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Abstract— Serverless computing platforms have emerged 

offering software engineers an option for application hosting 

without the need to configure servers or manage scaling while 

guaranteeing high availability and fault tolerance. In the ideal 

scenario, a developer should be able to create a microservice, 

deploy it to a serverless platform, and never have to manage or 

configure anything; a truly serverless platform. The current 

implementation of serverless computing platforms is known as 

Function-as-a-Service or FaaS. Adoption of FaaS platforms, 

however, requires developers to address a major question- what 

programming language should functions be written in? To 

investigate this question, we implemented identical multi-function 

data processing pipelines in Java, Python, Go, and Node.js. Using 

these pipelines as a case study, we ran experiments tailored to 

investigate FaaS data processing performance. Specifically, we 

investigate data processing performance implications: for data 

payloads of varying size, with cold and warm serverless 

infrastructure, over scaling workloads, and when varying the 

available function memory. We found that Node.js had up to 94% 

slower runtime vs. Java for the same workload. In other scenarios, 

Java had 20% slower runtime than Go resulting from differences 

in how the cloud provider orchestrates infrastructure for each 

language with respect to the serverless freeze/thaw lifecycle. We 

found that no single language provided the best performance for 

every stage of a data processing pipeline and the fastest pipeline 

could be derived by combining a hybrid mix of languages to 

optimize performance.  

Keywords— Serverless Computing, Function-as-a-Service, AWS 

Lambda, FaaS, Programming Languages 

I. INTRODUCTION 

Serverless computing recently has emerged as a compelling 
approach for hosting applications in the cloud [1][2][3]. 
Serverless computing platforms promise autonomous fine-
grained scaling of computational resources, high availability 
(24/7), fault tolerance, and billing only for actual compute time 
while requiring minimal setup and configuration. To realize 
these capabilities, serverless platforms leverage ephemeral 
infrastructure such as MicroVMs or application containers. This 
serverless architectural paradigm shift ultimately promises 
better datacenter utilization as cloud providers can merge user 
workloads at the service-level to increase server utilization and 
save energy. Re-architecting applications for the serverless 
model promises reduced hosting costs as fine-grained resources 
can be provisioned on demand and charges reflect only actual 
compute time.  

Function-as-a-Service (FaaS) platforms leverage temporary 
infrastructure to deploy, host, and scale resources on demand for 

individual functions known as “microservices” [4] [5] [6]. These 
microservices make use of function instances that contain user 
code plus dependent libraries and are created and destroyed on 
demand to offer granular infrastructure for each service [7]. 
Granular code deployments enable cloud providers to minimize 
idle servers better than with VM placements [8] [9].  Users are 
not billed based on the number of function instances, but instead 
on the total number of service invocations, runtime, and memory 
utilization to the nearest tenth of a second. Serverless platforms 
have arisen to support highly scalable, event-driven applications 
comprising of short-running, stateless functions triggered by 
events generated from middleware, sensors, microservices, or 
users [10].  Common use cases include: multimedia processing, 
data processing pipelines, IoT data collection, chatbots, short 
batch jobs/scheduled tasks, REST APIs, mobile backends, and 
continuous integration pipelines [5].  

When developing a serverless application, developers make 
design decisions that directly impact the cost of hosting their 
application in the cloud. FaaS platforms allow functions to be 
developed and deployed in a variety of different programming 
languages and the set of supported languages varies across 
platforms. This paper investigates the implications of 
programming language selection on the overall performance and 
cost of a serverless application.  

Unlike IaaS clouds, where cost accounting is as simple as 
tracking the number of VM instances and their uptime, 
serverless billing models are directly connected to the runtime 
of the application. Application deployments consist of many 
microservices that must be individually tracked [11]. As runtime 
is the primary factor in FaaS billing, it is important to design 
FaaS functions to be as fast as possible. FaaS platforms support 
only a limited number of programming languages, making the 
problem of selecting the best programming language for 
performance critical to minimize both runtime and cost. FaaS 
platforms encourage applications to be decomposed into many 
functions that are hosted and scaled separately with independent 
infrastructure. Decomposition of serverless applications into 
independent microservices allows applications to combine 
functions written in multiple languages. Aggregating functions 
written in different programming languages has the potential to 
offer a unique way to improve the performance of serverless 
applications, and in particular, data processing pipelines. 

To save server capacity, cloud providers deprecate FaaS 
infrastructure after periods of inactivity, causing significant 
initialization latency to produce “cold” service requests [12]. 
Infrastructure recycling on serverless platforms causes a 
freeze/thaw cycle [13][14], that contributes to significant 
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performance variation. As programming languages feature 
different runtime environments on FaaS platforms, choice of  
programming language can substantially impact function 
instance initialization time. Without fully understanding the 
nature of FaaS platforms, developers are left to make ad hoc 
choices for programming language selection to avoid pitfalls 
such as the freeze/thaw lifecycle. These decisions can lead to 
slower applications with significantly higher hosting costs. 

