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a b s t r a c t

Hosting a multi-tier application using an Infrastructure-as-a-Service (IaaS) cloud requires deploying
components of the application stack across virtual machines (VMs) to provide the application’s
infrastructure while considering factors such as scalability, fault tolerance, performance and deployment
costs (# of VMs). This paper presents results from an empirical study which investigates implications
for application performance and resource requirements (CPU, disk and network) resulting from how
multi-tier applications are deployed to IaaS clouds. We investigate the implications of: (1) component
placement across VMs, (2) VMmemory size, (3) VMhypervisor type (KVM vs. Xen), and (4) VMplacement
across physical hosts (provisioning variation). All possible deployment configurations for two multi-tier
application variants are tested. One application variant was computationally bound by the application
middleware, the other bound by geospatial queries. The best performing deployments required as few
as 2 VMs, half the number required for VM-level service isolation, demonstrating potential cost savings
when components can be consolidated. Resource utilization (CPU time, disk I/O, and network I/O) varied
with component deployment location, VM memory allocation, and the hypervisor used (Xen or KVM)
demonstrating how application deployment decisions impact required resources. Isolating application
components using separate VMs produced performance overhead of ∼1%–2%. Provisioning variation of
VMs across physical hosts produced overhead up to 3%. Relationships between resource utilization and
performance were assessed using multiple linear regression to develop a model to predict application
deployment performance. Our model explained over 84% of the variance and predicted application
performance with mean absolute error of only ∼0.3 s with CPU time, disk sector reads, and disk sector
writes serving as the most powerful predictors of application performance.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Migration of multi-tier client/server applications to Infra-
structure-as-a-Service (IaaS) clouds involves deploying compo-
nents of application infrastructure to one or more virtual machine
(VM) images. Images are used to instantiate VMs to provide the
application’s cloud-based infrastructure. Application components
consist of infrastructure elements such as web/application servers,
proxy servers, NO SQL databases, distributed caches, relational
databases, file servers and others.

Service isolation refers to the total separation of application
components for hosting using separate VMs. Application VMs are
hosted by one or more physical machines (PMs). Service isolation

∗ Correspondence to: USDA-ARS, ASRU, 2150 Center Ave., Bldg. D, Suite 200,
Fort Collins, CO 80526, USA. Tel.: +1 970 492 7311; fax: +1 970 492 7310.
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provides application components with their own explicit sand-
boxes to operate in, each having independent operating system
instances. Hardware virtualization enables service isolation using
separate VMs to host each application component instance. Be-
fore virtualization, service isolation using PMs required significant
server capacity. Service isolation has been suggested as a best prac-
tice for deploying multi-tier applications across VMs. A 2010 Ama-
zon Web Services white paper suggests applications be deployed
using service isolation. The white paper instructs the user to ‘‘bun-
dle the logical construct of a component into an Amazon Machine
Image so that it can be deployed (instantiated) more often’’ [1].
Service isolation, a 1:1 mapping of application component(s) to
VM images is implied. Service isolation enables scalability and
supports fault tolerance at the component level. Isolating compo-
nents may reduce inter-component interference allowing them to
run more efficiently. Conversely service isolation adds an abstrac-
tion layer above the physical hardware which introduces over-
head potentially degrading performance. Deploying all application

0167-739X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.12.007



Author's personal copy

W. Lloyd et al. / Future Generation Computer Systems 29 (2013) 1254–1264 1255

components using separate VMsmay increase network traffic, par-
ticularlywhenVMs are hosted by separate physicalmachines. Con-
solidating components together on a single VM guarantees they
will not be physically separated when deployed potentially im-
proving performance by reducing network traffic.

Provisioning variation results from the non-determinism of
where application VMs are physically hosted in the cloud, often
resulting in performance variability [2–4]. IaaS cloud providers
often do not allow users to control where VMs are physically
hosted causing this provisioning variation. Clouds consisting of
PMs with heterogeneous hardware and hosting a variable number
of VMs complicates benchmarking application performance [5].

Service Isolation provides isolation at the guest operating sys-
tem level as VMs share physical hardware resources and com-
pete for CPU, disk, and network bandwidth. Quantifying VM
interference and investigation of approaches to multiplex phys-
ical host resources are active areas of research [6–12]. Current
virtualization technology only guarantees VM memory isolation.
VMs reserve a fixed quantity of memory for exclusive use which
is not released until VM termination. Processor, network I/O, and
disk I/O resources are shared through coordination by the vir-
tualization hypervisor. Popular virtualization hypervisors include
kernel-based VMs (KVM), Xen, and the VMware ESX hypervisor.
Hypervisors vary with respect to methods used to multiplex re-
sources. Some allow pinning VMs to specific CPU cores to guar-
antee resource availability though CPU caches are still shared [9].
Developing mechanisms which guarantee fixed quantities of net-
work and disk throughput for VM guests is an open area for
research.

This research investigates performance ofmulti-tier application
component deployments to IaaS clouds to better understand im-
plications of component distribution across VMs, VM placement
across physical hosts and VM configuration. We seek to better un-
derstand factors that impact performance moving towards build-
ing performance models to support intelligent methodologies that
better load balance resources to improve application performance.
We investigate hosting two variants of a non-stochastic multi-
tier application with stable resource utilization characteristics. Re-
source utilization statistics thatwe capture fromhost VMs are then
used to investigate performance implications relative to resource
use and contention. The following research questions are investi-
gated:

(RQ-1) How does resource utilization and application perfor-
mance vary relative to howapplication components are de-
ployed?Howdoes provisioning variation, the placement of
VMs across physical hosts, impact performance?

(RQ-2) Does increasing VM memory allocation change perfor-
mance?Does the virtualmachine hypervisor (Xen vs. KVM)
affect performance?

(RQ-3) How much overhead results from VM service isolation?
(RQ-4) Can VM resource utilization data be used to build models

to predict application performance of component deploy-
ments?

