p
er

 M
in

ut
e

Figure 6. CPU architecture x86_64 CPU steal time in four
regions.

The average performance difference between the us-west-
2 (slowest) and eu-central-1 (fastest) regions using the x86_64
architecture resulted in increased costs of 7.37%, similar to
a ’sales tax’ rate. We contrast the difference in performance

between x86_64 and ARM64 in the us-west-2 region in Fig-
ure 7. In this region, x86_64 had the slowest observed Intel
performance, and ARM64 had the fastest observed Graviton
2 performance of all regions tested. The average pipeline
runtime differential was approximately 50 seconds or about
6.86%. Given that AWS charges approximately 25% more for
Lambda functions run on Intel processors, this produced our
largest cost differential of 33.36%, where 100,000 pipeline
executions would cost approximately $974 more on Intel
than on ARM64.
Finally, we used a 2-hour sliding window and calculated

global average NLP pipeline performance for both CPU ar-
chitectures. We display these 2-hour averages normalized
to global average ARM pipeline runtime in Figure 8. We ob-
served that NLP pipeline runtime on Intel processors from
6:00 a.m. to 8:00 a.m. was 6% slower in contrast to 10:00 a.m.
to 12:00 p.m., and 3.3% slower on ARM processors from 2:00
p.m. to 4:00 p.m. vs. 12:00 a.m. to 2:00 a.m. Figure 8 shows
that NLP pipeline runtime tended to be faster outside regular
business hours on any CPU architecture and region for our
24-hour study.

0 5 10 15 20

650

700

750

800

850

ARM64 x86_64

Local Time (h)

P
ip

el
in

e
R

un
tim

e
(s

)

 Coeff of Variation
 ARM64: 1.7%
 x86_64: 5.88%

Figure 7. CPU architecture x86_64 versus ARM64 container
runtimes in US West, Oregon.

0 2 4 6 8 10 12 14 16 18 20 22
0.98

0.99

1

1.01

1.02

1.03

1.04

1.05
ARM64 x86_64

Time (h)

N
or

m
al

iz
ed

 R
un

tim
e

Figure 8. Global two-hour average NLP pipeline runtime
normalized against global ARM64 average runtime.

Characterizing X86 and ARM Serverless Performance Variation HotCloudPerf 2022, April 09, 2022, Beijing, China

5 Conclusions
Our study has helped identify performance differences of the
ARM64 vs. x86_64 architectures on AWS Lambda while iden-
tifying diurnal performance patterns globally. The ARM64
architecture provided faster and more consistent runtime
performance on average than the x86_64 architecture.
We summarize our findings with respect to the research

questions as follows:
(RQ-1): Researchers and practitioners should be encour-

aged to adopt the ARM64 architecture on AWS Lambda when
possible due not only to the discounted cost, but also because
higher resource contention for x86_64 resources further ex-
acerbates the cost differential. ARM64 cost savings, however,
may only be temporary if the discount drives more users to
adopt this architecture. We demonstrated up to 33.4% cost
savings for our NLP pipeline by leveraging ARM64 CPUs vs.
x86_64 CPUs in us-west-2, the region exhibiting the highest
resource contention.
(RQ-2): Researchers and practitioners running non-latency
sensitive workloads may consider redirecting their work-
loads to leverage regions outside regular business hours. For
example, we observed a 6% global average runtime dif-
ferential across four regions from 6:00 to 8:00 a.m. vs. 10:00
to 12:00 p.m.

Acknowledgments
This research is supported by the NSF Advanced Cyberinfras-
tructure Research Program (OAC-1849970), National Insti-
tutes of Health (NIH) National Institute of General Medical
Sciences (NGMS) grant R01GM126019, and the AWS Cloud
Credits for Research program.

References
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight virtualization for serverless applications. In
17th {usenix} symposium on networked systems design and implemen-
tation ({nsdi} 20). 419–434.

[2] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron.
2011. Towards predictable datacenter networks. In Proceedings of the
ACM SIGCOMM 2011 Conference. 242–253.

[3] Steven Bird, Edward Loper, and Ewan Klein. 2009. Natural language
processing with Python.

[4] Robert Cordingly, Wen Shu, and Wes J. Lloyd. 2020. Predicting Perfor-
mance and Cost of Serverless Computing Functions with SAAF. In 2020
IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl
Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and
Big Data Computing, Intl Conf on Cyber Science and Technology Con-
gress (DASC/PiCom/CBDCom/CyberSciTech). 640–649. https://doi.org/
10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00111

[5] Mohammadbagher Fotouhi, Derek Chen, and Wes J Lloyd. 2019.
Function-as-a-Service Application Service Composition: Implications
for a Natural Language Processing Application. In Proceedings of the
5th International Workshop on Serverless Computing. 49–54.