The primary goal of this paper is to investigate performance 
implications of programming language selection on serverless 
FaaS platforms. For serverless applications, the programming 
language that is expected to offer the fastest performance, in 
reality may not. Many factors can obfuscate a language’s 
expected performance.  For example, C# and Java exhibit 
greater cold start latency than interpreted languages such as 
Python resulting from overhead from initializing the Java 
Virtual Machine (JVM) or deploying required libraries (.NET) 
[15]. For short running functions, an interpreted language may 
be faster and cheaper than a compiled one. Conversely, long 
running functions may execute faster in a compiled language. 
Another factor is that across FaaS platforms, some language 
runtimes may have been the target of more optimizations by the 
cloud provider.  Moreover, it cannot be assumed that functions 
in every language effectively scale the same. Many FaaS 
platforms scale the CPU timeshare relative to a function’s 
reserved memory. We cannot assume that function performance 
scales identically for every language, as memory reservations 
are increased or decreased. The amount of memory that offers 
the best price-to-performance ratio for each language may vary.  

To investigate these factors, we implemented an identical 
serverless Transform-Load-Query data processing pipeline in 
Java, Go,  Python, and Node.js. We used static code analysis to 
compare similarity of each language’s specific implementation. 
We then deployed our pipelines on AWS Lambda leveraging the 
simple storage service (S3) for object storage, and Amazon 
Aurora as a serverless relational database. Using this Transform-
Load-Query pipeline as a case study, we investigate the 
implications of programming language selection on overall 
application performance, scalability, freeze/thaw initialization, 
and FaaS memory configuration performance scaling. 

A. Research Questions 

This paper investigates the following research questions: 
RQ-1: (Performance) How does the choice of programming 

language (Java, Go, Python, Node.js) impact the overall 
performance and throughput of a serverless data processing 
pipeline? 

RQ-2: (Scalability) How does the programming language 
choice impact the scalability of a serverless data processing 
pipeline when processing many concurrent data payloads? 

RQ-3: (Infrastructure State) How does the choice of 
programming language impact cold FaaS performance 
compared to warm FaaS performance for a data processing 
pipeline? 

RQ-4: (Memory/Cost) How does performance vary for a 
serverless data processing pipeline across alternate memory 
settings for implementations in different programming 
languages? 

B. Research Contributions 

This paper provides the following research contributions: 

1. We investigate implications of programming language 

selection for serverless FaaS applications using a case 

study consisting of the multifunction Transform-Load-

Query data processing pipeline written in Java, Go, 

Python, and Node.js. Using static code analysis, we 

verify that each language implementation is equivalent. 

2. We profile each pipeline using metrics collected by the 

Serverless Application Analytics Framework (SAAF) 

[16], observing language specific performance, 

scalability performance, cold start latency, and how 

performance scales relative to memory size.  We 

identify that hybrid pipelines that mix functions written 

in different languages can offer performance 

improvements over those in a single language. 

II. BACKGROUND AND RELATED WORK 

The challenge of understanding pricing and performance of 
serverless platforms, including the need to address performance 
variation resulting from cold-start latency was identified in [17].  
The authors identify how pay-as-you-go pricing models, and the 
complexity of serverless application deployments, leads to the 
key pitfall: “Serverless computing can have unpredictable 
costs”.  When deploying serverless applications, developers 
make important choices that potentially impact the overall 
performance and cost of their applications. In contrast to hosting 
applications with VMs, serverless platforms complicate 
budgeting as organizations must understand service demand to 
estimate hosting costs. Features of FaaS platforms, such as the 
freeze/thaw lifecycle have been shown to favor some 
programming languages over others identified in [15]. In this 
section, we review related work on language performance 
comparison, performance evaluation of FaaS platforms, and 
language comparison within serverless applications.  

A. General Programming Language Performance Comparison 

 In [18], L. Prechelt compared seven languages (C, C++, 
Java, Python, Perl, Rexx, TCL) to investigate language runtime, 
variability, and memory performance. Prechelt recruited 
volunteers of different skill levels and diversity to write 
programs in a variety of programming languages. Prechelt then 
obtained the runtime for these programs separated by language 
and group (e.g. C/C++ vs. Java, Java vs. scripting) and made 
comparisons using statistical tests. 

These tests consisted of two stages, an initialization phase 
where files are loaded into memory, and a search phase where 
the file data is processed. For the initialization phase, programs 
in  scripting languages ran at least 3.2x as long as those in Java. 
For the search phase, no significant differences were observed 
among any of the groups, but tests written in scripting languages 
exhibited 2.1x less performance variation than Java. Another 
performance metric compared was memory consumption where 
at least 20 MBs more memory (98 percent) were consumed by 
Java relative to tests written in scripting languages. In summary, 
Prechelt found that programs written in scripting languages ran 
at least 5.7% longer than Java implementations. 