2. Related work

Rouk identified the challenge of finding ideal service compo-
sitions for creating virtual machine images to deploy applications
in cloud environments in [13]. Schad et al. [3] demonstrated the
unpredictability of Amazon EC2 VM performance caused by con-
tention for physical machine resources and provisioning variation
of VMs. Rehman et al. tested the effects of resource contention
on Hadoop-based MapReduce performance by using IaaS-based
cloud VMs to host worker nodes [2]. They tested provisioning vari-
ation of three different deployment schemes of VM-hostedHadoop
worker nodes and observed performance degradation when too

many worker nodes were physically co-located. Their work in-
vestigated VM deployments not for multi-tier application(s), but
for MapReduce jobs where all VMs were homogeneous in na-
ture. Multi-tier applications with multiple unique components
present a more complex challenge for resource provisioning than
studied by Rehman et al. Zaharia et al. observed that Hadoop’s
native scheduler caused severe performance degradation by ignor-
ing resource contention among Hadoop nodes hosted by Amazon
EC2 VMs [4]. They proposed the Longest Approximate Time to End
(LATE) scheduling algorithm which better addresses performance
variations of heterogeneous Amazon EC2 VMs. Their work did not
consider hosting of heterogeneous components.

Camargos et al. investigated virtualization hypervisor perfor-
mance for virtualizing Linux servers with several performance
benchmarks for CPU, file and network I/O [14]. Xen, KVM, Virtu-
alBox, and two container based virtualization approaches OpenVZ
and Linux V-Server were tested. Different parts of the systemwere
targeted using kernel compilation, file transfers, and file compres-
sion benchmarks. Armstrong and Djemame investigated perfor-
mance of VM launch time using Nimbus and OpenNebula, two
IaaS cloud infrastructure managers [15]. Additionally they bench-
marked Xen and KVM paravirtual I/O performance. Jayasinghe
et al. investigated performance of the RUBBoS n-tier e-commerce
system deployed to three different IaaS clouds: Amazon EC2,
Emulab, and Open Cirrus [16]. They tested horizontal scaling,
changing the number of VMs for each component, and vertical scal-
ing, varying the resource allocations of VMs. They did not inves-
tigate consolidating components on VMs but used separate VMs
for full service isolation. Matthews et al. developed a VM isolation
benchmark to quantify the isolation level of co-located VMs run-
ning several conflicting tasks [6]. They tested VMWare, Xen, and
OpenVZ hypervisors to quantify isolation. Somani and Chaudhary
benchmarked Xen VM performance with co-located VMs running
CPU, disk, or network intensive tasks on a single physical host [7].
They benchmarked the Simple Earliest Deadline First (SEDF) I/O
credit scheduler vs. the default Xen credit scheduler and investi-
gatedphysical resource contention for runningdifferent co-located
tasks, similar to resource contention of co-hosting different com-
ponents of multi-tier applications. Raj et al. improved hardware
level cache management of the Hyper-V hypervisor introducing
VM core assignment and cache portioning to reduce inter-VM con-
flicts from sharing the same hardware caches. These improve-
ments were shown to improve VM isolation [8].

Niehörster et al. developed an autonomic system using support
vector machines (SVM) to meet predetermined quality-of-service
(QoS) goals. Service specific agentswere used to provide horizontal
and vertical scaling of virtualization resources hosted by an IaaS
Eucalyptus cloud [17]. Their agents scaled # of VMs, memory, and
virtual core allocations. Support vector machines determined if
resource requirements were adequate for the QoS requirement.
They tested their approach by dynamically scaling the number of
modeling engines for GROMACS, a molecular dynamics simulation
and also for an Apache web application service to meet QoS goals.
Sharma et al. investigated implications of physical placement
of non-parallel tasks and their resource requirements to build
performancemodel(s) to improve task scheduling and distribution
on compute clusters [18]. Similar to Sharma’s models to improve
task placement, RQ-4 investigates building performance models
which could be used to guide component deployments for multi-
tier applications.

Previous studies have investigated a variety of related issues
but none have investigated the relationship between application
performance and resource utilization (CPU, disk, network) result-
ing from how components of multi-tier applications are deployed
across VMs (isolation vs. consolidation).
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3. Paper contributions

This paper presents a thorough and detailed investigation on
how the deployment ofmulti-tier application components impacts
application performance and resource consumption (CPU, disk,
network). This work extends prior research on provisioning vari-
ation and heterogeneity of cloud-based resources. Relationships
between component and VM placement, resource utilization and
application performance are investigated. Additionally we investi-
gate performance and resource utilization changes resulting from:
(1) the use of different hypervisors (Xen vs. KVM), and (2) increas-
ing VM memory allocation. Overhead from using separate VMs to
host application components is also measured. Relationships be-
tween resource utilization and performance are used to develop
a multiple linear regression model to predict application perfor-
mance. Our approach for collecting application resource utilization
data to construct performance model(s) can be generalized for any
multi-tier application.

4. Experimental design

To support investigation of our research questions we studied
the migration of a widely used Windows desktop environmental
modeling application deployed to operate as a multi-tier web
services application. Section 4.1 describes the application and
our test harness. Section 4.2 describes components of the multi-
tier application. Section 4.3 details the configuration of tested
component deployments. Section 4.4 concludes by describing
our private IaaS cloud and hardware configuration used for this
investigation.

4.1. Test application

For our investigation we utilized two variants of the RUSLE2
(Revised Universal Soil Loss Equation — Version 2) soil erosion
model [19]. RUSLE2 contains both empirical and process-based
science that predicts rill and interrill soil erosion by rainfall and
runoff. RUSLE2 was developed to guide conservation planning, in-
ventory erosion rates, and estimate sediment delivery. RUSLE2 is
the US Department of Agriculture Natural Resources Conserva-
tion Service (USDA-NRCS) agency standard model for sheet and
rill erosion modeling used by over 3000 field offices across the
United States. RUSLE2 was originally developed as a Windows-
based Microsoft Visual C++ desktop application and has been
extended to provide soil erosion modeling as a REST-based web-
service hosted by Apache Tomcat [20]. JSONwas the transport pro-
tocol for data objects. To facilitate functioning as a web service a
command line console was added. RUSLE2 consists of four tiers in-
cluding an application server, a geospatial relational database, a file
server, and a logging server. RUSLE2 is a good multi-component
application for our investigation because with four components
and 15 possible deployments it is both complex enough to be in-
teresting, yet simple enough that brute force testing is reasonable
to accomplish. RUSLE2’s architecture is a surrogate for traditional
client/server architectures having both an application and rela-
tional database. The Object Modeling System 3.0 (OMS3) frame-
work [21,22] using WINE [23] provided middleware to facilitate
interacting with RUSLE2’s command line console. OMS3, devel-
oped by the USDA-ARS in cooperation with Colorado State Univer-
sity, supports component-oriented simulationmodel development
in Java, C/C++ and FORTRAN.

