
 1

A Taxonomy of Processes for Component Selection

Wes J. Lloyd, Sudipto Ghosh, James Bieman
Department of Computer Science

Colorado State University
Fort Collins, Colorado 80523

{wlloyd, ghosh, bieman}@cs.colostate.edu

Abstract

Components provide the building blocks for

developing and delivering software systems in less
time and with richer functionality than systems built
using traditional software development practices.
One challenge associated with component-based
software development is the process of selecting the
best component to realize required functionality.
Component selection processes help software
developers evaluate and make component selection
decisions. This paper presents a taxonomy of
existing component selection processes. Our
evaluation of existing component selection processes
finds that the processes are very similar in that they
try to reduce evaluation effort, improve decision-
making and provide order and repeatability to
component selection through similar process
activities. With many processes making similar
contributions analysis suggests the need to focus
future process improvement efforts on component
evaluation. Improving the accuracy and efficiency of
component measurement should help to improve the
effectiveness of component selection beyond the
improvements realized by existing processes.

1. Introduction

Component Based Software Development (CBSD)
involves the use of preexisting software components
to realize the functional requirements of a software
system. By using components, software development
organizations hope to reduce the overall cost of
development and the total development time.
Component based software development processes
typically begin with a requirements phase where
system requirements are identified. Next a search is
conducted to identify potential components available
that meet system requirements. In order to realize
benefits from using CBSD practices, developers need
to rapidly identify potential components, and then
evaluate and select the best component(s) among the
candidates for use in the software system. The

problem of identifying available components and
selecting the most appropriate one is known as the
component selection problem.

The component selection problem involves
selecting the most appropriate component from
available alternatives to implement specific software
requirements. Component selection aims to select the
best component that will help to reduce the cost, and
time-to-market for the software project [17]. Errors
in component selection can reduce the benefits of
using component based software development.

Component selection decisions are often made in
an ad-hoc manner [6,9]. Component selection
processes are proposed to improve upon the
efficiency and effectiveness of ad-hoc methods. We
evaluate several existing component selection
processes that aim to make component selection
decisions repeatable. This paper proceeds to identify
the common steps of component selection processes,
and then defines common attributes that affect
component selection decisions. An evaluation of
component selection processes is presented which
focuses on identifying similarities and differences
among decision-making techniques, methods to
reduce component evaluation efforts, and process
activities. The paper concludes by identifying future
work towards improving component selection by
considering the shortcomings of processes evaluated.

2. Common Steps in Component Selection

Many processes have been presented in software
engineering literature to help with making component
selection decisions [1, 6-19]. Component selection
processes typically define four primary steps as
shown in Figure 1. The first step is to identify the
basic functional requirements of the component. This
step is often accomplished in conjunction with the
requirements analysis of the software system being
built. System requirements are identified and then
grouped with the expectation that a single software
component will provide implementation. For
example a graphical scheduling application identifies

 2

the need to display a calendar with a month-based
view. In addition to simply displaying a month, the
application will require that the user be able to
interact with the month in order to select dates, ranges
of dates, navigate forward, backward, and so on. It is
desirable that a single calendar component be used to
implement all requirements associated with the
display and manipulation of the calendar month.

Figure 1. Generalized Component Selection Process

The second step of the generalized component
selection processes is to search for components that
provide implementation of the functional
requirements identified in step one. This step
represents the first stage of filtering, where some
potential component candidates are eliminated from
consideration. For the graphical scheduling
application the requirement of multiple selection of
dates is defined. Any calendar component that does
not provide this feature is eliminated from
consideration during step two.

The third step in the generalized component
selection process is to perform evaluation and testing
of the component candidates that were identified in
step 2. Various criteria that are considered important
for the component’s use in the software system are
evaluated using software metrics. A score is then
computed based on how well the component
performed through the application of various
measurements. For the graphical scheduling
application one criterion that may be considered for
the selection of a calendar component is the
complexity of the integration of the component. To
predict the effort required for integration the related
attribute of component understandability might be
measured. Whether measures of understandability
accurately describe the complexity of integration is a
research question that is beyond the scope of this
paper.

