
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Implications of Programming Language Selection for

Serverless Data Processing Pipelines

Robert Cordingly, Hanfei Yu, Varik Hoang, David Perez, David Foster, Zohreh Sadeghi, Rashad Hatchett, Wes J. Lloyd

School of Engineering and Technology

University of Washington

Tacoma WA USA

rcording, hanfeiyu, varikmp, daperez, davidf94, zsadeghi, rhatch26, wlloyd@uw.edu

Abstract— Serverless computing platforms have emerged

offering software engineers an option for application hosting

without the need to configure servers or manage scaling while

guaranteeing high availability and fault tolerance. In the ideal

scenario, a developer should be able to create a microservice,

deploy it to a serverless platform, and never have to manage or

configure anything; a truly serverless platform. The current

implementation of serverless computing platforms is known as

Function-as-a-Service or FaaS. Adoption of FaaS platforms,

however, requires developers to address a major question- what

programming language should functions be written in? To

investigate this question, we implemented identical multi-function

data processing pipelines in Java, Python, Go, and Node.js. Using

these pipelines as a case study, we ran experiments tailored to

investigate FaaS data processing performance. Specifically, we

investigate data processing performance implications: for data

payloads of varying size, with cold and warm serverless

infrastructure, over scaling workloads, and when varying the

available function memory. We found that Node.js had up to 94%

slower runtime vs. Java for the same workload. In other scenarios,

Java had 20% slower runtime than Go resulting from differences

in how the cloud provider orchestrates infrastructure for each

language with respect to the serverless freeze/thaw lifecycle. We

found that no single language provided the best performance for

every stage of a data processing pipeline and the fastest pipeline

could be derived by combining a hybrid mix of languages to

optimize performance.

Keywords— Serverless Computing, Function-as-a-Service, AWS

Lambda, FaaS, Programming Languages

I. INTRODUCTION

Serverless computing recently has emerged as a compelling
approach for hosting applications in the cloud [1][2][3].
Serverless computing platforms promise autonomous fine-
grained scaling of computational resources, high availability
(24/7), fault tolerance, and billing only for actual compute time
while requiring minimal setup and configuration. To realize
these capabilities, serverless platforms leverage ephemeral
infrastructure such as MicroVMs or application containers. This
serverless architectural paradigm shift ultimately promises
better datacenter utilization as cloud providers can merge user
workloads at the service-level to increase server utilization and
save energy. Re-architecting applications for the serverless
model promises reduced hosting costs as fine-grained resources
can be provisioned on demand and charges reflect only actual
compute time.

Function-as-a-Service (FaaS) platforms leverage temporary
infrastructure to deploy, host, and scale resources on demand for

individual functions known as “microservices” [4] [5] [6]. These
microservices make use of function instances that contain user
code plus dependent libraries and are created and destroyed on
demand to offer granular infrastructure for each service [7].
Granular code deployments enable cloud providers to minimize
idle servers better than with VM placements [8] [9]. Users are
not billed based on the number of function instances, but instead
on the total number of service invocations, runtime, and memory
utilization to the nearest tenth of a second. Serverless platforms
have arisen to support highly scalable, event-driven applications
comprising of short-running, stateless functions triggered by
events generated from middleware, sensors, microservices, or
users [10]. Common use cases include: multimedia processing,
data processing pipelines, IoT data collection, chatbots, short
batch jobs/scheduled tasks, REST APIs, mobile backends, and
continuous integration pipelines [5].

When developing a serverless application, developers make
design decisions that directly impact the cost of hosting their
application in the cloud. FaaS platforms allow functions to be
developed and deployed in a variety of different programming
languages and the set of supported languages varies across
platforms. This paper investigates the implications of
programming language selection on the overall performance and
cost of a serverless application.