The RUSLE2 web service supports ensemble runs which are
groups of individual model requests bundled together. To invoke
the RUSLE2 web service a client sends a JSON object with param-
eters describing land management practices, slope length, steep-
ness, latitude, and longitude. Model results are returned as JSON

objects. Ensemble runs are processed by dividing sets of modeling
requests into individual requests which are resent to the web ser-
vice, similar to the ‘‘map’’ function of MapReduce. These requests
are distributed to worker nodes using a round robin proxy server.
Results from individual runs of the ensemble are ‘‘reduced’’ into
a single JSON response object. A test generation program created
randomized ensemble tests. Latitude and longitude coordinates
were randomly selected within a bounding box from the state of
Tennessee. Slope length, steepness, and land management prac-
tice parameters were randomized. Random selection of latitude
and longitude coordinates led to variable geospatial query execu-
tion times because the polygons intersected with varied in com-
plexity. To verify our test generation technique produced test sets
with variable complexitywe completed 2 runs of 20 randomly gen-
erated 100-model run ensemble tests run using the 15 RUSLE2
component deployments and average execution times were calcu-
lated. Execution speed (slow/medium/fast) of ensemble tests was
preserved across subsequent runs indicating that individual en-
sembles exhibited a complexity-like characteristic (R2

= 0.914,
df = 18, p = 5 · 10−11).

Our investigation utilized two variants of RUSLE2 referred to as
‘‘d-bound’’ for the database bound variant and ‘‘m-bound’’ for the
model bound variant, names based on the component dominating
execution time. These application variants represent surrogates
for two potentially common scenarios in practice: an application
bound by the database tier, and an application bound by the
middleware (model) tier. For the ‘‘d-bound’’ RUSLE2 two primary
geospatial queries were modified to perform a join on a nested
query. The ‘‘m-bound’’ variant was unmodified. The ‘‘d-bound’’
application had a different resource utilization profile than the
‘‘m-bound’’ RUSLE2. On average the ‘‘d-bound’’ application re-
quired ∼2.45× more CPU time than the ‘‘m-bound’’ model.

4.2. Application services

Table 1 describes the application components of RUSLE2’s
application stack. The M component provides model computation
and web services using Apache Tomcat. The D component
implements the geospatial database which resolves latitude and
longitude coordinates to assist in providing climate, soil, and
management data for RUSLE2model runs. PostgreSQLwith PostGIS
extensions were used to support geospatial functionality [24,25].
The file server F component provides static XML files to RUSLE2
to parameterize model runs. NGINX [26], a lightweight high
performance web server hosted over 57,000 static XML files on
average ∼5 kB each. The logging L component provided historical
tracking of modeling activity. The Codebeamer tracking facility
which provides an extensive customizable GUI and reporting
facility was used to log model activity [27]. A simple JAX-RS
RESTful JSON-based web service decoupled logging functions from
RUSLE2 by providing a logging queue to prevent delays from
interfering with model execution. Codebeamer was hosted by the
Apache Tomcat web application server and used the Derby file-
based relational database. Codebeamer, a 32-bit web application,
required the Linux 32-bit compatibility libraries (ia32-libs) to
run on 64-bit VMs. A physical server running the HAProxy load
balancer provided a proxy service to redirect modeling requests
to the VM hosting the modeling engine. HAProxy is a dynamically
configurable fast load balancer that supports proxying both TCP
and HTTP socket-based network traffic [28].

4.3. Service configurations

RUSLE2’s infrastructure components can be deployed 15
possible ways using 1–4 VMs. Table 2 shows the tested service
configurations labeled as SC1–SC15. To create the deployments for
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Table 1
RUSLE2 application components.

Component Description

M Model Apache Tomcat 6.0.20, Wine 1.0.1, RUSLE2, Object Modeling System (OMS 3.0)

D Database Postgresql-8.4, PostGIS 1.4.0-2
Geospatial database consists of soil data (1.7 million shapes, 167 million points), management data (98 shapes, 489k points), and climate data (31k
shapes, 3 million points), totaling 4.6 GB for the state of TN.

F File server nginx 0.7.62
Serves XML files which parameterize the RUSLE2 model. 57,185 XML files consisting of 305 MB.

L Logger Codebeamer 5.5 w/ Derby DB, Tomcat (32-bit)
Custom RESTful JSON-based logging wrapper web service. IA-32libs support operation in 64-bit environment.

Table 2
Tested component deployments.

VM1 VM2 VM3 VM4

SC1 MDF L
SC2 MDF L
SC3 MD F L
SC4 MD F L
SC5 M DF L
SC6 M DF L
SC7 M D F L
SC8 M D F L
SC9 M DL F
SC10 MF DL
SC11 MF D L
SC12 ML DF
SC13 ML D F
SC14 MDL F
SC15 MLF D

Table 3
Service isolation tests.

NC NODE 1 NODE 2 NODE 3

SC2-SI [M] [D] [F ] [L]

SC2 [MDF ] [L]

SC6-SI [M] [DF ] [L]

SC6 [M] [D] [F ] [L]

SC11-SI [M] [F ] [D] [L]

SC11 [MF ] [D] [L]

testing, a composite VM imagewith all (4) application components
installed was used. An automated test script enabled/disabled
application components as needed to achieve the configurations.
This method allowed automatic configuration of all component
deployments using a single VM image. This approach required that
the composite disk imagewas large enough to host all components,
and that VMs had installed but non-running components.