The fourth step of the generalized component
selection process involves the selection of a
component through the application of a decision
making model. For the graphical scheduling
application example the best component is identified
after applying various tests to component candidates.
The component that performed the best throughout
the evaluation phase is usually selected.

3. Factors affecting Component Selection

Component attributes are the properties of the
component that are considered in making component
selection decisions. Attributes can be divided into two
categories as shown in Table 1: internal attributes,
and external attributes. Internal attributes deal with
aspects of the component’s implementation.
Attributes include the component architecture,
functional, and non-functional requirements. In
general components are architecture specific. For
example they may be built using COM, CORBA, or
Javabeans. Component selection typically restricts
choices to those of the same architectural type.
Functional requirements describe what the component
does. Non-functional requirements describe aspects
of the component’s implementation other than the
mere functions performed [7,9,10]. Non-functional
requirements include complexity, performance,
usability, understandability, reliability,
maintainability, testability, and documentation
quality. Kunda and Brooks refer to non-functional
requirements as product quality factors [9]. Their
case study measures aspects of seven ad-hoc
component selection processes in use at different
organizations. The most common non-functional
requirements identified in the case study included:
interoperability (5 of 7), performance (4 of 7),
reliability (4 of 7), and usability (4 of 7). Kunda and
Brooks refer to external attributes as non-technical
factors [9,10]. Aves and Finkelstein call them vendor
issues [2]. External attributes include properties such
as component cost, business viability of component
vendor, licensing requirements, and quality of
developer support.

Table 1. Component Attributes Affecting Selection

Internal Attributes External Attributes
-Functional Requirements
-Component Architecture
-Complexity
-Performance
-Usability
-Understandability
-Reliability
-Maintainability
-Testability
-Documentation Quality

-Component Price
-Business Viability of
Component Vendor
-Licensing Requirements
-Source Code Availability
-Quality of Technical
Support

Attributes presented in Table 1 are not an

exclusive set of all attributes that could affect
component selection. Many other internal and
external attributes can exist that play a role in
component selection.

Component evaluation should consider both
short-term and long-term factors. Short-term factors
include those that immediately affect the cost of
making a selection decision. Some short-term factors

Identify Requirements
↓

Search for Components
↓

Evaluate Components
↓

Component Selection

 3

include component cost, component functionality,
understandability, and testability. Some questions
that arrive in relation to short term factors affecting
component selection include:

Component Cost
• Is the component’s price competitive?
Component Functionality
• Does the component meet the current set of

functional requirements?
Understandability
• Is the component sufficiently easy to understand

from an integrator’s point of view?
• Does component documentation provide

sufficient information to allow for easy
integration into the system?

• Does the component provide unnecessary
features that complicate the component making it
more difficult to understand from an integrator’s
point of view?

Testability
• How testable is the component?
• Is source code available to enable white-box

testing techniques?
• Is documentation sufficient to enable black-box

and integration testing?

 Long-term factors affecting component selection
are primarily concerned with maintainability. In
making a component selection it is desirable to
predict future maintenance costs. Maintainability
questions to consider regarding long-term factors in
component selection include:

Vendor Viability
• What is the business viability of the component

vendor?
• Will the vendor still exist in a few years to

support the component?
• Are bug fixes available for the component?
• Is source code available for the component?
• In the event of a failure of the component vendor

is there a risk mitigation strategy?
Understandability
• Is the component integration sufficiently easy to

understand from a maintainer’s point of view?
• Does the component have a complex interface

that may complicate future software
maintenance?

• Is the component’s documentation sufficient to
enable system maintainers to understand how the
component is used?

Component Updates
• Does the component provide many unnecessary

features that make the component overly
complex and more difficult to understand from a
maintainer’s point of view?

Extensibility
• Does the component provide support for features

extending beyond the basic functional
requirements that may be of interest in the
future?

Component Cost
• Is there a cost associated with ongoing vendor

support of the component?
• Are updates available free or charge?

