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Abstract—Serverless computing simplifies application deploy-
ment by removing the need for infrastructure management,
with REST APIs being the common interface. Data persistence
is essential for serverless applications because serverless func-
tions are stateless and short-lived. To retain information across
function executions, relational databases are commonly used
to persist data, to ensure continuity, scalability, and reliable
management. However, REST can lead to inefficiencies such
as data over-fetching and under-fetching, which impact perfor-
mance. GraphQL is a data query and manipulation language that
supports client queries that specify what data is to be retrieved
or modified. GraphQL resolvers fetch and transform data as
specified by client queries.

This paper compares the performance and scalability of
GraphQL APIs as a database interface middleware in contrast to
REST APIs implemented using serverless functions. We compare
a GraphQL API implemented using the managed GraphQL
AWS AppSync service, an unmanaged GraphQL API hosted
using Apollo Server, and a traditional REST API implemented
via the Amazon API Gateway and AWS Lambda. We compare
these alternatives using clients implemented with serverless AWS
Lambda functions, and also a local machine, an Amazon virtual
machine (VM), and a Google VM. Our data APIs accessed a
managed Amazon Aurora PostgreSQL cluster populated with
the U.S. Centers for Medicare & Medicaid Services (CMS)
Open Payments dataset. Our GraphQL implementations show
content-dependent performance compared to REST, with Apollo
Server demonstrating 25-67% faster average round-trip times
vs. REST for most operations, but worse scalability than REST
with very high concurrent workloads. Our findings provide prac-
tical guidance for developers selecting serverless architectures
for GraphQL and REST APIs based on specific application
requirements, network conditions, and expected request volumes.

Index Terms—GraphQL, REST, serverless, database perfor-
mance, API, AppSync, cloud computing

I. INTRODUCTION

Serverless computing has transformed application deploy-
ment by abstracting away infrastructure management, allowing
developers to focus primarily on application logic while cloud
providers automatically manage server resources on demand.
In this paradigm, applications typically provide interfaces
to serverless functions using RESTful APIs with standard
HTTP methods (GET, PUT, POST, DELETE) for client-server
communication. While REST’s widespread adoption has made
it the default interface for serverless functions due to its
simplicity and extensive cloud provider support, it may not

be optimal for all use cases. REST’s data exchange inefficien-
cies (overfetching/underfetching) increase execution time and
resource consumption—critical considerations in serverless
environments where performance directly impacts cost.

GraphQL, a query language for APIs with an execution
engine originally developed by Facebook in 2012 and open-
sourced in 2015, offers a more dynamic alternative [1]–[3].
Unlike with REST’s predefined HTTP methods, GraphQL en-
ables clients to request precisely the data they need with fine-
grained control. This capability makes it particularly suitable
for serverless environments where minimizing data transfer
and session overhead is essential for optimizing performance
and reducing costs. By consolidating data from multiple
sources into a single request, GraphQL can decrease client-
server round trips for web applications and data processing
pipelines, potentially improving resource utilization and re-
sponse times.

Database operations are a fundamental component of mod-
ern cloud applications, ranging from customer management
systems to data processing platforms. Data-driven workloads,
such as data processing pipelines, represent a considerable
portion of serverless functions in production environments.
Despite GraphQL’s adoption by major technology companies
like GitHub [4] and Netflix [5], there remains a notable
gap in research comparing its performance characteristics
against traditional REST interfaces specifically to support data
persistence for serverless applications.

Our study addresses this gap by comparing three alternative
database middleware implementations: a GraphQL API hosted
using the managed AWS AppSync service with direct database
integration, a GraphQL API hosted using an unmanaged
Apollo Server deployed to an Amazon VM, and a REST
API implemented using Node.js AWS Lambda functions via
the Amazon API Gateway. We implemented nine specific
data APIs consisting of a representative set of select and
join database queries. We evaluated key performance met-
rics including round-trip time (RTT) and throughput using
four Node.js-based clients, including: AWS Lambda serverless
functions, and also a local machine, an Amazon Elastic
Compute Cloud (EC2) VM, and a Google Cloud Platform
(GCP) VM. We compared the performance of our data APIs
using these clients to consider how the implementations of the
underlying middleware influence the performance outcomes.