Unlike IaaS clouds, where cost accounting is as simple as
tracking the number of VM instances and their uptime,
serverless billing models are directly connected to the runtime
of the application. Application deployments consist of many
microservices that must be individually tracked [11]. As runtime
is the primary factor in FaaS billing, it is important to design
FaaS functions to be as fast as possible. FaaS platforms support
only a limited number of programming languages, making the
problem of selecting the best programming language for
performance critical to minimize both runtime and cost. FaaS
platforms encourage applications to be decomposed into many
functions that are hosted and scaled separately with independent
infrastructure. Decomposition of serverless applications into
independent microservices allows applications to combine
functions written in multiple languages. Aggregating functions
written in different programming languages has the potential to
offer a unique way to improve the performance of serverless
applications, and in particular, data processing pipelines.

To save server capacity, cloud providers deprecate FaaS
infrastructure after periods of inactivity, causing significant
initialization latency to produce “cold” service requests [12].
Infrastructure recycling on serverless platforms causes a
freeze/thaw cycle [13][14], that contributes to significant

mailto:rcording@uw.edu

2

performance variation. As programming languages feature
different runtime environments on FaaS platforms, choice of
programming language can substantially impact function
instance initialization time. Without fully understanding the
nature of FaaS platforms, developers are left to make ad hoc
choices for programming language selection to avoid pitfalls
such as the freeze/thaw lifecycle. These decisions can lead to
slower applications with significantly higher hosting costs.

The primary goal of this paper is to investigate performance
implications of programming language selection on serverless
FaaS platforms. For serverless applications, the programming
language that is expected to offer the fastest performance, in
reality may not. Many factors can obfuscate a language’s
expected performance. For example, C# and Java exhibit
greater cold start latency than interpreted languages such as
Python resulting from overhead from initializing the Java
Virtual Machine (JVM) or deploying required libraries (.NET)
[15]. For short running functions, an interpreted language may
be faster and cheaper than a compiled one. Conversely, long
running functions may execute faster in a compiled language.
Another factor is that across FaaS platforms, some language
runtimes may have been the target of more optimizations by the
cloud provider. Moreover, it cannot be assumed that functions
in every language effectively scale the same. Many FaaS
platforms scale the CPU timeshare relative to a function’s
reserved memory. We cannot assume that function performance
scales identically for every language, as memory reservations
are increased or decreased. The amount of memory that offers
the best price-to-performance ratio for each language may vary.

To investigate these factors, we implemented an identical
serverless Transform-Load-Query data processing pipeline in
Java, Go, Python, and Node.js. We used static code analysis to
compare similarity of each language’s specific implementation.
We then deployed our pipelines on AWS Lambda leveraging the
simple storage service (S3) for object storage, and Amazon
Aurora as a serverless relational database. Using this Transform-
Load-Query pipeline as a case study, we investigate the
implications of programming language selection on overall
application performance, scalability, freeze/thaw initialization,
and FaaS memory configuration performance scaling.

A. Research Questions

This paper investigates the following research questions:
RQ-1: (Performance) How does the choice of programming

language (Java, Go, Python, Node.js) impact the overall
performance and throughput of a serverless data processing
pipeline?

RQ-2: (Scalability) How does the programming language
choice impact the scalability of a serverless data processing
pipeline when processing many concurrent data payloads?

RQ-3: (Infrastructure State) How does the choice of
programming language impact cold FaaS performance
compared to warm FaaS performance for a data processing
pipeline?

RQ-4: (Memory/Cost) How does performance vary for a
serverless data processing pipeline across alternate memory
settings for implementations in different programming
languages?

B. Research Contributions

This paper provides the following research contributions:

1. We investigate implications of programming language

selection for serverless FaaS applications using a case

study consisting of the multifunction Transform-Load-

Query data processing pipeline written in Java, Go,

Python, and Node.js. Using static code analysis, we

verify that each language implementation is equivalent.

2. We profile each pipeline using metrics collected by the

Serverless Application Analytics Framework (SAAF)

[16], observing language specific performance,

scalability performance, cold start latency, and how

performance scales relative to memory size. We

identify that hybrid pipelines that mix functions written

in different languages can offer performance

improvements over those in a single language.