4. Component Selection Processes

Most component selection processes usually
include methodologies for component evaluation,
decision-making, and component measurement. This
paper evaluates seven component processes
according to these criteria.

Kunda and Brooks define three types of
component evaluation methods [9,10]. Progressive
Filtering involves iterating through component
evaluation cycles adding more discriminating criteria
for each cycle’s iteration to eliminate less appropriate
candidates. The Keystone selection strategy initially
identifies a key component requirement. During the
component search phase the lack of support of a
keystone characteristic quickly eliminates
components that do not implement the characteristic.
Puzzle Assembly assumes that a valid COTS system
requires fitting the various components of the system
together as pieces of a puzzle.

Decision-making considers how to select the best
component available given the choices. Typically a
form of averaged summation of overall factors
affecting the component selection decision is used.
Two decision-making strategies commonly used are:
Analytic Hierarchy Process (AHP) and the Weighted
Sum Method (WSM) [20,21].

Component evaluation relies on the use of both
qualitative and quantitative measures to assess
component attributes. Qualitative measures are based
on opinions from observations and perceptions about
the function and quality of the component. For
example a developer might rank the usability of a set
of components based on their perceptions of usability
after ad hoc testing. Quantitative measures generate
numeric data based on concrete observations of the
component. For example consider a metric that
measures component interface size. The size of the
component’s application program interface (API) can
be precisely determined by counting the number of
methods, parameters, etc.

4.1. CAP

The COTS Acquisition Process (CAP) assumes a

fixed set of system requirements before searching for
components [15,16]. A 3-step evaluation scheme is

 4

applies component measurements in a cyclic
approach. The first phase uses metrics and
measurements that are the least expensive and time-
consuming to calculate. Some components are
eliminated by the initial phase, but remaining
components are evaluated using more stringent
metrics in each of the two remaining phases. Each
phase applies additional measurement leading to the
elimination of inferior component candidates. This
approach can be considered a progressive filter
evaluation method. During the evaluation phases
CAP uses the Analytic Hierarchy Process to assign
rankings to the candidate components. CAP
identifies (120) software metrics from several sources
including about (60) from the ISO9126 standard on
product quality [4]. Remaining metrics are from
interviews, literature reviews, and applied research
activities. Noted that the ISO9126 metrics predates
the era of component-based development. The
metrics, although applicable to components were not
developed with component assessment in mind.
Before using the ISO9126 metrics to measure
component attributes it may be worthwhile to
consider how applicable they are for making
component measurements. CAP does not consider
the efficiency of the metrics at evaluating component
attributes, although progressive filtering reduces the
number of measurements that need to be made.

4.2. STACE

The Social-Technical Approach to COTS

Evaluation (STACE) employs the keystone
identification strategy with the underlying technology,
the component framework, as the keystone issue
[9,10]. Components that do not operate within a
particular component framework (CORBA, COM,
etc.) are quickly eliminated from consideration. A
variety of evaluation techniques are employed by
STACE. The selection of appropriate techniques is
based on resources and experience available. AHP is
used to consolidate evaluation data in order to
generate the best component selection decisions.
STACE does not specify metrics for the evaluation of
components. Any measurements that are convenient
and easy to use are suggested. Contacting the vendor
for technical support, performance testing,
functionality testing and comparison of costs
associated with different vendors are suggested
activities for acquiring data about components.

4.3. CEP

The Component (Comparative) Evaluation Process

(CEP) first identifies component candidates by only
considering those that provide the minimal required
system functionality [17]. Next minimum thresholds

