
1

Case Study: An Investigation into Factors
Affecting Component Selection Decisions

In Component Based Software Development

Wes J. Lloyd
Computer Science, Colorado State University

Fort Collins, Colorado, USA 80521
wlloyd@acm.org

Abstract: Component based software development (CBSD) has recently been considered
to be the next major software development paradigm that promises significant software
quality improvements and productivity gains. In CBSD, software developers focus
primarily on the assembly of preexisting software components in order to realize the
required functionality of the system under development. One of many challenges
associated with component-based development is the process of selecting the best
component to realize required functionality. In order to make better component selection
decisions, software engineers could benefit from the application of software engineering
measurements to quantitatively measure and assess which component(s) are best for a
given development scenario. This case study proposes a hypothetical development
scenario and then proceeds to evaluate several components that could be used to meet the
functional requirements. Quantitative measurements of size and performance are used to
assess how well the components perform. How the attributes of complexity,
understandability, and ease of integration can be measured is the topic of this research.
Key Words: CBSD, CBSE, component selection, understandability, component
complexity

1. Introduction

Component based software development (CBSD) has been termed as a new silver bullet for
software engineering. CBSD allows software developers to build software systems by selecting
and integrating pre-existing software components. These software components encapsulate
specific functions through a set of interfaces in a black box like fashion. Available components
for integration can come from a variety of sources, from in-house built component repositories
consisting of domain-specific components, to commercially available components developed by
third party software vendors. By using preexisting software components a large percentage of the
functional requirements for a software system can be implemented more rapidly because the
functionality is already built into the existing components. Component based software
development focuses on the process of assembling together components to implement the
majority of the functional requirements for the system. CBSD promises to deliver higher quality
software systems in less time because a good percentage of the code required to implement the
system’s functionality is assumed to be already complete and tested. In making this promise the
assumption is made that preexisting software components will have already been thoroughly
tested and will be of higher quality than any software that could be built from the ground up for
implementing a systems’ functional requirements.

Initially CBSD seems to be a silver bullet for revolutionizing software development, however
further inspection reveals challenges and complications that increase the costs, but not the

2

benefits of using CBSD techniques. [2] Complications include: components with excessive
defects and low quality, too much overhead and unneeded functions within the component,
inadequate component functionality, unsatisfactory performance, difficulty understanding
component interfaces, integration testing of components, business instability of component
vendors, licensing issues, integration difficulties among components, and maintainability
challenges with component based systems, especially in the case where component source code is
unavailable.

Among the development challenges of CBSD we also have the problem of component selection.
Selecting the proper component to meet functionality requirements is a complex task. First a
component must be validated to see that it meets a minimum set of requirements. Available
component options, found in repositories or from the commercial software marketplace must be
evaluated to see if they meet the minimum set of functional requirements for the project. Once
more than one potential component has been identified the best component should be selected for
use in the software system. There are many factors that can influence the component selection
choice. In many ways component selection is similar to software design decisions. Various
factors can influence the decision and each must be considered and weighed into the ultimate
selection decision.

In this research the topic of component selection is considered. First the common factors that
may effect component selection are discussed. The goal of this research is twofold. This
research seeks to make the component selection process easier by using software measurement
techniques to provide quantitative data for component selection decisions. In addition to making
component selection easier, a second goal is to improve component selection. In the end the
desire is to choose the best components that will integrate well into a software system’s overall
design, and that will have the highest longevity throughout the software’s maintenance life cycle.

This research proposes an example scenario that a software developer may face when making a
component selection decision. Basic software requirements are specified and then a case study
analysis of potential components is conducted. Software metrics are used to measure aspects of
the components. The component data is analyzed in order to understand the importance of
several internal component attributes and possible interesting relationships among them. Finally
from this initial investigation several directions are suggested which may garner further research.

2. Approach

2.1. An Example Scenar io

This research proposes a common development scenario that demonstrates the problem of
component selection. Consider that an application developer is designing the graphical user
interface (GUI) for an application that requires a user to supply a date. The developer wants to
show a monthly calendar from which the user can navigate through months and years until
finding and selecting the desired date.

3

R1: Component must allow for the user to select a date.
R2: Component must display a one-month calendar that can be navigated to show different months and years and used
for date selection.
R3: Component must supply a date back to the application. The specific format of the date data can vary because the
component can use a wrapper to convert the date into the application’s desired data format.
R4: Component must show a preselected date or if no date has been preselected the current date upon initialization.