For testing SC1–SC15, VMs were deployed with physical
isolation. Each VM was hosted by its own exclusive physical host.
This simplified the experimental setup and provided a controlled
environment using homogeneous physical host machines to
support experimentation without interference from external non-
application VMs. For provisioning variation testing (RQ-1) and
service isolation testing (RQ-3) physical machines hosted multiple
VMs as needed. For all the tests VMs had 8 virtual CPUs, and 10 GB
of disk space regardless of the number of components hosted. VMs
were configured with either 4 GB or 10 GB memory.

Table 3 describes component deployments used to benchmark
service isolation overhead (RQ-3). Separate VMs are delineated
using brackets. These tests measured performance overhead re-
sulting from the use of separate VMs to isolate application com-
ponents. Service isolation overhead was measured for the three
fastest component deployments: SC2, SC6, and SC11.

4.4. Testing setup

A Eucalyptus 2.0 IaaS private cloud [29] was built and hosted by
Colorado State University consisting of 9 SUN X6270 blade servers

Table 4
Hypervisor performance.

Hypervisor Avg. time (s) Performance (%)

Physical server 15.65 100
Xen 3.1 25.39 162.24
Xen 3.4.3 23.35 149.20
Xen 4.0.1 26.2 167.41
Xen 4.1.1 27.04 172.78
Xen 3.4.3 hvm 32.1 205.11
KVM disk virtio 31.86 203.58
KVM no virtio 32.39 206.96
KVM net virtio 35.36 225.94

sharing a private 1 Giga-bit VLAN. Servers had dual Intel Xeon
X5560-quad core 2.8 GHz CPUs, 24 GB RAM, and two 15000 rpm
HDDs of 145 GB and 465 GB capacity respectively. The host
operating system was CentOS 5.6 Linux (2.6.18-274) 64-bit server
for the Xen hypervisor [30] and Ubuntu Linux 10.10 64-bit server
(2.6.35-22) for the KVM hypervisor. VM guests ran Ubuntu Linux
(2.6.31-22) 64-bit server 9.10. Eight servers were configured as
Eucalyptus node-controllers, and one server was configured as the
Eucalyptus cloud-controller, cluster-controller, walrus server, and
storage-controller. Eucalyptus managed mode networking using a
managed Ethernet switch was used to isolate VMs onto their own
private VLANs.

Available versions of the Xen and KVM hypervisors were tested
to establish which provided the fastest performance using SC1
from Table 2. Ten trials of an identical 100-model run ensemble
test were executed using the ‘‘m-bound’’ variant of the RUSLE2
application and average ensemble execution times are shown in
Table 4. Xen 3.4.3 hvm represents the Xen hypervisor running
in full virtualization mode using CPU virtualization extensions
similar to the KVM hypervisor. Xen 3.4.3 using paravirtualization
was shown to provide the best performance and was used
for the majority of experimental tests. Our application-based
benchmarks of Xen and KVM reflect similar results from previous
investigations [14,15].

The Linux virtual memory drop_caches function was used to
clear all caches, dentries and inodes before each ensemble test
to negate training effects from repeating identical ensemble tests.
This cache-flushing technique was verified by observing CPU, file
I/O, and network I/O utilization for the automated tests with and
without cache clearing. When caches were not cleared, total disk
sector reads decreased after the system was initially exposed
to the same ensemble test. When caches were force-cleared for
each ensemble run, the system reread data. As the test harness
was exercised we observed that Codebeamer’s Derby database
grew large resulting in performance degradations. To eliminate
decreased performance from log file and database growth our test
script deleted log files and removed and reinstalled Codebeamer
after each ensemble run. These steps prevented out of disk space
errors and allowed uninterrupted testing without intervention.

VM resource utilization statistics were captured using a
profiling script to capture CPU time, disk sector reads and writes
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Table 5
‘‘M-bound’’ deployment variation.

Parameter M-bound Deployment difference

Avg. ensemble (s) 23.4 13.7% (3.2 s)
Avg. CPU time (s) 11.7 6.5%
Avg. disk sector reads 57,675 14.8%
Avg. disk sector writes 286,297 21.8%
Avg. network bytes rec’d 9019,414 144.9%
Avg. network bytes sent 9037,774 143.7%

(disk sector = 512 bytes), and network bytes sent/received. To
determine resource utilization of component deployments from all
VMs hosting the application were totaled.

5. Experimental results

To investigate our research questions we completed nearly
10,000 ensemble tests totaling ∼1,000,000 individual model runs.
Tests were conducted using both the ‘‘m-bound’’ and ‘‘d-bound’’
RUSLE2 model variants. VMs were hosted using either the Xen
or KVM hypervisor and were configured with either 4 GB or 10
GB memory, 8 virtual cores, and 10 GB disk space. 15 component
placements across VMs were tested, and these VMs were provi-
sionedusing physical hosts 45 differentways. Test sets executed 20
ensembles of 100model runs each to benchmark performance and
resource utilization of various configurations. All ensembles had
100 randomly generated model runs. Some test sets repeated the
same ensemble test 20 times,while others used a set of 20 different
ensemble tests for a total of 2,000 randomly generated model runs
per test set. Results for our investigation of RQ-1 are described in
Sections 5.1–5.3. Resource utilization characteristics of the compo-
nent deployments are described in Section 5.1 followed by perfor-
mance results of the deployments in Section 5.2. Section 5.3 reports
on performance effects from provisioning variation, the variability
resulting from where application VMs are physically hosted. Sec-
tion 5.4 describes how application performance changedwhen VM
memory was increased from 4 GB to 10 GB, and Section 5.5 reports
on the performance differences of the Xen and KVM hypervisors
(RQ-2). Section 5.6 presents results from our experiment measur-
ing service isolation overhead (RQ-3). Section 5.7 concludes by pre-
senting our multiple linear regression based performance model
which predicts performance of component deployments based on
resource utilization statistics (RQ-4).