II. BACKGROUND AND RELATED WORK

The challenge of understanding pricing and performance of
serverless platforms, including the need to address performance
variation resulting from cold-start latency was identified in [17].
The authors identify how pay-as-you-go pricing models, and the
complexity of serverless application deployments, leads to the
key pitfall: “Serverless computing can have unpredictable
costs”. When deploying serverless applications, developers
make important choices that potentially impact the overall
performance and cost of their applications. In contrast to hosting
applications with VMs, serverless platforms complicate
budgeting as organizations must understand service demand to
estimate hosting costs. Features of FaaS platforms, such as the
freeze/thaw lifecycle have been shown to favor some
programming languages over others identified in [15]. In this
section, we review related work on language performance
comparison, performance evaluation of FaaS platforms, and
language comparison within serverless applications.

A. General Programming Language Performance Comparison

 In [18], L. Prechelt compared seven languages (C, C++,
Java, Python, Perl, Rexx, TCL) to investigate language runtime,
variability, and memory performance. Prechelt recruited
volunteers of different skill levels and diversity to write
programs in a variety of programming languages. Prechelt then
obtained the runtime for these programs separated by language
and group (e.g. C/C++ vs. Java, Java vs. scripting) and made
comparisons using statistical tests.

These tests consisted of two stages, an initialization phase
where files are loaded into memory, and a search phase where
the file data is processed. For the initialization phase, programs
in scripting languages ran at least 3.2x as long as those in Java.
For the search phase, no significant differences were observed
among any of the groups, but tests written in scripting languages
exhibited 2.1x less performance variation than Java. Another
performance metric compared was memory consumption where
at least 20 MBs more memory (98 percent) were consumed by
Java relative to tests written in scripting languages. In summary,
Prechelt found that programs written in scripting languages ran
at least 5.7% longer than Java implementations.

The performance of six different programming languages
(Python, SML, C++, Java, Perl, C#, C) was compared in [19].
For comparison, the authors implemented programs that
computed large numeric factorials using native language
datatypes without dynamic memory. Their comparison focused

3

on identifying correctness of the factorial computation
computing factorials from 1 to 999. Results show that Python
was able to compute the longest correct factorial, while Perl was
second longest.

However, [19] has several limitations. This paper did not
compare source code differences using static metrics (e.g. LOC)
and the authors did not compare runtime. Additionally, the
comparison was limited to a mathematical use case. Their
comparison did not consider application use cases common to
serverless computing such as those with data-intensive
operations and interactions with services.

B. Performance and Cost Evaluation of Serverless Platforms

Several efforts have investigated the performance
implications for hosting scientific computing workflows on
serverless platforms [20][21][22][23]. Other efforts have
evaluated FaaS performance for machine learning inferencing
[24][25], and even neural network training [26]. To support cost
comparison of serverless computing vs. IaaS cloud, Boza et al.
developed CloudCal, a tool to estimate hosting costs for service-
oriented workloads on IaaS (reserved), IaaS (On Demand), and
FaaS platforms [27]. CloudCal determines the minimum
number of VMs to maintain a specified average request latency
to compare hosting costs to FaaS deployments. FaaS resources,
however, were assumed to provide identical performance as
IaaS VMs when functions were allocated 128 MB RAM. Wang
et al. identified AWS Lambda performance at 128 MB as only
~1/10th of 1-core VM performance in [9] suggesting potential
inaccuracies with CloudCal. Other efforts have conducted case
studies to compare costs for hosting specific application
workloads on IaaS vs. FaaS [14][28], and FaaS vs. PaaS [29].
We extend previous efforts by characterizing performance
variation of workloads across FaaS runtime implementations.

C. Language Comparison Within Serverless Applications

Jackson and Clynch compared latency of FaaS functions
across different programming languages on AWS Lambda for
Node.js, Python, Go, Java, and C#, and or Azure Functions with
Node.js and C# in [15]. Their comparison, however, was limited
to measuring latency using empty functions that performed no
operations to quantify FaaS platform overhead.