are applied to filter remaining candidates. This
incremental screening of components allows the
complete evaluation of all components to be avoided.
This application of thresholds for filtering is a form
of progressive filtering. Component measurement
then centers on: functional, architectural,
management, strategic, and performance attribute
measurements. Specific metrics are not mentioned.
CEP suggests several observational techniques to
gather component data including: hands-on
experience, witnessing vendor demonstrations,
observing a user, and reading product documentation.
To compile data, simple weighted averages are used.
For weighting purposes evaluation criteria are divided
into two levels. The first hierarchical level represents
the category of evaluation attribute such as non-
functional requirements or vendor issues. The second
level represents individual attributes within the
category. Examples of non-functional attributes are
usability and maintainability. Both the individual
attributes and the categories are weighted. For each
attribute a global weighted score is then computed by
multiplying the category weight with the attribute
weight. The total global weight is 1.00, or 100% for
all attributes. Weighting an entire category (vendor
issues, functional requirements, etc.) reduces the
granularity possible for individual attributes. It is
highly likely that a non-functional requirement such
as maintainability would play an important role,
whereas another non-functional requirement may be
insignificant. This appears to be a disadvantage with
CEP’s approach to weighting.

4.4. PORE

The Procurement-Oriented Requirements

Engineering process (PORE) is more than just a
component selection process [12,13,14]. It
encompasses other activities of the component-based
software development process including selection of
component vendors, developing contracts with
vendors, and acceptance testing of vendor products.
PORE proposes using models of candidate
components and system requirements for analysis to
enable requirements acquisition and product
selection. PORE uses an iterative process for the
elicitation of component requirements. Through
process iterations of PORE, requirements are elicited,
and candidate components are eliminated from
consideration. This iterative approach is a
progressive filter. When all candidate products meet
customer requirements, PORE states “Requirements
that enable discrimination between the COTS
candidate products must be elicited [13].” Rather
than weighting which component better meets non-
functional requirements such as performance,
understandability, and maintainability, PORE seeks to
elicit additional requirements through process

 5

iteration to eliminate candidate components. PORE
suggests the use of AHP in the event that only a small
number of candidate components exist. PORE
defines (3) template processes for acquiring
component information based on available sources.
PORE templates are defined for evaluating
components using supplier-given information,
supplier-led demonstrations, and customer-led
product evaluation. Component measurement is
conducted by PORE, but specific measurement
techniques are only briefly mentioned. PORE
suggests the use of Kitchenham and Jones’ feature
analysis techniques [5].

4.5. OTSO

The Off-The-Shelf option (OTSO) is a systematic

approach to evaluating component candidates [6,7,8].
OTSO applies an incremental evolutionary definition
of evaluation criteria. OTSO uses a progressive
filtering approach that is limited to three steps in
which stronger requirements are applied to eliminate
candidate components. During the search phase
potential candidates that meet basic criteria are
identified. The screening phase filters the candidates
through the use of stronger thresholds than the search
phase. The evaluation phase evaluates remaining
candidates. The importance of each selection criteria
is considered before conducting measurement [8].
This is a time and cost saving measure similar to that
of the CAP process that is required for component
evaluation to be completed in a reasonable amount of
time. OTSO uses AHP to evaluate results of
component evaluation and make component selection
decisions. OTSO does not state specific techniques
for measurement of component attributes. Ancillary
assessment activities are suggested including:
obtaining the components, installing them, learning
how to use them, and studying their features.

4.6. BAREMO

The Balanced Reuse Model (BAREMO) is not a

selection process that enumerates the typical lifecycle
steps for component selection [11]. Activities such as
component search and requirements identification are
not defined. BAREMO instead presents an
adaptation of the analytic hierarchy process for
decision-making. AHP allows people to gather
knowledge about a particular problem, quantify
subjective information and enable the comparison of
alternatives in relation to established criteria. [11].
BAREMO defines AHP steps specific for component
selection. The BAREMO process defines these steps:
(1) specification of project objectives, (2)
construction of a decision tree, (3) generation of
comparison matrices with criterion from the decision

tree, (4) assessment of characteristics of each
component being evaluated, (4.1) establishment of
scales for ranking criterion, (4.2) evaluation of
criteria using established scales, (5) Calculation of a
final value for each component using weighted
addition scales. BAREMO does not define a
component evaluation mechanism such as other
processes to minimize the number of measurements
for assessing components. In addition specific
metrics and techniques to measure component
attributes are not specified.