5.1. Component deployment resource utilization

Resource utilization statistics were captured for all component
deployments to investigate how they varied across all possible
configurations. To validate that component deployments exhib-
ited consistent resource utilization behavior, linear regression was
used to compare two separate sets of runs consisting of 20 differ-
ent 100-model run ensembles using the ‘‘m-bound’’ model with 4
GB Xen VMs. The coefficient of determination R2 was calculated to
determine the proportion of variance accounted for when regress-
ing together the two datasets. Higher values indicate similarity in
the datasets. Comparing R2 resource utilization for CPU time (R2

=

0.937904, df = 298), disk sector reads (R2
= 0.96413, df = 298),

and network bytes received/sent (R2
= 0.99999, df = 298) for

repeated tests appeared very similar. Only disk sector writes (R2
=

0.273696, df = 298) was inconsistent. Network utilization ap-
peared similar for both the ‘‘m-bound’’ and ‘‘d-bound’’ model
variants as they communicated the same information. For the
‘‘d-bound’’ model D performed many more queries but this ad-
ditional computation was independent of the other components
MF L.

Application performance and resource utilization varied based
on the deployment configuration of application components.

Table 6
‘‘D-bound’’ deployment variation.

Parameter D-bound Deployment difference

Avg. ensemble (s) 133.4 25.7% (34.3 s)
Avg. CPU time (s) 27.8 5.5%
Avg. disk sector reads 2836,144 819.6%
Avg. disk sector writes 246,364 111.1%
Avg. network bytes rec’d 9269,763 145.0%
Avg. network bytes sent 9280,216 143.9%
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Fig. 1. Resource utilization variation of component deployments.

Comparing resource utilization among deployments for the
‘‘m-bound’’ model network bytes sent/received varied by ∼144%,
disk sector writes by ∼22%, disk sector reads by ∼15% and CPU
time by ∼6.5% as shown in Table 5. Comparing the fastest and
slowest deployments the performance variationwas∼3.2 s, nearly
14% of the average ensemble execution time for all deployments.
Resource utilization differences among deployments of the
‘‘d-bound’’modelwas greater than ‘‘m-bound’’with∼820% for disk
sector reads,∼145% for network bytes sent/received, 111% for disk
sector writes but only ∼5.5% for CPU time as shown in Table 6.
‘‘D-bound’’ model performance comparing the fastest versus
slowest deployments varied by 25.7% (>34 s).

Comparing both applications hosted by 4 GB Xen VMs a ∼138%
increase in CPU time was observed for the ‘‘d-bound’’ model.
Network utilization increased ∼3% and disk sector reads for the
‘‘d-bound’’ model where the M and D components were co-
located increased 24,000% vs. the ‘‘m-bound’’ model, but decreased
87% for deployments where M and D were not co-located. On
average the Xen ‘‘d-bound’’ model ensemble execution times
were 5.7× ‘‘m-bound’’, averaging 133.4 s versus 23.4. Network
utilization likely increased for the ‘‘d-bound’’ model due to the
longer duration of ensemble runs.

Fig. 1 shows resource utilization variation for component de-
ployments of the ‘‘m-bound’’ model. Resource utilization statistics
were totaled from all VMs comprising individual component de-
ployments. The graph shows the absolute value of the deviation
from average resource utilization for the component deployments
(SC1–SC15). The graph does not express positive/negative devia-
tion from average but the magnitude of deviation. Larger boxes
indicate a greater deviation from average resource utilization and
smaller boxes indicate performance close to the average. The graph
visually depicts the variance of resource utilization for our 15 com-
ponent deployments.

5.2. Component deployment performance

To verify that component deployments performed consistently
over time and to verify that we were not simply observing
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Fig. 2. 4 GB ‘‘m-bound’’ regression plot (Xen).

Fig. 3. Performance comparison — randomized ensembles (Xen).

random behavior, two test sets consisting of 20 runs of the same
100-model run ensemble test were performed using all compo-
nent deployments. The regression plot in Fig. 2 compares the be-
havior of the two repeated test sets. Linear regression confirms the
consistency of component deployment performance across subse-
quent test sets (R2

= 0.949674, df = 13, p = 8.09 · 10−10).
The three ellipses in the graph identify three different performance
groups from left to right: fast, medium and slow. Performance
consistency of ‘‘d-bound’’ tests was verified using the same tech-
nique. The consistency was not as strong due to higher variance of
‘‘d-bound’’ model execution times but was statistically significant
(R2

= 0.81501, df = 13, p = 4.08 · 10−6).
To simulate a production modeling web service 20 randomized

100-model run ensembles were generated (2000 unique requests)
and used to benchmark each of the 15 component deployments.
Fig. 3 shows the performance comparison of the ‘‘m-bound’’ vs. ‘‘d-
bound’’ model using the 20 different ensemble tests. Performance
differences fromaverage and overall rankings are shown in Table 7.

We observed performance variation of nearly ∼14% for the
‘‘m-bound’’ model and ∼26% for the ‘‘d-bound’’ model comparing
best-case vs. worse-case deployments. Service compositions for the
‘‘m-bound’’ application with random ensembles can be grouped
into three categories of performance: fast {SC2, SC4, SC6, SC7, SC9,
SC10, SC11}, medium {SC3, SC5, SC8}, and slow {SC1, SC12, SC13,
SC14, SC15}. Compositions with M and L components co-located
performed slower in all cases averaging 7.25% slower, about 1.7 s.

Table 7
Performance differences — randomized ensembles.

Composition m-bound (%) Rank d-bound (%) Rank

SC1 7.59 14 4.46 9
SC2 −6.06 1 −13.35 1
SC3 −0.80 10 −12.64 3
SC4 −3.74 6 −12.81 2
SC5 −1.13 9 −2.64 8
SC6 −5.50 2 −5.40 4
SC7 −4.38 4 7.98 12
SC8 −2.21 8 10.44 14
SC9 −2.92 7 −3.16 6
SC10 −4.21 5 −2.84 7
SC11 −5.20 3 7.72 11
SC12 6.74 11 −4.98 5
SC13 7.63 15 8.57 13
SC14 6.97 12 6.28 10
SC15 7.22 13 12.36 15

When compositions had M and L co-located CPU time increased
14.6%, disk sector writes 18.4%, and network data sent/received
about 3% versus compositions where M and L were separate.