The performance of six different programming languages 
(Python, SML, C++, Java, Perl, C#, C) was compared in [19]. 
For comparison, the authors implemented programs that 
computed large numeric factorials using native language 
datatypes without dynamic memory. Their comparison focused 
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on identifying correctness of the factorial computation 
computing factorials from 1 to 999.  Results show that Python 
was able to compute the longest correct factorial, while Perl was 
second longest. 

However, [19] has several limitations. This paper did not 
compare source code differences using static metrics (e.g. LOC) 
and the authors did not compare runtime.  Additionally, the 
comparison was limited to a mathematical use case.  Their 
comparison did not consider application use cases common to 
serverless computing such as those with data-intensive 
operations and interactions with services.  

B. Performance and Cost Evaluation of Serverless Platforms  

Several efforts have investigated the performance 
implications for hosting scientific computing workflows on 
serverless platforms [20][21][22][23]. Other efforts have 
evaluated FaaS performance for machine learning inferencing 
[24][25], and even neural network training [26].  To support cost 
comparison of serverless computing vs. IaaS cloud, Boza et al. 
developed CloudCal, a tool to estimate hosting costs for service-
oriented workloads on IaaS (reserved), IaaS (On Demand), and 
FaaS platforms [27].  CloudCal determines the minimum 
number of VMs to maintain a specified average request latency 
to compare hosting costs to FaaS deployments. FaaS resources, 
however, were assumed to provide identical performance as 
IaaS VMs when functions were allocated 128 MB RAM.  Wang 
et al. identified AWS Lambda performance at 128 MB as only 
~1/10th of 1-core VM performance in [9] suggesting potential 
inaccuracies with CloudCal. Other efforts have conducted case 
studies to compare costs for hosting specific application 
workloads on IaaS vs. FaaS [14][28], and FaaS vs. PaaS [29].  
We extend previous efforts by characterizing performance 
variation of workloads across FaaS runtime implementations. 

C. Language Comparison Within Serverless Applications 

Jackson and Clynch compared latency of FaaS functions 
across different programming languages on AWS Lambda for 
Node.js, Python, Go, Java, and C#, and or Azure Functions with 
Node.js and C# in [15]. Their comparison, however, was limited 
to measuring latency using empty functions that performed no 
operations to quantify FaaS platform overhead.  

In [30], Shrestha compared the performance of computing 
Fibonacci series as a compute-bound test case. Shrestha 
implemented the same task with all supported languages and 
compared the runtime while also benchmarking cold start 
performance. Node.js, Python, Go, Java, Ruby completed cold 
starts within 800ms, whereas C# was a distinct underdog with 
cold starts spanning between 0.8 and 5 seconds.  Compiled 
languages (e.g. Java, Go, C#) demonstrated slower cold starts 
due to the large number of dependencies compared to interpreted 
languages (e.g. Node.js, Python, Ruby). Shrestha also noted that 
Java packages are large because of the requirements for the Java 
Virtual Machine (JVM), which then increased the overall size of 
the functions. Cold start overhead only impacted the cold start 
initialization, as the performance was excellent after the 
initialization phase. C# exhibited a much longer cold start time, 
which is also mentioned in [15].  This cold start overhead may 
result from the use of the open-source .NET CLR (Common 
Language Runtime) library on AWS Lambda, a Linux-based 
FaaS platform.  Here, AWS Lambda is unable to leverage native 
.NET C# under the Windows operating system.    

Another limitation of [30] is the simple compute-bound test 
case whereas many common applications written for FaaS 
platforms are data intensive. This is one of our motivations for 
choosing a data processing pipeline for our case study.  

III. METHODOLOGY 

In this section, we detail tools and techniques used to 
investigate our research questions (RQ-1, RQ-2, RQ-3, RQ-4).  
Section III.A describes the programming languages we 
investigated, their differences, and why we chose them. Section 
III.B describes the serverless Transform-Load-Query pipeline 
we developed to use as our programming language case study. 
Section III.C provides a discussion on the functional 
equivalence of our data processing pipelines in each language. 
Section III.D details our experimental workloads, and section 
III.E describes the tools and platform used to collect metrics, run 
experiments, and host our data processing pipelines. 

A. Programming Languages: Java, Python, Go, Node.js 

Each FaaS platform offers a different set of programming 
language runtimes that functions can be deployed with. For 
example, AWS Lambda supports functions written in Java, 
Python, Go, Node.js, Ruby, and C# [31]. For this case study, we 
focused on Java 8, Python 3.7, Go 1, and Node.js 12. These four 
languages feature major differences in both language design and 
FaaS platform implementation. Go, Java 8, and Python 3.7 use 
Amazon Linux 1 whereas Node.js uses version 2. 