Table 1- Basic Calendar Component Requirements

In this study we use Java as the language and technology platform for study. Four Java calendar
components were identified that meet the minimum functional requirements as stated in table 1.
The requirements were kept simple for a few reasons. The focus of this investigation was to
evaluate the components themselves, not to certify if they met a complex set of requirements.
Secondly by keeping the requirements loose it was more likely that there would be many readily
available components to consider in the study. Requirements were also kept simple because this
is was an initial exploratory study. This research proceeds to apply measurements to the available
components in order to determine which component may be the best component that should then
be selected for use in the hypothetical software system.

In typical development scenarios such as the example scenario proposed, the software developer
typically will make a decision based on the qualitative evidence about which component seems
best. Knowledge from prior experience, testimonials from other developers, and ad hoc
inspections of the components may be used to help the developer make the final selection
decision.

2.2. Background

Selecting the proper component for a component-based system is a recognized problem in CBSD.
[1] [2] [4] Formal specification can help certify that components meet a given set of
requirements [3], but if there exists more than one viable component that meets minimum
functional requirements, such as in our example scenario, the formal specifications can not be
used to make the component selection decision. Work is needed to help “evaluate the quality of a
component” and “ its complexity” [1]. In many cases quality and complexity may be the leading
factors driving the decision process in component selection. Other factors that could influence
component selection include: speed of the component, size of the component, number of
unwanted features, usability, price, and maintainability. The stability of the component vendor is
another potential influencing factor. [2] If the organization that developed and supports the
software component dissolves, then technical support and bug fixes may not be possible
especially if component source code is not available.

The factors influencing component selection can be grouped into two categories: Internal and
External component attributes. Internal attributes are concerned with the internal structure and
implementation of the component. These attributes include details such as component size,
number of interfaces, complexity of the component, and component performance. External
attributes deal with non-implementation specific component details. Things such as component
cost, business viability of the component vendor, availability of source code, licensing
requirements, and availability and quality of documentation are considered external component
attributes. The external attributes do not deal specifically with the implementation of the

4

component, but they can adversely affect the component selection process. Table 2 presents a
listing of factors affecting the component selection process.

Attributes Affecting Component Selection
Internal Attributes External Attributes

Component Size
Number of Interfaces
Component Complexity
Component Performance
Component Usability
Number of unrequired features
Component Understandability
Ease of Integration

Component Cost
Business Viability of Component Vendor
Licensing Requirements
Documentation Quality
Source Code Availability
Quality of Developer Support

Table 2- Attr ibutes that affect the component selection process

It is difficult to develop analytical methods for the assessment of the external attributes effecting
component selection. These attributes deal with business aspects and the software developers
often evaluate these attributes qualitatively before making a final component selection decision.
However it should be possible to quantitatively assess the internal attributes effecting component
selection. It should be possible to derive at least some measures of internal attributes such as
component complexity, interface size, component size, and performance.

Four common groups of component selection criteria were identified in [7]. They include
functional requirements, quality, business concerns, and relevant software architecture. Of these
criteria, functional requirements, quality characteristics (such as reliability, maintainability,
portability), and software architectural issues (such as operating system constraints and
communication mechanisms between modules) are mostly considered to be internal attributes
relating to the implementation of the component.

General component selection processes are presented in [6] [7] [8] [11] and [9]. Kontio presents
a basic process that begins with a component search based on looking for components meeting
the primary functional requirements. [6] [7] After a search is conducted a screening process is
done to eliminate components that do not meet particular evaluation criteria unique to the needs
of the development project. Once some components have been screened out of the selection
decision the remaining candidates are evaluated based on detailed project specific criteria. The
use of a weighted scoring method is applied to rank the performance of the candidate components
for the final selection decision.

Kunda and Brooks offer a similar component selection processes that involves first defining the
selection criteria, second identifying the possible component candidates, and third making an
evaluation of the candidates for the purpose of selecting the best components. [8] Both Kontio’s
and Kunda’s processes parallel very closely and both suggest the use of the Analytic Hierarchy
Process (AHP) for evaluating component information and data for decision making purposes.
[10]

5

Each of the selection processes identified proposes a lifecycle process for finding, evaluating, and
choosing components, but none is specific about quantitative measurement techniques to measure
the internal aspects of the components. Internal aspects such as ease of integration and the
component’s impact of maintainability on the software system are important criteria that should
be measured and factored into component selection decisions. Case studies presented in [6] [7]
[8] [11] are largely based on hands-on, qualitative evaluations of components. Little quantitative
measurement of the components was conducted in these studies. However Kunda interestingly
points out “ the best way of evaluating COTS products is through experimentation within the
operating environment in which the product will be used” . Such experimentation could include
architectural testing of internal component properties such as performance, and ease of
integration.