Service isolation (SC7) did not provide the best performance
for either model. SC7 was ranked 4th fastest for the ‘‘m-bound’’
model and 12th for the ‘‘d-bound’’model. The top three performing
deployments for both model variants required only two or three
VMs. Prior to testing the authors posited that isolating the appli-
cation server (SC5), total service isolation (SC7), and isolating the
geospatial database isolation (SC15) could be the fastest deploy-
ments. None of these deployments were top performers demon-
strating our intuition was insufficient. Testing was required to
determine the fastest component placements. We observed up to
∼26% performance variation comparing component deployments
while making no application changes only deployment changes.
This variation illustrates the possible consequences for adhoc com-
ponent placement.

5.3. Provisioning variation testing

IaaS cloud providers often do not allow user-level control of VM
placement to physical hosts. The non-determinism of where VMs
are hosted results in provisioning variation [2–4]. In the previous
section we identified the best performing application component
deployments.Wehad twoprimarymotivations for provision varia-
tion testing. First, to validate if deploying VMs using isolated physi-
cal hosts was sufficient to identify the best performing component
deployments. For example does one of the deployments (SC11A,
SC11B, SC11C) provide fundamentally different performance than
SC11? And second, to quantify the average performance change for
provisioning variation configurations. Intuition and previous re-
search suggest that hosting multiple VMs on a single PM will re-
duce performance, but by how much?

There are 45 provisioning variations of the 15 component de-
ployments described in Table 2 and tested in previous sections. 31
of the configurations were tested using the 20 randomized 100-
model run ensembles and KVM-based VMs with 4 GB memory al-
location. Test configurations are identified by their base service
configuration id SC1–SC15 and the letters A–D to identify pro-
visioning variation configurations as described in Table 8. There
were 14 variations of SC7 which represent the VM-level service
isolation variants of component configurations described in Ta-
ble 2. These were not tested because service isolation only adds
overhead relative to their equivalents (SC1–SC6, SC8–SC15) as dis-
cussed in Section 5.6 for RQ-3. To compare performance the pro-
vision variation deployments from Table 8 versus SC1–SC15, we
calculated averages for provisioning variation configurations hav-
ing more than 1 provisioning variation deployment (e.g. SC11A,
SC11B, SC11C, SC11D). Linear regression showed that component
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Table 8
Provisioning variation VM tests.

PM 1 PM 2 PM 1 PM 2

SC2A [MDF ] [L] SC9B [M] [DL] [F ]

SC3A [MD] [F L] SC9C [M] [DL] [F ]

SC4A [MD] [F ] [L] SC9D [M][F ] [DL]

SC4B [MD] [F ] [L] SC10A [MF ] [DL]

SC4C [MD] [F ] [L] SC11A [MF ] [D] [L]

SC4D [MD] [L] [F ] SC11B [MF ] [D] [L]

SC5A [M] [DF L] SC11C [MF ] [D] [L]

SC6A [M] [DF ] [L] SC11D [MF ] [L] [D]

SC6B [M] [DF ] [L] SC12A [ML] [DF ]

SC6C [M] [DF ] [L] SC13A [ML] [D] [F ]

SC6D [M] [L] [DF ] SC13B [ML] [D] [F ]

SC8A [M] [D] [F L] SC13C [ML] [D][F ]

SC8B [M] [D] [F L] SC13D [ML] [F ] [D]

SC8C [M] [D] [F L] SC14A [MDL] [F ]

SC8D [M] [F L] [D] SC15A [MLF ] [D]

SC9A [M] [DL] [F ]

Fig. 4. Provisioning variation performance differences vs. physical isolation (KVM).

deployments performed the same regardless of provisioning variation
(R2

= 0.956701, df = 13, p = 3.03 · 10−10), though they gener-
ally performed slower. Performance differences observed appeared
to result from hosting multiple VMs on physical hosts. On aver-
age performance for provision variation configurations was 2.5%
slower. Configurations with 2 VMs averaged 3.05% slower, with 3
VMs 2.33% slower. 6 of 31 configurations exhibited small perfor-
mance gains: SC4A, SC6A, SC8C, SC11A, SC11C, and SC12A. Provi-
sioning variation configurations which separated physical hosting
of the M and L components provided an average improvement of
0.39% (10 configurations) whereas those which combined hosting
ofM andLwere on average 3.93% slower. Performance differences
for provisioning variation configurations are shown in Fig. 4.

5.4. Increasing VM memory

In [31] the RUSLE2 model was used to investigate multi-tier
application scaling with components deployed on isolated VMs.
VMs hosting the M, F , and L components were allocated 2 GB
memory, and the D component VM was allocated 4 GB. To avoid
performance degradation due to memory contention VM memory
was increased to 10GB, the total amount provided using individual
VMs in [31]. Intuitively increasing VM memory should provide
either a performance improvement or no change of performance.
20 runs of an identical 100-model run ensemble were repeated
for the SC1–SC15 component deployments using 10 GB VMs.
Fig. 5 shows performance changes resulting from increasing VM
memory allocation from 4 GB to 10 GB for both the ‘‘m-bound’’ and
‘‘d-bound’’ applications.

Fig. 5. 10 GB VM performance changes (seconds).

For the ‘‘m-bound’’ application using 10 GB VMs reduced av-
erage ensemble performance 0.727 s (−3.24%) versus using VMs
with 4 GB. SC11 provided had the best performance, 6.7% faster
than average component deployment performance for 10 GB VM
‘‘m-bound’’ ensemble tests. This was half a second faster than with
4 GB VMs. SC1, total service combination, performed the slowest,
8.9% slower than average, 3.1 s longer than with 4 GB VMs. For the
‘‘m-bound’’ application only component deployments which com-
bined M and L on the same VM experienced performance degra-
dation. Both M and L used the Apache Tomcat web application
server, but L used a 32-bit version for hosting Codebeamer and
required the ia32 Linux 32-bit compatibility libraries to run on a
64-bit VM. The performance degradations may have resulted from
virtualization of the ia32 library as 32-bit Linux can only natively
address up to 4 GB RAM.