We focused on Java and Python to compare two 
fundamentally different programming languages. Python is a 
high-level interpreted programming language while Java is 
compiled to platform independent byte code that is run on each 
platform using a custom interpreter known as the Java Virtual 
Machine (JVM) [18]. Being a compiled language, Java offers 
better performance compared to interpreted languages such as 
Python [18]. While Java may be faster, on FaaS platforms the 
JVM has been shown to cause significant cold start latency [15]. 
The two interpreted and compiled language classes also apply to 
Go (compiled) and Node.js (interpreted). The goal for selecting 
these languages is not simply to make a direct performance 
comparison, but to also identify characteristics of use cases (i.e. 
compute-bound, I/O-bound, small vs. large data) where one 
programming language excels above the others. 

B. Transform-Load-Query Pipeline Use Case 

To investigate performance impacts of programming 
language selection, we developed a Transform-Load-Query 
multi-function serverless application in all four languages [32]. 
We built the pipeline to process sample sales data that includes 
information such as product order details, transaction pricing, 
and customer metadata. Each dataset is a CSV file stored in 
Amazon S3 ranging from 100 to 500,000 rows. To process this 
data, the pipeline consists of three microservices: 

1. Transform Function 

The transform function takes a CSV file stored in Amazon 
S3 and applies multiple transformations to the data. This 
function removes duplicate rows, creates additional columns 
containing order processing time, and calculates the gross 
margin of each sales transaction. Once the transformations are 
applied the modified CSV file is saved to Amazon S3. 

 



4 
 

2. Load Function 

The load function pulls the transformed CSV file from S3 
and loads it into an Amazon Aurora serverless MySQL database. 
The function creates SQL insert queries for each row in the CSV 
file.  These queries are executed in batches of 1,000 to improve 
performance by reducing the number of distinct database 
transactions. 

3. Query Function  

The final function queries the newly loaded database by 
performing five separate SQL aggregation queries where results 
are joined with a UNION. This function then saves the results of 

the queries to S3 for future access. After the queries are complete 
a stress test is performed using a “SELECT *” query to retrieve 

every row from the database to measure the data transfer 
throughput (row/sec) between the database and the FaaS 
function. 
 

Fig. 1. Transform-Load-Query Data Processing Pipeline Services and Tools 

C. Static Code Analysis and Function Equivalence 

To ensure function equivalence between the different 
language implementations, we needed to ensure that the services 
for each language were as similar as possible in design and 
structure. To achieve this, we wrote the Java version first and 
used it as the reference implementation to write the Python, Go, 
and Node.js implementations.  

TABLE I.  STATIC CODE ANALYSIS METRICS BY SERVICE AND 

LANGUAGE. INCLUDES NUMBER OF FUNCTIONS, VARIABLES, SOURCE LINES 

OF CODE, LOOPS, AND CLOUD SERVICE USAGE 

Service Lang Funcs Vars SLOC Loops Cloud Service Usage 

S1 Java 3 40 86 2 S3 Get/Put 

S1 Python 3 28 64 3 S3 Get/Put 

S1 Go 3 30 77 1 S3 Get/Put 

S1 Node.js 3 24 96 1 S3 Get/Put 

S2 Java 3 25 77 2 S3 Get, DB Conn x1 

S2 Python 3 21 57 3 S3 Get, DB Conn x1 

S2 Go 3 15 65 1 S3 Get, DB Conn x1 

S2 Node.js 4 18 83 1 S3 Get, DB Conn x1 

S3 Java 4 36 111 7 S3 Put, DB Conn x2 

S3 Python 5 44 96 9 S3 Put, DB Conn x2 

S3 Go 4 34 104 8 S3 Put, DB Conn x2 

S3 Node.js 5 17 74 1 S3 Put, DB Conn x2 

 
The focus was to translate the Java implementation as 

closely as possible into the target language.  We did not employ 
language specific optimizations and retained the same logic 
across all implementations. Due to fundamental language 

differences, such as required use of callback functions and 
frequent asynchronous code, static code analysis metrics for 
Node.js exhibited the largest differences while being 
functionally equivalent. We also minimized the use of 3rd party 
libraries, excluding those required to interact with AWS (e.g. 
boto3), to eliminate as much under-the-hood code as possible. 
Our goal was to replicate the behavior and implementation of 
each language-specific function implementation. This was 
especially challenging with Aurora database interactions. Each 
language has its own MySQL driver and library with different 
features, configurations, and limitations to consider. Table I 
provides static code analysis metrics to compare our pipelines 
implemented in Java, Go, Python, and Node.js. 

D. Experiments 

To investigate the implications of programming language 
choice for our serverless case study, we conducted four 
experiments to evaluate different aspects of the FaaS language 
runtimes. 