In [30], Shrestha compared the performance of computing
Fibonacci series as a compute-bound test case. Shrestha
implemented the same task with all supported languages and
compared the runtime while also benchmarking cold start
performance. Node.js, Python, Go, Java, Ruby completed cold
starts within 800ms, whereas C# was a distinct underdog with
cold starts spanning between 0.8 and 5 seconds. Compiled
languages (e.g. Java, Go, C#) demonstrated slower cold starts
due to the large number of dependencies compared to interpreted
languages (e.g. Node.js, Python, Ruby). Shrestha also noted that
Java packages are large because of the requirements for the Java
Virtual Machine (JVM), which then increased the overall size of
the functions. Cold start overhead only impacted the cold start
initialization, as the performance was excellent after the
initialization phase. C# exhibited a much longer cold start time,
which is also mentioned in [15]. This cold start overhead may
result from the use of the open-source .NET CLR (Common
Language Runtime) library on AWS Lambda, a Linux-based
FaaS platform. Here, AWS Lambda is unable to leverage native
.NET C# under the Windows operating system.

Another limitation of [30] is the simple compute-bound test
case whereas many common applications written for FaaS
platforms are data intensive. This is one of our motivations for
choosing a data processing pipeline for our case study.

III. METHODOLOGY

In this section, we detail tools and techniques used to
investigate our research questions (RQ-1, RQ-2, RQ-3, RQ-4).
Section III.A describes the programming languages we
investigated, their differences, and why we chose them. Section
III.B describes the serverless Transform-Load-Query pipeline
we developed to use as our programming language case study.
Section III.C provides a discussion on the functional
equivalence of our data processing pipelines in each language.
Section III.D details our experimental workloads, and section
III.E describes the tools and platform used to collect metrics, run
experiments, and host our data processing pipelines.

A. Programming Languages: Java, Python, Go, Node.js

Each FaaS platform offers a different set of programming
language runtimes that functions can be deployed with. For
example, AWS Lambda supports functions written in Java,
Python, Go, Node.js, Ruby, and C# [31]. For this case study, we
focused on Java 8, Python 3.7, Go 1, and Node.js 12. These four
languages feature major differences in both language design and
FaaS platform implementation. Go, Java 8, and Python 3.7 use
Amazon Linux 1 whereas Node.js uses version 2.

We focused on Java and Python to compare two
fundamentally different programming languages. Python is a
high-level interpreted programming language while Java is
compiled to platform independent byte code that is run on each
platform using a custom interpreter known as the Java Virtual
Machine (JVM) [18]. Being a compiled language, Java offers
better performance compared to interpreted languages such as
Python [18]. While Java may be faster, on FaaS platforms the
JVM has been shown to cause significant cold start latency [15].
The two interpreted and compiled language classes also apply to
Go (compiled) and Node.js (interpreted). The goal for selecting
these languages is not simply to make a direct performance
comparison, but to also identify characteristics of use cases (i.e.
compute-bound, I/O-bound, small vs. large data) where one
programming language excels above the others.

B. Transform-Load-Query Pipeline Use Case

To investigate performance impacts of programming
language selection, we developed a Transform-Load-Query
multi-function serverless application in all four languages [32].
We built the pipeline to process sample sales data that includes
information such as product order details, transaction pricing,
and customer metadata. Each dataset is a CSV file stored in
Amazon S3 ranging from 100 to 500,000 rows. To process this
data, the pipeline consists of three microservices:

1. Transform Function

The transform function takes a CSV file stored in Amazon
S3 and applies multiple transformations to the data. This
function removes duplicate rows, creates additional columns
containing order processing time, and calculates the gross
margin of each sales transaction. Once the transformations are
applied the modified CSV file is saved to Amazon S3.

4

2. Load Function

The load function pulls the transformed CSV file from S3
and loads it into an Amazon Aurora serverless MySQL database.
The function creates SQL insert queries for each row in the CSV
file. These queries are executed in batches of 1,000 to improve
performance by reducing the number of distinct database
transactions.

3. Query Function

The final function queries the newly loaded database by
performing five separate SQL aggregation queries where results
are joined with a UNION. This function then saves the results of

the queries to S3 for future access. After the queries are complete
a stress test is performed using a “SELECT *” query to retrieve

every row from the database to measure the data transfer
throughput (row/sec) between the database and the FaaS
function.