A. Research Questions

This paper investigates two core research questions:
1) RQ-1: (API performance - relational data API) For a

data-intensive API against a relational database, how do
different GraphQL and REST middleware implementa-
tions compare in end-to-end performance (RTT, through-
put) under various load scenarios?

2) RQ-2: (API Scalability) How do these different alterna-
tive APIs scale under increasing concurrency and what
are the implications for RTT stability and maximum
achievable throughput?

B. Contributions

This study compares GraphQL vs. REST as alternative
data API middleware implementations for relational database
(RDB) access while making the following contributions:

• Performance Evaluation: Systematic comparison of man-
aged (AWS AppSync) vs. unmanaged (Apollo Server)
GraphQL and REST (API Gateway) data API perfor-
mance using nine representative database API endpoints
against an Amazon Relational Database Service (RDS)
Aurora PostgreSQL relational database.

• Scalability Evaluation: Statistical analysis of query la-
tency and throughput while scaling from 1 to 100 con-
current AWS Lambda function database query requests.

II. RELATED WORK

Early empirical comparisons of GraphQL vs. REST inter-
faces for data persistence focused on traditional server envi-
ronments. Vadlamani et al. [6] evaluated response time trade-
offs using a custom GitHub client, concluding that GraphQL
and REST each retain unique advantages. They interviewed
GitHub employees, finding that each paradigm has its best
adoption scenarios. Other studies measured performance in
niche contexts: Mohammed et al. [7] and Vázquez-Ingelmo et
al. [8] utilized GraphQL for an API to access medical records
and an observatory data API, respectively. Similarly, Hartina
et al. [9] examined a university information system, Lee et al.
[10] assessed mobile ESS data servers, and Lawi et al. [11]
analyzed high-volume management systems. While insightful,
these investigations predominantly focused on standalone or
VM-based data API clients rather than modern serverless ap-
plications, leaving open the issue for how FaaS environments
are impacted by data persistence middleware alternatives.

Several research efforts have analyzed the performance of
GraphQL APIs [12]–[15]. These efforts describe valuable
methodologies, but often concentrate solely on benchmarking
GraphQL performance without contrasting it with equivalent
REST APIs or investigating serverless function interfaces.
Cheng and Hartig’s LinGBM benchmark [12] offers a stan-
dardized test suite for evaluating GraphQL server implemen-
tations. Belhadi et al. [13] introduced a testing framework
based on the open-source EVOMASTER tool to automatically
generate test cases.

Formal treatments, such as the Cha et al. cost analysis
framework [16] and Hartig and Pérez’s semantic study [17]

establish theoretical foundations for query optimization. Indus-
trial adopters highlight GraphQL’s scalability: Netflix’s feder-
ation architecture [5] and Airbnb’s Apollo-powered migration
[18] showcase real-world success at massive scale. Despite
this rich literature, additional investigation can contribute new
knowledge and insights in the form of systematic comparisons
of GraphQL and REST data API implementations for server-
less application data persistence, a gap our study addresses.

III. EXPERIMENTAL SETUP

A. API Architectures

To comprehensively evaluate performance and scalability,
we implemented three distinct data APIs as middleware to
provide access to a back-end relational database:
• REST API (Baseline): Our baseline data API is a traditional

REST API implemented using a standard serverless archi-
tecture. We leveraged the Amazon API Gateway to provide
a REST interface to trigger Node.js AWS Lambda serverless
functions to perform database queries [19]. This represents a
conventional approach to building data APIs in a serverless
environment.