1. Overall Performance Comparison 

In this experiment, we executed each pipeline 11 times with 
8 different workload sizes gradually increasing the size of the 
data payload processed by the pipeline. The first run of each 
workload was thrown out to prewarm FaaS infrastructure to 
ensure execution was in the warm state. The number of rows in 
the data payload was gradually increased as follows: 100, 1000, 
5000, 10000, 50000, 100000, 250000, and 500000 rows. The 
goal of this experiment is to measure the overall warm 
performance of each language and measure how performance 
scales as the workload size changes (RQ-1). All runs were 
configured with the maximum memory setting (3008 MBs), and 
executed sequentially to minimize tenancy and resource 
contention between function instances. Alongside observing 
runtime, we also use these runs to profile Linux CPU metrics to 
evaluate function resource utilization using SAAF (described in 
section D) to compare how the processing requirements differ 
for each language.  

2. Scalability Performance Testing 

The goal of this experiment is to measure how the 
performance of each language changes as the number of 
concurrent function invocations increases (RQ-2). All functions 
execute the same 100,000 row workload, and we gradually 
increased the number of concurrent invocations. Starting with 
one function invocation to warm up infrastructure, we increased 
function calls in steps of 5 up to 50 concurrent invocations. We 
performed this experiment with the maximum memory setting 
(3008 MBs) to force the cloud provider to assign our application 
the maximum amount of infrastructure. To eliminate database 
resource contention, each pipeline was allocated a dedicated 
Amazon Aurora serverless database instance. This limited our 
scalability testing as the maximum number of databases 
serverless Aurora supported in one user account was 50. 

3. Cold-Start Performance Testing 

In all previous experiments, function infrastructure was 
prewarmed to profile warm function performance. The goal of 
experiment 3 was to measure cold start performance for each 
language (RQ-3). Similar to experiment 1, each function was 
called sequentially with a fixed memory setting (3008 MBs). To 

Bucket 

S3 

FaaS Runner 

Aurora 

Transform 

Load 

Query 
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minimize network latency, an EC2 instance was used as the 
client to invoke these functions. We created an c5n.large EC2 
instance in the same availability zone and subnet of our 
functions (us-east-1a). We note that our functions were deployed 
using a virtual private cloud (VPC) to fix their placement to the 
us-east-1a availability zone. After each pipeline iteration, the 
client executing the experiment slept for 1 hour to guarantee cold 
infrastructure. All function invocations used the smallest 100 
row workload since the metric this experiment measured was 
cold start latency. Sleeping 60 minutes ensured the FaaS 
platform deprecated FaaS infrastructure between calls returning  
each function to a cold state. A previous study showed that on 
average AWS Lambda required ~45-minutes to deprecate all 
warm FaaS Infrastructure for a given function [14].  We used the 
SAAF framework to identify infrastructure state, and verified 
that indeed all FaaS infrastructure used to execute functions in 
this experiment was cold. 

4. Memory Configuration Comparison 

The fourth experiment focused on identifying performance 
differences for different programming languages with respect to 
a FaaS function’s memory reservation size. For this experiment, 
each function was called sequentially and with a fixed workload. 
After each test, we reduced the memory setting. Starting with 
the 3008 MBs memory setting, we repeated the experiment with 
2560, 2048, 1536, 1024, 768, and 512 MBs memory settings. 
The goal was to measure how performance changes in each 
language as we changed the memory configuration (RQ-4).  

E. Tools and Platforms 

To help identify factors responsible for performance 
variation on FaaS platforms, while quantifying their extent, we 
have developed the Serverless Application Analytics 
Framework [16].  SAAF supports collection of performance, 
resource utilization, and infrastructure metrics for FaaS 
workloads deployed to AWS Lambda written in Java, Go, 
Node.js, and Python. Programmers include the SAAF library 
and a few lines of code to enable SAAF profiling.  SAAF 
collects metrics from the Linux /proc filesystem appending 
them onto the JSON payload returned by the function instance. 
Attributes collected include Linux Time Accounting metrics 
such as CPU idle, user, kernel, and I/O wait time, wall-clock 
runtime, and memory usage. To identify infrastructure state, 
SAAF stamps function instances with a unique ID and the 
existence of a stamp identifies if the environment is new (cold) 
or recycled (warm).  A function instance is stamped by writing 
a UUID file to /tmp. To generate concurrent FaaS workloads, 
retrieve metrics, and aggregate results from SAAF we developed 
FaaS Runner. Implemented in Python, FaaS Runner provides a 
client-side application used in conjunction with SAAF, to 
automate profiling experiments on FaaS platforms. FaaS Runner 
combines performance, resource utilization, and configuration 
metrics from SAAF enabling observations not possible when 
profiling individual FaaS functions calls  

For this FaaS programming language comparison, we 
deployed each of the data processing pipelines to AWS Lambda, 
stored sample datasets in S3, and leveraged the serverless 
Aurora relational database. We focused our study using AWS as 
it is the only platform that presently offers a horizontally 
scalable serverless relational database. Combing AWS Lambda, 
S3, and Aurora allowed our pipeline to be fully serverless. 