4.7. CRE

COTS Based Requirements Engineering (CRE)

uses a progressive filtering of components through a
three-stage process for component evaluation [1,18].
In the first stage core requirements are identified and
candidate components are identified. In the second
stage further component requirements are identified
to refine component requirements. The Non-
Functional Requirements (NFR) Framework is used
to decompose nonfunctional requirements into sub-
requirements that can be more easily evaluated.
Candidate components are eliminated as they fail to
meet the requirements identified in stage two. In the
third stage the remaining components are evaluated.
The COCOTS (COnstructive COTS) cost model is
suggested for cost vs. benefits analysis of candidate
components. Once data is available the weighted
scoring method is suggested for simple decisions, or
for more complex decisions AHP can be used.
Overall CRE is similar to PORE in that both
processes focus on defining additional requirements
to eliminate components from selection. Both models
approach component selection through rejection of
candidates.

5. Discussion

Methods to reduce the component evaluation task
are summarized in table 2. Progressive Filtering was
the most common method for reducing the component
evaluation task. Five of seven processes specified the
use of filtering to reduce the set of candidate
components before proceeding with a full analysis
using all measurements. PORE and CRE both
elicited additional requirements iteratively to
effectively reject candidate components. STACE
identified keystone requirements such as the
component architecture and eliminated candidates
based on non-compliance. BAREMO did not specify
any method to reduce the component evaluation task.
Puzzle Assembly was not used by any of the
component selection processes.

The processes evaluated used two decision-
making methods. Table 3 summarizes the decision-

 6

making methods used by the processes evaluated.
Nearly all processes suggested or formally describe
the use of the Analytic Hierarchy Process (AHP) for
multi-variable decision-making. CEP specified the
use of the weighted sum method and CRE specified
the use of both methods.

Table 2. Component Evaluation Methods

 Progressive
Filtering

Keystone
Selection

Puzzle
Assembly

CAP X*
STACE X
CEP X*
PORE XR
OTSO X*
BAREMO
CRE XR
* - Indicates that filtering has a predefined number of steps

R - Indicates that filtering is accomplished
through addition of requirements

Table 3. Decision Making Method

 WSM AHP
CAP X
STACE X
CEP X
PORE Weak
OTSO X
BAREMO X
CRE X X

Table 4 presents the generalized steps of the seven

component selection processes. Some processes
define many small steps that are not listed in the
table. By comparing steps among the processes
similarities can be seen. CAP, STACE, CEP, OTSO
and CRE each define the process steps of
Requirements identification, Component search,
Component evaluation, and Component selection,
which are identified in the generalized component
selection process shown in section 2. These
processes are fairly similar except for the additional
activities they define.

The component selection processes reviewed, in
general do not elicit specific methods for measuring
component attributes. Most of the processes did
make suggestions on ways to evaluate components
but they did not explicitly define methods for
evaluating each of the attributes identified in section
3. CAP provided the most guidance by identifying
the use of software metrics from the ISO9126
standard. In total CAP identifies 120 metrics for
component evaluation. PORE proposes the use of
Kitchenham and Jones’ feature analysis techniques.
CRE proposes the use of COCOTS to perform a cost
benefits analysis. OTSO suggests qualitative
assessment of components through manual study and

analysis. CEP suggests qualitative measurements
through observations of hands-on use, witnessing
vendor demonstrations, and examining product
documentation. STACE suggests using cost effective
measurements to obtain data, but does not specify
specific measures.