2.3. Component Selection Questions

From a study of the component selection problem in component based software development,
several interesting questions arise which merit investigation. Since this is an exploratory study
these ideas are proposed in an informal question form. A formal statement of hypotheses based
around these questions could be the basis of future research that investigates these ideas on a
more formal and grandeur scale.

Q1- Do larger components with more features inherently perform slower than their smaller, more
compact counterparts? (Complexity relation to performance)

Q2- Does component complexity negatively affect the understandability of the component?
(Complexity relation to component understandability)

Q3- Is a component that is hard to understand (has low understandability) require more time and
effort to integrate into the software system being developed? (Complexity relation to ease of
integration)

Q4- Will developers make more errors while integrating hard to understand software components
(components with low understandability) in software systems being developed? (Complexity
relation to quality of integration)

The primary approach of this case study is to investigate the relationships between component
complexity and several of the internal attributes which effect component selection decisions
namely: component performance, component understandability, and ease of integration. This
study aims to explore these questions stated above, to gain insight that can then potentially lead to
future, more formal investigations.

3. Results

In this case study four calendar components were selected for evaluation as potential components
that met the requirements described in the development scenario. Each of the components at the
surface level seemed to meet all of the basic functional requirements.

6

The following assessments and observations were gathered about the components in this study:

- Complexity measurements were made based on size measurements (complexity of
component)

- Integration difficulty was observed by building sample applications to test components.
(ease of integration)

- Time to instantiate calendar objects was recorded in sample applications. (complexity of
component)

3.1. Component Complexity

The complexity of each component was measured by collecting size data using the Understand
for Java measurement tool. This tool required source code in order to make measurements.
Source code was not available for three of the four components in the study. In these cases a Java
decompilation tool, JODE (Java Optimize and Decompilation Environment) was used to generate
source code from the Java byte code. Data for attributes such as: number of Lines of code (LOC),
number of methods, compiled file sizes, source code file sizes, and number of instance variables
was gathered for the components in the study. Size data for the components in the study is seen
in table 3. Table 4 shows the source size of the primary class file for each of the calendar
components. The primary class file is the class file that is invoked in the client code to actually
interact with the component. Each calendar component’s implementation used a varying number
of additional classes that, a client application may or may not have to reference depending on the
operations required in the integration and use of the component. For the sample applications only
the primary classes were referenced.

Component Compiled
(jar) File Size

Lines of
Code

Method
Count

Number of
Instance
Variables

Number of
classes in

Jar file
Component A AWT 167598 bytes 1979 203 109 17
Component B Swing 55160 bytes 1283 132 90 11
Component C Swing 74608 bytes 900 63 27 68
Component D Swing 68310 bytes 131 17 6 19

Table 3 - Size of components

Component Source Code Size

Component A AWT 69086 bytes
Component B Swing 44947 bytes
Component C Swing 22444 bytes
Component D Swing 7301 bytes

Table 4 - Calendar Class Source Sizes

Another measure of complexity in the study was to measure the time required to initialize and
display the component in a simple Java application. It would seem that a simple component
should initialize quickly and be displayed more rapidly than a complex component. For each
sample application the same base framework and layout application was used. The only
differences between each sample application were the lines of code required to integrate the

7

calendar component and display it. The average initialization time for each of the components is
shown in table 5.

Component Average Initialization time (ms)
Component A AWT 945*
Component B Swing 1204*
Component C Swing 485
Component D Swing 1225

*= Component had a drop down display that did not show a month view of the calendar until explicitly requested by user action.

Table 5 - Initialization Time of Components

3.2. Ease of Component Integration

Short sample applications were written to test each component. Each sample application
initialized and displayed the component. The sample application also reported the currently
selected date when the selected date changed. The sample application formally tested the
previously stated component requirements to certify that the component did indeed meet the
minimum set of requirements. Each component was found to meet the minimum stated
requirements with different degrees of style and flair. In general, developing the sample
application was simple and straightforward. The number of lines required to initialize and
configure each calendar component were counted and their totals appear in table 6.