• AWS AppSync (Managed GraphQL): Our first GraphQL
implementation uses AWS AppSync, a fully managed
GraphQL service [20]. We configured AppSync with direct
Amazon Aurora data sources, allowing it to use built-in re-
solvers to fetch data from our back-end Amazon Aurora DB.
This architecture represents a highly integrated, managed
approach to GraphQL.

• Apollo Server (Self-Hosted unmanaged GraphQL): To
contrast the managed service, our second GraphQL imple-
mentation uses Apollo Server, a popular open-source spec-
compliant GraphQL server, deployed on a c7i.8xlarge AWS
Elastic Compute Cloud (EC2) instance with 32 vCPUs and
64 GB memory [21], [22]. This server runs a Node.js appli-
cation where GraphQL resolvers execute database queries.
This architecture represents a self-hosted, unmanaged ap-
proach, giving us more control at the cost of manual
management.

B. Database Infrastructure

We executed all experiments against an Amazon Aurora
PostgreSQL 16.4 cluster (instance class db.r5.4xlarge)
with 16 vCPUs and 128 GB of memory populated with
the 2018 U.S. Centers for Medicare & Medicaid Services
(CMS) Open Payments dataset (6.5 GB uncompressed) [23].
Aurora is a managed, cloud-based relational database service
provided as part of Amazon Web Services that offers high
performance, availability, and scalability [24]. Aurora provides
a relational database service for MySQL and PostgreSQL,
enabling developers to leverage existing tools and applications
built against these common back-end databases. Aurora is a
part of the Amazon relational database service (RDS), which
automates the management of various aspects of database
administration, including backups and failover. To contrast the
performance of GraphQL data interfaces, we built a REST data
API consisting of endpoints hosted using the Amazon API
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TABLE I: Client Environment Specifications

Client Provider Cores CPU Model Mem OS Kernel Details
AWS EC2 AWS 32 Intel Xeon Platinum 8488C 64 GiB Ubuntu 24.04 6.8.0-1024-aws c7i.8xlarge, us-east-2a

GCP VM Google Cloud 8 Intel Xeon @ 2.80 GHz 32 GiB Ubuntu 24.04 6.14.0-1006-gcp n2-standard-8, us-east1-d

AWS Lambda AWS 2 Intel Xeon @ 2.50 GHz 512 MB Amazon Linux 2 5.10.235--247.919.amzn2.x86
64

Function: client-collector;
mem config: 512 MB;
timeout: 5 min

Local Machine Bare-metal Local Machine 14 13th Gen Intel Core i5-
13600K

64 GiB Arch Linux 6.13.7-arch1-1 —

Gateway, where calls were passed through to AWS Lambda
functions to implement identical database operations. Lambda
functions were located in the us-east-2 region, with a memory
setting of 2048 MB to ensure they have access to at least 1
full vCPU (i.e. 100% vCPU timeshare for one vCPU core)
[25]. AppSync, Apollo, and REST connect to the Aurora
RDS, which provides a public DB endpoint. We also tested
performance using a private Aurora DB endpoint deployed
using a virtual private cloud (VPC). As the results for the
private DB endpoint are similar, we focus our presentation on
the performance using a public DB endpoint.

Table I describes the hardware and network configura-
tions of our test clients used to evaluate our data APIs.
The EC2 instance, and Lambda functions are co-located
in AWS us-east-2, minimizing cross-region latency; the
GCP VM resides in us-east1-d, offering a useful cross-
cloud comparison, and the local machine leveraged a personal
home network environment (460 Mbps download / 175 Mbps
upload) in the state of Washington, USA.

C. Dataset

We use three tables from the CMS dataset: general pay-
ments, research payments, and physician ownership informa-
tion [23]:

• General Payments: 10.9 M rows, 91 columns (5.8 GB
CSV).

• Research Payments: 0.791 M rows, 252 columns (729.4
MB CSV).

• Physician Ownership Information: 3.6 K rows, 30
columns (1.4 MB CSV).