Table 4. Component Selection Process Steps

Component
Selection
Process

Process Activities

CAP* Identify component selection criteria,
Estimate measurement effort, Define
measurement plan, Review plan, Search
for components, Component evaluation,
Component selection, Review selection,
Document evaluation information for
reuse

STACE* Requirements definition, Social-
technical criteria definition, Search for
Components, Evaluate Components,
Component selection

CEP* Estimate measurement effort, Search and
screen candidate components, Identify
component selection criteria, Evaluate
component alternatives, Analyze
evaluation results, Component selection

PORE Requirements definition, Supplier
selection, Component selection, Contract
production, Component acceptance.
Ongoing activity: Manage selection
process to control time/costs

OTSO* Identify component selection criteria,
Search for components, Screen
components, Evaluate components,
Analysis of results, Component selection

BAREMO Specify project objectives, Construct
decision tree, Generate comparison
matrices, Assess component
characteristics, Establish numeric scales
for criteria comparison, Assign values
based on scale, Calculate final values for
components, Component selection

CRE* Identify component selection criteria,
Elicit component requirements, Evaluate
components, Component selection,
Component acceptance

* - Indicates process includes steps of the
generalized component selection process

A key challenge to component selection is how to

acquire the necessary information about candidates in
order to compare them. Test and performance data
could be vendor supplied through the use of formal
specifications [3]. However there is no agreed upon
standard for specifying such information and any
vendor-supplied information that is available through
documentation and product help files is rarely
sufficient in providing enough information to make
selection decisions. Developers often must perform

 7

their own evaluation of component candidates to
acquire information to make selection decisions.
Evaluation techniques suggested by several
component processes evaluated here rely on
qualitative assessment and observation. STACE
suggests to “select appropriate (measurement)
techniques depending on resources and experience”
[9]. Such an approach suggests the use of convenient
measures as opposed to accurate ones.

6. Conclusion and Future Work

In general, the component selection processes
evaluated in this paper identify ways to reduce the
component evaluation effort, improve the analytical
decision making process of component selection, and
organize the component selection process into an
ordered sequence of activities. The processes
evaluated appear very similar. Five of the seven
processes identify the same core process steps. Five
of the seven processes use a form of progressive
filtering to reduce the component evaluation task.
Six of the seven processes use, or suggest the use of
AHP as a decision-making technique. However the
component selection processes evaluated do not
specify explicit methods to measure and compare
components quantitatively. In this regard the
processes are vague about which techniques to use for
component evaluation. In order for component
selection to become a repeatable activity, with
opportunities for reuse and process optimization after
each iteration of the process, more specific methods
for component evaluation should be defined.

Future work on component selection processes
should focus on the identification and development of
accurate and cost effective metrics to quantify
component attributes. The development of a
common suite of metrics is desired. A suite of
metrics could include both qualitative and
quantitative metrics for evaluating component
attributes. Metrics in the suite could be evaluated to
assess their ability to accurately measure specific
component attributes. Given a suite of component
metrics, any component selection process that needs
to measure a particular component attribute could use
metrics from the suite. Existing metrics, such as
those in the ISO9126 standard and others could be
adapted to the task of evaluating components.
Ultimately the development of automated tools for
performing component measurement is desired to
reduce evaluation time and improve accuracy of
measurement. It is generally accepted that manual
evaluation of component attributes is an expensive
and time-consuming endeavor.

By using component selection processes for
component based software development, software
developers hope to realize improvements in

component selection through cost effective
component evaluation and decision-making. Existing
component selection processes define repeatable
processes with optimizations to reduce evaluation
effort and improve decision-making. One of the
largest costs of a component selection process is
component evaluation and measurement.
Improvements and automation of component
measurement is desired to further improve the process
of component selection for component based software
development.

7. References

[1] Alves, C., Castro, J., CRE: A Systematic Method for
COTS Components Selection. XV Brazilian Symposium
on Software Engineering (SBES) Rio de Janeiro, Brazil,
2001.

[2] Aves, C., Finkelstein, A., Challenges in COTS
Decision-Making: A Goal-Driven Requirements
Engineering Perspective, in Proceedings of the 14th
international conference on Software Engineering and
Knowledge Engineering (SEKE) 2002, Ischia, Italy, 2002,
pp. 789-794

[3] Edwards, S., Toward Reflective Metadata Wrappers
for Formally Specified Software Components, In
Proceedings of the Workshop on Specification and
Verification of Component Based Systems held in
conjunction with OOPSLA, October, 2001

[4] ISO/IEC 9126 Standard, Information Technology –
Software Product Evaluation – Quality Characteristics and
Guidelines for their Use, International Organization for
Standardization (ISO), Geneva, 1991.