Component Integration Size (LOC)
Component A AWT 5 loc
Component B Swing 3 loc
Component C Swing 3 loc
Component D Swing 4 loc

Table 6 – Integration Code Sizes (Glue Code)

The following are some observational notes from the development of the sample applications to
test each of the components:

- (3) Components were based on the swing class library, where the other component was
based on the AWT class library.

- (2) Components returned the currently selected date as a Java Date object. (1)
Component returned the currently selected date as a Java Calendar object, which then a
method could be used to acquire a Java Date object. Finally another component returned
the currently selected date as a text string.

An easy to integrate component would preferably return data in standardized formats, such as for
a calendar the Java Date object. Requiring the client application to perform trivial manipulations
of returned data increases the amount of integration/glue code that needs to be written.

- All components supported adding a listener to detect when the currently selected date(s)
changed.

- (3) Of (4) components supported multiple selection of dates by default

8

Maintenance activities are likely to require feature enhancements to the overall application. The
best components may be components that have many features that could later be utilized by the
client application as user enhancement requests are addressed.

- (2) Components presented the date selection as a drop down list. When the drop down
was not engaged these components only took up the space of a text field saving valuable
screen real estate. (1) Of the components offered a calendar drop-down style component
within the jar library, and the other component, the smallest component, did not support
this functionality.

Some of the calendar components evaluated were shipped in a library file that included many
additional components and classes. Component D included an entire separate display library,
which was used to give the user interface distinct display characteristics. Many of the additional
classes and components supplied in the libraries were extra and were not necessary even for an
application with advanced calendar display requirements. Although having additional
functionality is useful, in general including these libraries bundled with the calendar components
seemed to add more complexity and make the calendars harder to understand. These components
included larger sets of documentation and in general they seemed more intimating from the
viewpoint of an integrator.

With respect to interface size component A had (203) methods in the primary calendar class file.
Although the design of the component may have included more encapsulation and information
hiding, from an integrators standpoint the larger interface of this component is more intimidating
that component D’s (17) method interface. It is interesting to note that component A actual
initialized in less time than did the simpler component D. Component D was in general a very
small component that largely reused parts of the Java swing library. Each date was displayed as a
separate Jbutton object in component D. This design makes Component D perform significantly
slower than other components even though the overall size of component D is small. This
observation is a reminder that in addition to interface complexity and size, the design and
implementation of internal details of the component can also adversely effect performance.

4. Discussion

The first proposed question asked whether larger, more complex components perform slower than
smaller, simpler counterparts. Although this simple relationship makes sense in reality the factors
affecting performance can vary greatly. While components A and B were the most complex
component in terms of interface size, their overall initialization times were not significantly
different than that for components C and D. However both components A and B only displayed
the calendar as a drop down list. The initialization time measurement did not consider the time
required to pull down the list and display the month view of the calendar. Components C and D
showed a month view of the calendar upon initialization. When components A and B are forced
to show the month view their initialization time increased by 1000-2000 ms. Furthermore the
initialization time of the component also seemed to depend upon specifics of its design and
implementation. For example Component C which is significantly larger than Component D in
LOC, actually performed significantly faster because its design used faster native Java graphics
for drawing the calendar rather than relying on Java’s built-in swing classes for rendering. From
observations in this study the assertion can be made that the larger components did seem to

9

perform slower in this case study, but more factors than just the interface size and component size
were involved.

The second question cannot be answered from the data collected in this study. From the
experience of writing the sample applications, more complex components seemed less intuitive
and more intimidating on the surface, but further empirical investigation is needed to analyze this
relationship.

Answering the third and fourth questions is difficult from the results of this study. The limited set
of requirements for the development scenario in this study resulted in the sample applications
requiring about the same amount of integration (glue code). A more complex study is required to
determine how component complexity impacts time and effort of component integration. The
number of lines of code for integration is relatively the same for each of the calendar components.
In most cases, property configurations were optional, and because our scenario only required
basic operations only a limited amount of “glue” code was required. It was possible to initialize
and display all of the components with very few lines of code. However using a minimal
initialization code resulted in using the default settings for most all of the calendar properties.
With minimal setup component B displayed with very poor colors and had an undesirable
presentation. None of the components seemed inherently more complex to interface with than
others. Of a more significant interest from this study was the ease of writing the sample
applications. In general working with component D seemed very intuitive due its small interface
and limited number of features. On the opposite end of the spectrum was component A. In order
to determine which property reported the currently selected date for component A required
searching through a 161 kbyte html document. A well-designed empirical study with control
variables is desired to further investigate the impact of component understandability on ease of
integration.