IV. EXPERIMENTAL RESULTS 

To investigate our research questions, we deployed each of 
our data processing pipelines to AWS Lambda using the default 
VPC in the Virginia region. We pinned all Lambda functions to 
execute within the same availability zone (us-east-1a) to 
minimize network latency and increase the likelihood that 
experiments ran under identical conditions. 

A. FaaS Language Performance Comparison 

In the vast majority of the trials, Java had the lowest runtime. 
The only exception is where Go outperformed Java with the 
250,000-row workload. On average across all workloads, Go 
took 13.1% longer compared to Java, Python took 45.9%, 
and Node.js took 64.6%. Processing large datasets exacerbated 
the difference between Java and Node.js performance. Node.js 
required 94.8% more runtime to process the 500,000 row dataset 
than Java. Our results show that language choice of a serverless 
function can have a significant impact on the overall runtime and 
price of a serverless application. Figure 2 shows the average 
runtime of each function and workloads. 

Fig. 2. Function Runtime with workload sizes of 100, 10000, 100000, and 
500000. Some workloads are excluded for simplicity. Hybrid pipeline consists 

of the Go Translate/Query and Java Load functions. 

For comparison purposes for a serverless application, it is 
useful to extrapolate the cost to run each pipeline 1,000,000 
times. For the worst-case scenario to process the 500,000-row 
dataset the price for 1,000,000 pipeline invocations would be on 
average $2,549, $2,982, $3,922, and $4,967 for Java, Go, 
Python, and Node.js respectively. By implementing a data 
processing pipeline in Node.js instead of Java, a serverless 
application may cost ~95% more for 1,000,000 pipeline 
invocations. This price comparison shows how FaaS runtime 
directly determines the cost of a serverless application. 

Across our four single language pipelines, the Load phase 
was by far the slowest. This phase took on average 69%, 60%, 
56%, and 59% of the entire pipeline’s runtime in Go, Java, 
Python, and Node.js respectively. An interesting observation is 
that no single language was consistently the fastest across all 
functions. On average, Go delivered the fastest runtime for the 
Transform function, Java for the Load function, and Go for the 
Query function. Go’s long runtime of the Load function causes 
it to have a longer overall runtime than Java: 14010ms vs.  
12927ms respectively.  

From our available implementations, the fastest pipeline 
would be to use Go for the Transform and Query functions, and 
Java for the Load function. This demonstrates a potential benefit 
for building decoupled multi-function pipelines on serverless 
platforms. The freedom of being able to mix multiple languages 
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and tools allows developers to create optimal hybrid pipelines. 
Compared to our single language pipelines, our Go/Java/Go 
hybrid pipeline processed the 500,000 row dataset 37%, 17%, 
81%, and 129% faster than the Go, Java, Python, and Node.js 
pipelines respectively. 

Using SAAF, we are able to profile Linux CPU Time 
Accounting metrics for our functions. This provided insight into 
what functions are doing while running. We can observe how 
much time is spent executing user code, idling, waiting for 
network I/O, or executing privileged kernel code in the 
operating system.  Figure 3 shows the profile of each function at 
3008 MBs running the 500,000-row workload. This graph 
depicts differences in resource utilization for each language’s 
function implementations. 

 

 

Fig. 3. Linux CPU Time Accounting profile for each function in the pipeline 

at 3008 MBs with 500,000 row workload. 

Across all implementations, Node.js required more kernel 
time than other languages. For the first function (Transform), 
Python and Java had similar resource utilization, while Go 
required less CPU User and Idle time. Node.js required a 
significant amount of Kernel time, consisting of 37% of the total 
runtime.  For function 2 (Load), all functions exhibited a 
significant amount of CPU Idle time of ~70-100 seconds. Go, 
Python and Node.js required a similar amount of CPU User time 
while Java used about half. Like function 1, Node.js required 
much more Kernel time than the others and exhibited more soft 
interrupt request time potentially as a result of function 
callbacks. This function is more network bound due to loading 
data into the database so it was expected that the vast majority 
of the time the CPU would be idle. For function 3 (Query), Go, 
Java, and Node.js performed similarly, while Python required 
significantly more user and idle time to execute the same task as 
the other two languages. Beyond basic runtime, analyzing Linux 
CPU Time Accounting metrics affords a deeper understanding 
of what the aspects of a workload some languages excel at vs. 
others. For example, our Python MySQL driver loaded data very 
quickly (INSERT), similar to the other two languages, while 

query performance (SELECT), presumably for data retrieval, was 

significantly slower. 

B. FaaS Platform Scalability Comparison 

One of the most important features of a FaaS platform is how 
quickly they respond to demand and scale up the amount of 
infrastructure allocated to an application. Once many function 
instances are deployed, performance can be impacted by multi-
tenancy and resource contention. In this test, we gradually 
increased the number of concurrent function invocations to 
monitor if there was any change in performance as the number 
of concurrent requests increased.  Each pipeline was provided 

an independent AWS Aurora Serverless (MySQL) relational 
database instance. 