[5] Kitchenham, B., Jones, L., Evaluating Software
Engineering Methods and Tools: Part 5, The Influence of
Human Factors, Software Engineering Notes, Vol. 22,
No.1, 1997.

[6] Kontio, J. A Case Study in Applying a Systematic
Method of COTS Selection, in Proceedings of the 18th
International Conference on Software Engineering, Berlin,
Germany, 1996.
[7] Kontio, J., Caldiera, G., Basili, V., Defining Factors,
Goals and Criteria for Reusable Component Evaluation, in
Proceedings of the 1996 CASCON Conference, Toronto,
Canada, 1996.

[8] Konito, J., Chen, S., Limperos, K., Tesoriero, R.,
Caldiera, G., Deutsch, M., A COTS Selection Method and
Experiences of Its Use, NASA Software Engineering
Laboratoty, Greenbelt, MD, 1995.

[9] Kunda, D; Brooks, L. Applying Social-Technical
Approach for COTS Selection, Proceedings of 4th UKAIS
Conference, University of York, McGraw Hill, 1999.

[10] Kunda, D., Brooks, L. Identifying and Classifying
Processes (traditional and soft factors) that Support COTS

 8

Component Selection: A Case Study. Proceedings of the
8th European Conference on Information Systems, Vienna,
Austria, 2000

[11] Lozano-Tello, A., Gomez-Perez, A., BAREMO: How
to Choose the Appropriate Software Component Using the
Analytic Hierarchy Process, in Proceedings of the 14th
international conference on Software Engineering and
Knowledge Engineering (SEKE) 2002, Ischia, Italy, 2002,
pp. 781-788.

[12] Maiden, N., Ncube, C., Acquiring COTS Software
Selection Requirements. IEEE Software March/April,
1999, pp. 46-56.

[13] Ncube, C., Maiden, N., Guiding Parallel Requirements
Acquisition and COTS Software Selection, in Proceedings
of the IEEE Symposium on Requirements Engineering.
Limerick, Ireland, 1999, 133-140.

[14] Ncube, C., Maiden, N., PORE: Procurement-Oriented
Requirements Engineering Method for the Component-
Based Systems Engineering Development Paradigm, in
Proceedings of the International Workshop on Component-
Based Software Engineering held in conjunction with
ICSE’99, Los Angeles, CA, May 1999.

[15] Ochs, M.A.; Pfahl, D.; Chrobok-Diening, G. ;
Nothhelfer-Kolb, B. A COTS Acquisition Process:
Definition and Application Experience, in Proceedings of
the 11th ESCOM Conference, Shaker, Maastricht, 2000.
pp. 335-343.

[16] Ochs, M.A.; Pfahl, D.; Chrobok-Diening, G.;
Nothhelfer-Kolb, B. A Method for Efficient Measurement-
based COTS Assessment and Selection – Method
Description and Evaluation Results, in Proceedings of the
7th International Software Metrics Symposium, London,
England, 2001. pp. 285-297..

[17] Phillips, B.C., Polen, S.M. Add Decision Analysis to
Your COTS Selection Process, Crosstalk The Journal of
Defense Software Engineering, April 2002.

[18] Rosa, N., Alves, C., Cunha, P,. Castro, J., Justo, G.
"Using Non-Functional Requirements to Select
Components: A Formal Approach." In Fourth Workshop
Iberoamerican on Software Engineering and Software
Environment (IDEAS'01), San Jose, Costa Rica, April
2001.

[19] Ruhe, G., Intelligent Support for Selection of COTS
Products, in Proceedings of the Net.Object Days 2002,
Erfurt, Springer, 2003, pp. 34-45.

[20] Saaty, T.L., The Analytic Hierarchy Process,
McGraw-Hill, New York, 1990.

[21] Saaty, T.L., Decision Making for Leaders, Lifetime
Learning Publications, Belmont, California, 1982.