[6] Andrei Frumusanu. 2020. Amazon’s arm-based Gravi-
ton2 against AMD and Intel: Comparing cloud compute.

https://www.anandtech.com/show/15578/cloud-clash-amazon-
graviton2-arm-against-intel-and-amd

[7] Samuel Ginzburg and Michael J Freedman. 2020. Serverless Isn’t
Server-Less: Measuring and Exploiting Resource Variability on Cloud
FaaS Platforms. In Proceedings of the 2020 Sixth International Workshop
on Serverless Computing. 43–48.

[8] Brendan Gregg. 2017. AWS EC2 Virtualization 2017: Introduc-
ing Nitro. https://www.brendangregg.com/blog/2017-11-29/aws-ec2-
virtualization-2017.html. Accessed: 2022-01-25.

[9] Xinlei Han, Raymond Schooley, Delvin Mackenzie, Olaf David, and
Wes J Lloyd. 2020. Characterizing public cloud resource contention to
support virtual machine co-residency prediction. In 2020 IEEE Interna-
tional Conference on Cloud Engineering (IC2E). IEEE, 162–172.

[10] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, and Others. 2019. Cloud programming
simplified: a berkeley view on serverless computing. arXiv preprint
arXiv:1902.03383 (2019).

[11] Artur Klauser. 2020. Building Multi-Architecture Docker Images
With Buildx. https://medium.com/@artur.klauser/building-multi-
architecture-docker-images-with-buildx-27d80f7e2408

[12] Rohit Kulkarni. 2017. A Million News Headlines. https://www.kaggle.
com/therohk/million-headlines.

[13] Wes Lloyd, Shrideep Pallickara, Olaf David, Mazdak Arabi, and Ken
Rojas. 2017. Mitigating resource contention and heterogeneity in
public clouds for scientific modeling services. In Proceedings - 2017
IEEE International Conference on Cloud Engineering, IC2E 2017. https:
//doi.org/10.1109/IC2E.2017.29

[14] Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati, Lan Ly, and Shrideep
Pallickara. 2018. Serverless computing: An investigation of factors
influencing microservice performance. In Proceedings - 2018 IEEE
International Conference on Cloud Engineering, IC2E 2018. https:
//doi.org/10.1109/IC2E.2018.00039

[15] David Perez, Ling-Hong Hung, Sonia Xu, Ka Yee Yeung, and Wes
Lloyd. 2020. Characterizing Performance Variation of Genomic
Data Analysis Workflows on the Public Cloud. In 2020 IEEE Intl
Conf on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech). IEEE, 680–683.

[16] David Perez, Ling-Hong Hung, Sonia Xu, Ka Yee Yeung, andWes Lloyd.
2020. An investigation on public cloud performance variation for an
rna sequencing workflow. In Proceedings of the 11th ACM interna-
tional conference on bioinformatics, computational biology and health
informatics. 1–7.

[17] Danilo Poccia. 2020. New for AWS Lambda – Container Image Sup-
port. https://aws.amazon.com/blogs/aws/new-for-aws-lambda-
container-image-support

[18] Radim Rehurek and Petr Sojka. 2011. Gensim–python framework for
vector space modelling. NLP Centre, Faculty of Informatics, Masaryk
University, Brno, Czech Republic 3, 2 (2011).

[19] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. 2010. Run-
time measurements in the cloud: observing, analyzing, and reducing
variance. Proc. VLDB Endow. 3 (2010), 460–471.

[20] Alexandru Uta and Harry Obaseki. 2018. A performance study of big
data workloads in cloud datacenters with network variability. In Com-
panion of the 2018 ACM/SPEC International Conference on Performance
Engineering. 113–118.

[21] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. 2018 USENIX Annual Technical Conference (USENIX ATC 18)
(2018).

https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00111
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00111
https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm-against-intel-and-amd
https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm-against-intel-and-amd
https://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html
https://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html
https://medium.com/@artur.klauser/building-multi-architecture-docker-images-with-buildx-27d80f7e2408
https://medium.com/@artur.klauser/building-multi-architecture-docker-images-with-buildx-27d80f7e2408
https://www.kaggle.com/therohk/million-headlines
https://www.kaggle.com/therohk/million-headlines
https://doi.org/10.1109/IC2E.2017.29
https://doi.org/10.1109/IC2E.2017.29
https://doi.org/10.1109/IC2E.2018.00039
https://doi.org/10.1109/IC2E.2018.00039
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-container-image-support
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-container-image-support

	Abstract
	1 Introduction
	1.1 Research Questions
	1.2 Contributions

	2 Background
	3 Methodology
	3.1 Natural Language Processing Case Study
	3.2 Serverless Application Implementation
	3.3 Experimental Approach

	4 Results
	4.1 NLP Pipeline Function Comparison
	4.2 Performance Implications of CPU Architecture
	4.3 24-Hour Global Performance Variation

	5 Conclusions
	References