Figure 4 shows the average runtime of the pipelines as the 
number of parallel requests in the trial were scaled up. The 
Python, Java, and Go pipelines show minor linear increases in 
runtime as the number of concurrent invocations increase. 
Conversely, between 20 and 35 concurrent invocations of 
Node.js, there was a large ~5000ms increase in total pipeline 
runtime. At 50 concurrent invocations, there was 8%, 9%, 
19%, and 35% increase in runtime for Python, Java, Go and 
Node.js respectively compared to 1-20 invocations.  

 

Fig. 4. Overall Pipeline Runtime vs Concurrency.  

C. Runtime Cold-Start Performance 

FaaS platforms dynamically scale the amount of 
infrastructure used to host function instances. Given that 
allocation of function instances is not instantaneous, initial 
function invocations exhibit “cold-start” latency. 

In experiment 3, we invoked our pipelines twice to observe 
both cold and warm latency and then waited one hour to allow 
AWS Lambda to deprecate FaaS Infrastructure. We calculated 
latency by first recording the client’s time immediately before a 
function invocation, and after receiving the response; also 
known as the round-trip time. We then subtracted the runtime 
reported by SAAF from the round-trip time giving us the overall 
latency caused by networking and infrastructure provisioning. 

TABLE II.  FUNCTION COLD AND WARM-START LATENCY BY SERVICE,  
COLD VS WARM DELTA, AND FUNCTION PACKAGE SIZE. ALL FUNCTIONS RAN 

USING THE DEFAULT VPC IN THE US-EAST-1A AVAILABILITY ZONE 

Lang Cold (ms) 
(Service T, L, Q) 

Warm (ms) 
(Service T, L, Q) 

Delta (ms) 
(Service T, L, Q) 

Package Size 
(Service T, L, Q) 

Go 871, 886, 886 402, 402, 406 469, 484, 436 15, 15, 7.8 MBs  

Java 988, 1119, 1139 401, 395, 398 587, 724, 741 6.3, 8.7, 8.7 MBs 

Python 962, 1034, 1033 408, 406, 410 554, 628, 622 6, 173, 174 KBs  

Node.js 889, 1140, 1076 390, 389, 388 499, 751, 688 704, 705, 707 KB 
 

     Table II shows how the cold start latency, and overall cold vs 
warm speedup varies between each language. On average, cold 
invocations had latency of 867, 1082, 1010, and 1035 
milliseconds for Go, Java, Python, and Node.js respectively with 
an overall Coefficient of Variation (CV) of 10.8%. Once 
functions were warmed, each language had nearly identical 
latency averaging 404, 398, 408, 389 milliseconds for Go, Java, 
Python, and Node.js with a CV of just 1.9%. The difference in 
latency between cold start and warm functions averaged 463, 
684, 602, 645 milliseconds for Go, Java, Python, and Node.js 
respectively. 

Our results provide two interesting observations. On 
average, Java had the most cold-start overhead; this was 
expected. Alongside that, Node.js and Python were only 39ms 
and 82ms better than Java. We assumed that these interpreted 
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languages would be much better than Java. It should be noted 
that cold-start overhead is higher when functions are deploying 
using a VPC. Another observation is that package size does not 
appear to impact cold-start overhead across the languages. The 
Python Transform function, with its tiny 6 KB package, still had 
more cold start latency than Go’s 14.9 MB package. When 
comparing package sizes for the same language, the smaller 6.4 
MB package for Java Transform did result in less cold start 
latency versus the 8.7 MB packages for the Load and Query 
functions (587ms with 6.3 MB package and ~730ms with 8.7 
MB package).  

Cold start latency is one of the greatest examples of FaaS 
language bias that a developer making a serverless application 
cannot do anything about. Languages may offer better 
performance on some FaaS platforms vs. others as a result of 
each platform’s specific language runtime implementation. For 
example, by developing an application in Java rather than Go on 
AWS Lambda, an application will always have more cold start 
latency (here ~221ms) because of how Lambda initializes 
function instances. For frequently invoked long running 
applications this runtime may be insignificant, but for every 
function in an application it compounds the latency. Choosing 
Java, Python, or Node.js instead of Go resulted in an average 
of 20.2% more cold latency.  

D. Memory Configuration Performance Scaling 

We profiled the resource utilization for each function using 
Linux Time Accounting metrics [33] to determine how much 
time each function spent executing user code, idling, waiting for 
network I/O, or executing code in the operating system’s kernel. 
AWS Lambda throttles performances of functions with lower 
reserved memory not by reducing clock speed, but by adjusting 
the CPU time share to effectively increase CPU idle time when 
a function is running. Figure 5a depicts how as the memory 
setting increases or decreases, the CPU user time remains fairly 
constant. Conversely, Figure 5b shows that when the memory 
setting is decreased, the CPU idle time increases. 