The ‘‘d-bound’’ application using 10GBVMs performed on aver-
age 3.24 s (2.46%) faster than when using 4 GB VMs. Additional VM
memory improved database query performance. SC4 performed
best at 12.5% faster or about 11.2 s faster. SC7, total service isola-
tion, performed the slowest at 12.6% slower than average, equaling
about 4.2 s longer than tests with 4 GB VMs.

To verify that these results were not specific to repeated runs
of an identical 100-model run ensemble using the Xen hypervisor,
we also tested increasing VMmemory allocation using 20 different
ensembles and the KVM hypervisor. Results were similar for
both cases. The ‘‘m-bound’’ model’s 15 component deployments
performed on average 342 ms slower (−1.13%) with 10 GB VMs
and the ‘‘d-bound’’ model performed 3.24 s (2.46%) faster on
average. Our results demonstrate that increasing VM memory
allocation may result in unexpected performance changes in some
cases exceeding +/−10%. For VMmemory allocation, depending on
the application, more may not always be better.

5.5. Xen vs. KVM

To compare performance differences between the Xen andKVM
hypervisors we ran test sets using 20 different ensemble runs
using 4 GB VMs and the ‘‘m-bound’’ application. Tests were re-
peated using both Xen and KVM hypervisors, random ensembles
and the ‘‘d-bound’’ model. On average KVM ensemble performance
was ∼29% slower than Xen for the ‘‘m-bound’’ model, but ∼1%
faster for the ‘‘d-bound’’ model. The ‘‘d-bound’’ model was more
CPU bound enabling performance improvement compared with
Xen. The ‘‘m-bound’’ model had a higher proportion of I/O rela-
tive to CPU use and performed faster using Xen. ‘‘D-bound’’ en-
semble tests using KVM required on average 4.35 xs longer than
the ‘‘m-bound’’model,while Xen ‘‘d-bound’’ runswere 5.7× longer
than ‘‘m-bound’’. The average performance difference between the
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Fig. 6. Xen vs. KVM performance differences, 4 GB VM different ensembles.

Table 9
KVM vs. Xen resource utilization — randomized ensembles.

Parameter KVM resource utilization (% of
Xen)

R2 p

CPU time (s) 135.2 0.787769 0.00001
Disk sector
reads

97.91 0.804115 5.96 · 10−6

Disk sector
writes

50.48 0.829572 2.38 · 10−6

Network bytes
rec’d

101.77 0.999872 1.09 · 10−26

Network bytes
sent

101.85 0.999874 9.61 · 10−27

Xen and KVM hypervisors for running both the ‘‘m-bound’’ and
‘‘d-bound’’ models using 20 random ensemble tests is shown in
Fig. 6.

Resource utilization data was collected for the ‘‘m-bound’’
model for all component deployments (SC1–SC15) using 20
random100-model run ensemble tests for theXen andKVMhyper-
visors. Resource utilization differences and correlations are sum-
marized in Table 9. Resource utilization for Xen and KVM corre-
lated for all statistics. On average KVM used 35% more CPU time
than Xen, but nearly an equal number of disk sector reads (98%),
but performed far fewer disk sector writes (50%). KVM exhib-
ited 1.8% more network traffic (bytes sent/received) than Xen. In-
creasedCPU time for KVMmay result fromKVM’s full virtualization
of devices where devices are entirely emulated by software. Xen
I/O uses paravirtual devices which offer more direct device I/O.

We used a simple linear regression to compare Xen and KVM
performance of component deployments for the ‘‘m-bound’’ and
‘‘d-boundmodels. Deployments using 4 GB VMs for the ‘‘m-bound’’
model with random ensembles were shown to perform similarly
(R2

= 0.749912, df = 13, p = 0.00003). Component deploy-
ment performance of Xen vs. KVM using the ‘‘d-bound’’ model
performance did not correlate. Given KVM’s improved ‘‘d-bound’’
performance relative to Xen, this result was expected. Application
performance using the KVM hypervisor appeared to be more sen-
sitive than Xen to disk I/O.

5.6. Service isolation overhead

To investigate overhead resulting from the use of separate
VMs to host application components the three fastest component
deployments for the ‘‘m-bound’’ model were tested. Components
were deployed using the SC2, SC6, and SC11 configurations with
and without using separate VMs to host individual components.

60 runs using the same 100-model run ensemble, and 3 test sets
of 20 different 100-model run ensembles were completed for each

Table 10
Resource utilization — predictive power.

Parameter R2 RMSD

CPU time 0.7171 887.64
# Disk sector reads 0.3714 1323.25
# Disk sector writes 0.1441 1544.05
Network bytes rec’d. 0.0074 1662.76
Network bytes sent 0.0075 1662.68
Number of VMs 0.0444 1631.44

configuration. The percentage performance change resulting from
service isolation is shown in Fig. 7. For all but one configuration,
service isolation resulted in overhead which degraded performance
compared to deploymentswheremultiple componentswere combined
on VMs. The average overhead from service isolation was ∼1%.
For tests using different ensembles the observed performance
degradation for service isolation deployments was 1.2%, 0.3%,
and 2.4% for SC2-SI, SC6-SI and SC11-SI respectively. The same
ensemble test performance degradation was 1.1%, −0.06%, and
1.4%. These results were reproduced using the KVM hypervisor
with an average observed performance degradation of 2.4%.

Although the performance overhead was not large, it is impor-
tant to consider that using additional VMs incurs higher hosting
costs without performance benefits. The isolated nature of our test
design using isolated physical hardware, running no other appli-
cations, allows us to be certain that observed overhead resulted
entirely from VM-level service isolation. This overhead is one of
the tradeoffs for easier application tier-scalability with service
isolation.

5.7. Predictive model

Resource utilization datawas collected for CPU time, disk sector
reads/writes, and network bytes sent/received as described in
Section 5.1. We observed resource utilization variation for each of
the deployments tested.Multiple linear regression (MLR)was used
to build models to predict component deployment performance
using resource utilization data to support investigation of RQ-4.