Fig. 1. Transform-Load-Query Data Processing Pipeline Services and Tools

C. Static Code Analysis and Function Equivalence

To ensure function equivalence between the different
language implementations, we needed to ensure that the services
for each language were as similar as possible in design and
structure. To achieve this, we wrote the Java version first and
used it as the reference implementation to write the Python, Go,
and Node.js implementations.

TABLE I. STATIC CODE ANALYSIS METRICS BY SERVICE AND

LANGUAGE. INCLUDES NUMBER OF FUNCTIONS, VARIABLES, SOURCE LINES

OF CODE, LOOPS, AND CLOUD SERVICE USAGE

Service Lang Funcs Vars SLOC Loops Cloud Service Usage

S1 Java 3 40 86 2 S3 Get/Put

S1 Python 3 28 64 3 S3 Get/Put

S1 Go 3 30 77 1 S3 Get/Put

S1 Node.js 3 24 96 1 S3 Get/Put

S2 Java 3 25 77 2 S3 Get, DB Conn x1

S2 Python 3 21 57 3 S3 Get, DB Conn x1

S2 Go 3 15 65 1 S3 Get, DB Conn x1

S2 Node.js 4 18 83 1 S3 Get, DB Conn x1

S3 Java 4 36 111 7 S3 Put, DB Conn x2

S3 Python 5 44 96 9 S3 Put, DB Conn x2

S3 Go 4 34 104 8 S3 Put, DB Conn x2

S3 Node.js 5 17 74 1 S3 Put, DB Conn x2

The focus was to translate the Java implementation as

closely as possible into the target language. We did not employ
language specific optimizations and retained the same logic
across all implementations. Due to fundamental language

differences, such as required use of callback functions and
frequent asynchronous code, static code analysis metrics for
Node.js exhibited the largest differences while being
functionally equivalent. We also minimized the use of 3rd party
libraries, excluding those required to interact with AWS (e.g.
boto3), to eliminate as much under-the-hood code as possible.
Our goal was to replicate the behavior and implementation of
each language-specific function implementation. This was
especially challenging with Aurora database interactions. Each
language has its own MySQL driver and library with different
features, configurations, and limitations to consider. Table I
provides static code analysis metrics to compare our pipelines
implemented in Java, Go, Python, and Node.js.

D. Experiments

To investigate the implications of programming language
choice for our serverless case study, we conducted four
experiments to evaluate different aspects of the FaaS language
runtimes.

1. Overall Performance Comparison

In this experiment, we executed each pipeline 11 times with
8 different workload sizes gradually increasing the size of the
data payload processed by the pipeline. The first run of each
workload was thrown out to prewarm FaaS infrastructure to
ensure execution was in the warm state. The number of rows in
the data payload was gradually increased as follows: 100, 1000,
5000, 10000, 50000, 100000, 250000, and 500000 rows. The
goal of this experiment is to measure the overall warm
performance of each language and measure how performance
scales as the workload size changes (RQ-1). All runs were
configured with the maximum memory setting (3008 MBs), and
executed sequentially to minimize tenancy and resource
contention between function instances. Alongside observing
runtime, we also use these runs to profile Linux CPU metrics to
evaluate function resource utilization using SAAF (described in
section D) to compare how the processing requirements differ
for each language.

2. Scalability Performance Testing

The goal of this experiment is to measure how the
performance of each language changes as the number of
concurrent function invocations increases (RQ-2). All functions
execute the same 100,000 row workload, and we gradually
increased the number of concurrent invocations. Starting with
one function invocation to warm up infrastructure, we increased
function calls in steps of 5 up to 50 concurrent invocations. We
performed this experiment with the maximum memory setting
(3008 MBs) to force the cloud provider to assign our application
the maximum amount of infrastructure. To eliminate database
resource contention, each pipeline was allocated a dedicated
Amazon Aurora serverless database instance. This limited our
scalability testing as the maximum number of databases
serverless Aurora supported in one user account was 50.