 

Fig. 5. (a) Left CPU User Time (b) Right CPU Idle Time 

Altering the CPU time share has a massive impact on 
performance. Ideally, function performance on AWS Lambda 
should scale linearly with the memory setting. If a function 
invocation has double the memory as another, the runtime 
should be twice as fast. Perfect scaling of the CPU time share 
would produce perfectly balanced billing. Regardless of the 
memory setting, functions would always have the same cost, 
with the only difference being that with higher memory settings 
the same work is performed much faster. In this perfect scenario, 
the highest memory setting would always be the best choice. 
With our case study, this is not the case for multiple reasons. 

Figure 6 shows how performance of each pipeline scales 
based upon the memory setting. In this graph, pipeline runtime 
is normalized to a percentage of each memory setting’s runtime 
compared to the maximum memory setting.  This allows us to 
compare differences between how performance of each 
language scales relative to the memory setting. With perfect 
scaling, 3008MBs would be 100%, 1536MBs would be 50%, 
768MBs would be 25% and so on. 

For our pipelines, we did not see significant performance 
improvements above 1536 MBs. In some trials, higher memory 
settings produced worse performance than lower memory 
settings. For example, the Go pipeline took on average 1895ms 
with 2560 MBs of RAM while it took 1992ms with 3008 MBs. 
The primary reason we did not see performance improvements 
after 1536 MBs was because our functions are all single 
threaded. Above 1536MB, functions gain access to a second 
CPU core on AWS Lambda which our functions do not utilize. 
This provides an example of how FaaS platforms obscure 
pricing. Without testing, a developer may assume that 3008 MBs 
would always be the fastest memory setting when they actually 
get nearly equivalent performance to 1536 MBs while then 
paying double.  

 

Fig. 6. Relative Performance Decrease of Low Memory Settings 

With low memory settings, we did not observe perfect 
scaling as memory size was decreased. Going from 1024 MBs 
to 512 MBs relative function speed dropped from 69%→35% 
(x0.51), 82%→44% (x0.54), 74%→42% (x0.57), and 
76%→44% (x0.58) for Go, Java, Python, and Node.js 
respectively. At 1024 MBs and below, Go consistently saw 
lower scaled performance compared to the other three languages 
with memory settings lower than 1536 MBs. For 1,000,000 
invocations, choosing the 3008 MB setting instead of 1536 
MB would result in paying $310, $220, $374, and $581 more 
for Go, Java, Python, and Node.js respectively. This equates 
to paying up to 95% more for a mere 4.8% performance 
improvement. 

V. CONCLUSIONS 

In this paper, we developed a multi-function Transform-
Load-Query data processing pipeline in Java, Python, Go, and 
Node.js. Using these pipelines, we investigated the overall 
performance variation, cold start latency, scalability, and 
implications of memory size. We investigated how 
programming language selection impacts the efficiency of 
serverless data processing pipelines with a series of experiments.  

Our research findings include: RQ-1: Executing each 
pipeline with varying workload sizes showed which language 
was able to run each function of the pipeline the fastest. Go had 
the lowest runtime for the Transform and Query functions, while 
Java performed the Load function the fastest. Due to poor Load 
function performance in Go, Java achieved the best performance 
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on average for the entire pipeline. For these workloads, choosing 
Node.js instead of Java resulted in 94% higher costs. We also 
identified the potential for performance improvements by 
building hybrid pipelines that combine functions written in 
multiple languages. The fastest configuration was a pipeline 
using Go for Translate/Query functions, and Java for the Load 
function. Our hybrid pipeline provided performance 
improvements ranging from 17% to 129% compared to single 
language pipelines. RQ-2: Running up to 50 concurrent 
instances of our data processing pipeline introduced minor linear 
increases in runtime for Python, Java, and Go (8%-19% increase 
in runtime). Node.js was affected much more negatively (35% 
runtime increase). RQ-3: Our cold state latency testing for each 
language agreed with previous research in [15] where Java had 
the highest cold start latency, while Go was found to outperform 
every other language. Reducing package size reduced cold 
latency when comparing functions in the same language, but not 
when comparing functions from different languages (e.g. 
Python and Go). Due to cold start latency, using Java, Python, 
or Node.js to process small datasets was 20% more expensive 
than Go. RQ-4: Performance scaled approximately linearly for 
memory sizes up to 1536MBs for each language. For memory 
settings higher than 1536MBs, there was no major performance 
improvement, but significant increases in hosting costs (95% 
cost increase for 4.8% performance improvement). Notably, 
runtime of our Go pipeline was impacted more at memory 
settings below 1024 MBs, resulting in lower relative 
performance compared to the other languages.  

This paper provides a comparison of a multi-language 
serverless data processing pipeline that developers can refer to 
when considering serverless designs. Overall, there is likely no 
definite best language for all serverless applications. Ultimately 
developers should consider resource requirements, and profile 
performance to optimize their designs before deployment on 
serverless platforms to mitigate any potential pitfalls. 
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