Multiple linear regression (MLR) is used to model the linear
relationship between a dependent variable and one or more
independent variables [32]. The dependent variable was ensemble
execution time and the independent variables were VM resource
utilization statistics including: CPU time, disk sector reads/writes,
network bytes sent/received, and the number of virtual machines
of the component deployment. The ‘‘R-squared’’ value, also known
as the coefficient of determination, explains the explanatory power
of the entiremodel and its independent variables as the proportion
of variance accounted for. R-squared values were calculated
for each independent variable using single linear regression.
Root mean squared deviation (RMSD) was calculated for each
variable. The RMSD expresses differences between the predicted
and observed values and serves to provide a measure of model
accuracy. Ideally 95% of predictions should be less than +/−2
RMSD’s from the actual value.

AMLRmodelwas built using resource utilization variables from
the ‘‘m-bound’’ model using Xen 4 GB VMs with 20 different en-
semble tests. All of our resource utilization variables together pro-
duced a model which accounted for 84% of the variance with a RMSD
of only ∼676 ms (R2

= 0.8416, RMSD = 664.17 ms). Table 10
shows individual R2 values for the resource utilization statistics
used in a simple linear regression model with ensemble execu-
tion time to determine how much variance each explained. Addi-
tionally the average error (RMSD) is shown. The most predictive
parameters were CPU time which positively correlated with en-
semble time and explained over 70% of the variance (R2

= 0.7171)
and disk sector reads (R2

= 0.3714) with a negative correla-
tion. Disk sector writes had a positive correlation with ensemble



Author's personal copy

1262 W. Lloyd et al. / Future Generation Computer Systems 29 (2013) 1254–1264

Fig. 7. Performance overhead from service isolation (Xen left, KVM right).

Table 11
Deployment performance rank predictions.

Composition Predicted rank Actual rank Rank error

SC1 12 15 −3
SC2 2 2 0
SC3 7 8 −1
SC4 6 9 −3
SC5 10 4 6
SC6 9 10 −1
SC7 4 5 −1
SC8 8 7 1
SC9 5 6 −1
SC10 3 3 0
SC11 1 1 0
SC12 15 12 3
SC13 14 14 0
SC14 13 13 0
SC15 11 11 0

performance (R2
= 0.1441). The number of deployment VMs

(R2
= 0.0444) and network bytes received/sent were not strong

predictors of ensemble performance and explained very little
variance.

We applied our MLR performance model to predict perfor-
mance of component deployments. Resource utilization data used
to generate the model was reused to generate ensemble time pre-
dictions. Average predicted ensemble execution times were cal-
culated for each component deployment (SC1–SC15) and rank
predictions were calculated. Predicted vs. actual performance
ranks are shown in Table 11. The mean absolute error (MAE) was
462 ms, and estimated ranks were on average +/−1.33 units from
the actual ranks. Eleven predicted ranks for component compo-
sitions were off by 1 unit or less from their actual rank, with six
exact predictions for SC2, SC10, SC11, SC13, SC14, and SC15. The
top three performing deployments were predicted correctly in or-
der. A second set of resource utilization data was collected for the
‘‘m-bound’’ model using 4 GB VMs and 20 random ensembles for
SC1–SC15. This data was fed into our MLR performance model and
observed MAE was only 324 ms. The average rank error was +/−2
units. Seven predicted rankswere off by 1 unit or less from their ac-
tual rank, with three exact predictions. The top fastest deployment
was correctly predicted for the second dataset.

Building models to predict component deployment perfor-
mance requires careful consideration of resource utilization vari-
ables. This initial attempt using multiple linear regression was
helpful to identify which independent variables had the greatest
impact on deployment performance. Future work to improve per-
formance prediction should investigate using additional resource

utilization statistics as independent variables to improvemodel ac-
curacy. New variables including CPU statistics, kernel scheduler
statistics, and guest/host load averages should be explored. The
utility of neural networks, genetic algorithms, and/or support vec-
tor machines to improve our model should be investigated ex-
tending related research [17,33–37]. These techniques can help
improve performance predictions if resource utilization data is not
normally distributed.

6. Conclusions

(RQ-1) This research investigated the scope of performance im-
plications which occur based on how components of multi-tier
applications are deployed across VMs on a private IaaS cloud. All
possible deployments were tested for two variants of the RUSLE2
soil erosion model, a 4-component application. Up to a 14% and
25.7% performance variation was observed for the ‘‘m-bound’’ and
‘‘d-bound’’ RUSLE2 models respectively. Significant resource uti-
lization (CPU, disk, network) variation was observed based on how
application components were deployed across VMs. Intuition was
insufficient to determine the best performing deployments. Ad hoc
worst case scenario component placements significantly degraded
application performance demonstrating consequences for ignoring
component composition. Component deployment using total ser-
vice isolation did not provide the fastest performance for our ap-
plication. Provisioning variation did not change the fundamental
performance of component deployments but did produce over-
head of∼2%–3%when two ormore VMs resided on the same phys-
ical host.

(RQ-2) Increasing VMmemory allocation did not guarantee ap-
plication performance improvements. Increasing VM memory to
improve performance appears useful only if memory is the appli-
cation’s performance bottleneck. The KVM hypervisor performed
29% slower than Xen when application performance was bound
by disk I/O but slightly faster ∼1% when the application was CPU
bound. KVM resource utilization correlated with Xen but CPU time
was 35% greater when KVM was used to perform the same work.

(RQ-3) Service isolation, the practice of using separate VMs to
host individual application components resulted in performance
overhead up to 2.4%. Though overhead may be small, the hosting
costs for additional VMs should be balanced with the need to
granularly scale application components. Deploying an application
using total service isolation will always result in the highest
possible hosting costs in terms of the # of VMs.

(RQ-4) Resource utilization statistics were helpful for building
performancemodels to predict performance of component deploy-
ments. Using just six resource utilization variables our multiple
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linear regression model accounted for 84% of the variance in
predicting performance of component deployments and accurately
predicted the top performing component deployments.

Providing VM/application level resource load balancing and us-
ing compact application deployments holds promise for improving
application performance while lowering application hosting costs.
To support load balancing and cloud infrastructure management,
performance models should be investigated further as they hold
promise to help guide intelligent application deployment and re-
source management for IaaS clouds.
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