Components that offer significantly more capabilities than what is required seem to be harder to
understand and thus seemingly more difficult integrate. Negative consequences of selecting
complex components could include: slower performance, more defects in integration code,
increased difficulty integrating components into applications, and more complex maintenance.
Although smaller components may be desirable because they have less overhead and complex
features, in some cases more integration and source code may be required to integrate these very
simple controls, because they lack rich functionality and actually they may require the client
application to define and implement many methods which a more complex component includes.
Performing integration and configuration tasks on simpler components may require more steps
and lines of source code. Large components may encapsulate operations into many
individualized methods, where smaller components may require many of their properties adjusted
separately to achieve the same configuration or operation.

5. Conclusions

The process of component selection, that is, the process to choose the best software component to
meet a set of requirements for use in a software system being developed, is a problem discussed
repeatedly in component based software engineering literature. [1] [2] [4] Considerable work has
been done in the CBSD community towards formally specifying component requirements so that
components can be identified within a component repository. [3] [4] Several existing component
selection processes exist which describe formal processes to search for, evaluate and choose

10

components. [6] [7] [8] [9] [10] [11] However, these processes tend to focus primarily on the
process of making decisions, and not on actually quantitatively evaluating components.

Complexity of a component can be a large factor in making component selection decisions.
Complexity seems to impact the ease of integration, quality of the integration and maintenance
activities associated with the component because of low understandability. Several factors could
impact understandability including number of methods, number of classes in a library file,
number of parameters required for methods, and interdependence between methods. From this
initial investigation the need to conduct further, more formal investigations is established. Well-
designed empirical studies could be conducted to test the relationships between component
complexity, as measured here, and the ease of component integration. Are larger, complex
components always more difficult to integrate than smaller simpler ones? An empirical study
could investigate the relationship between component complexity and maintenance. Are complex
components better suited for use over the long haul of a software project? Is there a tradeoff
between lower understandability and more difficult integration that is expected with larger
complex components versus the benefits from having a more fully featured component? As
software development moves towards adopting more component based development practices,
future research is desired to better understand the costs and tradeoffs that go into making
component selection decisions. With additional research and quantitative analysis the component
selection process should easily be enhanced beyond the traditional ad hoc selection processes that
are now commonplace in software engineering practice.

6. References

[1] Goulão, M., Abreu, F. B., The Quest for Software Components Quality, in
Proceedings of 2002 Computer Software and Applications Conference, (COMPSAC
’02), pp. 313-318, 2002.

[2] Braun, C., A Lifecycle Process for the Effective Reuse of Commercial Off-the-Shelf

(COTS) Software, in Proceedings of the 1999 ACM symposium on Software
reusability, Los Angeles, CA, pp. 29-36, 1999.

[3] Edwards, S., Toward Reflective Metadata Wrappers for Formally Specified Software

Components, in Proceedings of the Specification and Verification of Component-
Based Systems, OOPSLA Workshop, October 2001.

[4] Ghosh, S., Improving Current Component Development Techniques for Successful

Component-Based Software Development, ICSR7 2002 Workshop on Component-
Based Software Development Processes, Austin, Texas, 2002.

[5] Vickers, A., CBSE: Can we Count the Cost? in Proceedings of the Fifth International

Symposium on Assessment of Software Tools and Technologies, Pittsburg, PA,
USA, pp. 95-97, 1997.

11

[6] Kontio, J., Chen, S., Limperos, K., Tesoriero, R., Caldiera, G., Deutsch, M., A COTS
Selection Method and Experiences of Its Use., presented at the Twentieth Annual
Software Engineering Workshop, Greenbelt, MD, 1995.

[7] Kontio, J., A Case Study in Applying a Systematic Method for COTS Selection, in

proceedings of the 18th International Conference on Software Engineering, Berlin,
Germany, 1996.

[8] Kunda, D., Brooks, L., Applying Social-Technical Approach for COTS Selection, in

proceedings of the 4th UKAIS Conference, University of York, UK, 1999.

[9] Alves, C., Castro, J. CRE: A Systematic Method for COTS Selection, in proceedings
of the 15th annual Brazilian Symposium on Software Engineering, Rio de Janeiro,
Brazil, 2001.

[10] T.L. Satty, Analytic Hierarchy Process, New York: McGraw-Hill, 1990.

[11] Kunda, D., Brooks, L., Case study: Identifying factors that support COTS component

selection, Workshop for Ensuring Successful COTS Development in conjunction
with ICSE ’99, Los Angeles, CA, 1999.