We configured simple keys and indexes to increase query
performance. Each table uses recordId as its primary key,
and the general payments and research payments tables link
to physician ownership via physicianProfileId and
teachingHospitalId in the physician ownership table.

D. API Endpoints

We created nine database API endpoints that cover lookup,
filter, count, and aggregation patterns and investigated their
performance using REST and GraphQL APIs. Our focus was
on evaluating raw database query performance using REST
vs. GraphQL data APIs as opposed to aggregate query per-
formance, where multiple queries are combined into a single
round trip. Aggregate queries are not natively supported by
REST APIs.

• generalPaymentById: lookup a general payment by
recordId (177 byte response, average RTT 3.2ms w/
Apollo Server).

• ownershipPaymentById: lookup an ownership
payment by recordId (197 byte response, average RTT
3.6ms w/ Apollo Server).

• researchPaymentById: lookup a research payment
by recordId (187 byte response, average 3.3ms RTT w/
Apollo Server).

• generalPaymentsByPhysicianId: fetch all general
payments for physicianProfileId (8,769 byte
response, average RTT 4.9ms w/ Apollo Server).

• generalPaymentsByTeachingHospitalId: fetch
all general payments for teachingHospitalId (51
byte response, average RTT 3.2ms w/ Apollo Server).

• aggregatedGeneralPaymentsByPhysicianId:
compute SUM and COUNT per physicianProfileId
(121 bytes response, average RTT 3.5ms w/ Apollo
Server).

• uniqueParties: list up to 1000 distinct physicians and
hospitals (170,821 byte response, average RTT 19.0ms w/
Apollo Server).

• countPhysicians: count the total number of
physicians (35 bytes response, average RTT 1.25s w/
Apollo Server).

• countHospitals: count the total number of hospitals
(32 bytes response, average RTT 787ms w/ Apollo Server).

E. Workload Generation & Metrics
To investigate RQ-1, we tested all our database API end-

points using a custom Node.js client script (Node v20). For
each client and each endpoint, we executed three load sce-
narios: 30 runs x 1 thread, 50 runs x 10 threads (5 runs per
thread), and 150 runs x 50 threads (3 runs per thread). Each
thread performed three warm-up runs prior to actual runs.
Data from warm-up runs was discarded for the analysis to
mitigate performance effects from cold-starts. These tests did
not slowly scale the number of client threads, so the back-end
database was less able to adapt quickly. To investigate RQ-2,
we scaled up the number of client threads by 1 from 1 to 100
using concurrent calls to an AWS Lambda function. Using
Lambda functions as a client avoids any potential bottleneck
which may occur when using a single VM for a multi-threaded
scalability test. To ensure equality in our comparisons, we used
default GraphQL server configurations and we did not enable
or configure special caches. We note that GraphQL servers
support optional caching optimizations which can be tuned to
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Fig. 1: RTT distributions with clients hosted on alternate platforms with increasing load scenarios. RTTs are averaged for nine endpoints across servers and
testing scenarios. Apollo RTT appears more dependent on the client’s host platform with consistently good RTTs. AppSync has consistent but higher latency,
and REST performance falls in between with moderate cross-platform variation.

specific customer and use case requirements [26], [27]. We
evaluated the following metrics:

Round-trip Time: End-to-end RTT observed by the client,
includes two-way network latency, bootstrapping (i.e., cold
start, if applicable) and back-end processing.

Throughput: Throughput is computed as:
total successful requests

wall-clock time after warm-up
[requests/s].

F. Clients
To evaluate the performance of REST and GraphQL data

APIs as middleware alternatives, we tested clients imple-
mented with serverless functions and a mix of local and cloud-
based VMs. These clients are further described in Table I.

1. AWS Lambda: For scalability testing of Apollo and
AppSync, we orchestrated concurrent calls to an AWS Lambda
client function which invoked GraphQL backends to test
performance under heavy load.

2. Local Machine: Testing was conducted using a local
desktop computer. This test case benchmarked REST and
GraphQL performance from a office or home-like environment
where the cloud is accessed using a shared internet connection
with potentially higher network latency and lower bandwidth.

3. Amazon EC2 VM: A c7i.8xlarge ec2 instance in us-east-
2a was used to test REST and GraphQL performance when
the client and backend shared a common cloud network.

4. GCP VM: We leveraged a Google Cloud Platform (GCP)
n2-standard-8 VM in us-east1-d to test REST and GraphQL
cross-cloud interface latency [28]. In this configuration, the
client and backend use cloud networks from different cloud
providers.

IV. RESULTS

A. Cross-Platform Performance Analysis

Empirical results for RQ-1 revealing performance charac-
teristics for each of the tested client environments are shown in
Figure 1. Our unmanaged Apollo GraphQL API demonstrated
exceptional performance on AWS Lambda function clients,
achieving median RTTs under 10ms across all load scenarios,
while also supporting competitive performance on AWS EC2
under light loads. However, Apollo shows more variability on
AWS EC2 under high load (150×50), with RTT distributions
spanning 50-7500ms.

AWS AppSync exhibits consistently high median RTTs in
the 100-500ms range across all of the tested clients and load
conditions, trading stability for performance. Our REST data
API performance also varied by client platform, ranging from
50-70 ms on AWS EC2 under light load to 300-400ms on
Google Cloud and a local machine under high load.

The results reveal different performance trade-offs: Apollo
GraphQL delivers superior performance for light loads with
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Fig. 2: Average RTT and throughput for all nine data endpoints and clients combined across load scenarios showing RTT distributions (left) and throughput
scalability trends (right). Apollo GraphQL has good performance with low-latency performance and throughput growth compared to REST and AWS AppSync.

limited concurrency offering very good performance (e.g. EC2
and AWS Lambda), whereas AppSync provides consistent
but slower responses, while our REST data APIs provided
performance in between that of Apollo GraphQL and AWS
AppSync GraphQL with moderate sensitivity to the client type.
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Fig. 3: Performance comparison across concurrency levels showing REST
API’s better scalability versus GraphQL implementations. Apollo GraphQL
demonstrated the best low-concurrency performance but experienced perfor-
mance degradation under load.

B. Load Scalability Characteristics

Figure 2 depicts average RTT and throughput for all nine
data APIs combined for each of our three load scenar-
ios in support of RQ-1 and RQ-2. The graph shows that
Apollo GraphQL sustains good throughput, achieving 280
requests/second with 50 concurrent clients under the 150×50
load scenario. At the same time, Apollo GraphQL maintains
consistently low RTT distributions, with median response
times remaining below 150 ms across all load scenarios while
exhibiting the highest stability. In contrast, our REST API and

AWS AppSync data APIs had similar throughput for concur-
rent load scenarios, both landing around 120 requests/second
at peak load. The advantage of Apollo could be attributed to
its efficient resolver execution and batching capability, making
it a good choice when using GraphQL for database purposes.

C. Concurrency Performance Analysis

Figure 3 compares performance of our three data APIs under
increasing load in support of RQ-2. We scaled from 1 to
100 concurrent client threads. Each thread sent 30 consecutive
query requests resulting in an increasing total number of
queries from 30 to 3000.

Our REST API demonstrated the best scalability, main-
taining consistent 60-100 ms response times across all con-
currency levels, providing 65-72% lower RTT than GraphQL
variants at high loads (80-100 threads).

Apollo GraphQL had exceptionally good performance at
low-concurrency (20-45ms RTT, 1-5 threads), but experienced
dramatic degradation to 320-360ms RTT (10x increase) under
medium-to-high loads. This performance drop is understand-
able since we deployed Apollo on a single EC2 instance,
which lacks the ability to elastically scale to handle higher
levels of concurrency. We note that Apollo Server performance
can be scaled by deploying multiple instances behind a load
balancer to handle increased request volume, but with the
tradeoff of additional infrastructure cost and management
burden. AWS AppSync GraphQL exhibited performance be-
tween that of our Apollo and REST data APIs, stabilizing
around 285-290ms after an initial warm-up period. AppSync
consistently outperformed Apollo GraphQL by 10-15% at
higher concurrency levels, above 36 concurrent requests. We
note that our Apollo Server, hosted on the 32 vCPU c7i.8xlarge
ec2 instance, becomes over-provisioned above ∼32 concurrent
requests.

Our findings indicate that while Apollo GraphQL offers
compelling advantages for low-traffic scenarios, REST APIs
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Fig. 4: Apollo GraphQL average RTT advantage heatmap over REST API showing consistent 25-67% improvements across endpoints and load scenarios,
with peak advantages at medium concurrency levels.

offer better performance for workloads exceeding moderate
concurrency thresholds. Performance of GraphQL interfaces
excelled in low-concurrency scenarios, but REST is preferable
for high concurrency.

D. Endpoint Performance comparison

Figure 4 depicts Apollo GraphQL’s performance advan-
tage over REST for each of the endpoints and load scenar-
ios. Apollo demonstrates 25-67% lower average RTT, with
peak advantages of 58-67% occurring at medium loads (50
runs × 10 threads). The slowest countHospitals and
countPhysicians endpoints exhibit minimal average RTT
improvement (3-9%), likely because most of the RTT is
accounted for by time spent performing the query within the
database engine.

The uniqueParties endpoint exhibits 58-59% lower
average RTT. This query involved complex data retrieval
involving multiple joins. These performance improvements,
shown for diverse operation types provide empirical validation
that GraphQL, especially Apollo, is a desirable choice when
designing serverless relational database applications.

V. DISCUSSION AND CONCLUSION

In this paper, we investigated performance and scalability of
GraphQL and REST data APIs by comparing the performance
using nine different data API endpoints. Our investigation
leveraged four distinct clients implemented with Node.js to in-
voke our data APIs. Clients included serverless AWS Lambda
functions, a local machine, an Amazon VM, and a Google
VM. These clients leveraged our data APIs that interfaced
with a managed Amazon Aurora PostgreSQL database server
to support answering RQ-1 and RQ-2.

Regarding RQ-1, which examines performance under vari-
ous load scenarios, our findings demonstrate that the best API
choice depends on the specific load conditions and deployment
context. Apollo GraphQL exhibited 25-67% lower average
RTT vs. REST for most endpoints and load scenarios, with
particularly lower average RTT for complex data retrieval
operations involving multiple joins. However, because our
deployment of Apollo Server was limited to 32 vCPUs, this
performance advantage was best at low to medium concur-
rency levels, enabling Apollo to maintain consistently low
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RTT distributions with medians below 150ms while achieving
a good throughput of 320 requests per second compared to
REST’s 120 requests per second.

For RQ-2 on scalability, while Apollo GraphQL demon-
strated outstanding low average RTTs of 20-45ms with low-
concurrency, it experienced significant performance degrada-
tion under loads with higher concurrency, reaching 320-360ms
average RTTs (10x higher). In contrast, REST APIs exhib-
ited better scalability, maintaining consistent 60-100ms RTTs
across all concurrency levels up to 100 threads while providing
65-72% lower average RTTs vs. GraphQL implementations
at high loads exceeding 80-100 concurrent threads. AWS
AppSync’s performance fell in between REST and Apollo,
exhibiting more stable performance than Apollo under high
concurrency while maintaining average RTTs around 285-
290ms.

Our findings suggest that the choice between GraphQL
and REST for data-intensive serverless workloads should be
informed by expected traffic patterns and concurrency re-
quirements. GraphQL, particularly Apollo, represents a good
choice for applications with moderate traffic and complex
data requirements, while REST is a robust option for high-
throughput, high-concurrency scenarios where consistent per-
formance under load is important.
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