3. Cold-Start Performance Testing

In all previous experiments, function infrastructure was
prewarmed to profile warm function performance. The goal of
experiment 3 was to measure cold start performance for each
language (RQ-3). Similar to experiment 1, each function was
called sequentially with a fixed memory setting (3008 MBs). To

Bucket

S3

FaaS Runner

Aurora

Transform

Load

Query

5

minimize network latency, an EC2 instance was used as the
client to invoke these functions. We created an c5n.large EC2
instance in the same availability zone and subnet of our
functions (us-east-1a). We note that our functions were deployed
using a virtual private cloud (VPC) to fix their placement to the
us-east-1a availability zone. After each pipeline iteration, the
client executing the experiment slept for 1 hour to guarantee cold
infrastructure. All function invocations used the smallest 100
row workload since the metric this experiment measured was
cold start latency. Sleeping 60 minutes ensured the FaaS
platform deprecated FaaS infrastructure between calls returning
each function to a cold state. A previous study showed that on
average AWS Lambda required ~45-minutes to deprecate all
warm FaaS Infrastructure for a given function [14]. We used the
SAAF framework to identify infrastructure state, and verified
that indeed all FaaS infrastructure used to execute functions in
this experiment was cold.

4. Memory Configuration Comparison

The fourth experiment focused on identifying performance
differences for different programming languages with respect to
a FaaS function’s memory reservation size. For this experiment,
each function was called sequentially and with a fixed workload.
After each test, we reduced the memory setting. Starting with
the 3008 MBs memory setting, we repeated the experiment with
2560, 2048, 1536, 1024, 768, and 512 MBs memory settings.
The goal was to measure how performance changes in each
language as we changed the memory configuration (RQ-4).

E. Tools and Platforms

To help identify factors responsible for performance
variation on FaaS platforms, while quantifying their extent, we
have developed the Serverless Application Analytics
Framework [16]. SAAF supports collection of performance,
resource utilization, and infrastructure metrics for FaaS
workloads deployed to AWS Lambda written in Java, Go,
Node.js, and Python. Programmers include the SAAF library
and a few lines of code to enable SAAF profiling. SAAF
collects metrics from the Linux /proc filesystem appending
them onto the JSON payload returned by the function instance.
Attributes collected include Linux Time Accounting metrics
such as CPU idle, user, kernel, and I/O wait time, wall-clock
runtime, and memory usage. To identify infrastructure state,
SAAF stamps function instances with a unique ID and the
existence of a stamp identifies if the environment is new (cold)
or recycled (warm). A function instance is stamped by writing
a UUID file to /tmp. To generate concurrent FaaS workloads,
retrieve metrics, and aggregate results from SAAF we developed
FaaS Runner. Implemented in Python, FaaS Runner provides a
client-side application used in conjunction with SAAF, to
automate profiling experiments on FaaS platforms. FaaS Runner
combines performance, resource utilization, and configuration
metrics from SAAF enabling observations not possible when
profiling individual FaaS functions calls

For this FaaS programming language comparison, we
deployed each of the data processing pipelines to AWS Lambda,
stored sample datasets in S3, and leveraged the serverless
Aurora relational database. We focused our study using AWS as
it is the only platform that presently offers a horizontally
scalable serverless relational database. Combing AWS Lambda,
S3, and Aurora allowed our pipeline to be fully serverless.

IV. EXPERIMENTAL RESULTS

To investigate our research questions, we deployed each of
our data processing pipelines to AWS Lambda using the default
VPC in the Virginia region. We pinned all Lambda functions to
execute within the same availability zone (us-east-1a) to
minimize network latency and increase the likelihood that
experiments ran under identical conditions.

A. FaaS Language Performance Comparison

In the vast majority of the trials, Java had the lowest runtime.
The only exception is where Go outperformed Java with the
250,000-row workload. On average across all workloads, Go
took 13.1% longer compared to Java, Python took 45.9%,
and Node.js took 64.6%. Processing large datasets exacerbated
the difference between Java and Node.js performance. Node.js
required 94.8% more runtime to process the 500,000 row dataset
than Java. Our results show that language choice of a serverless
function can have a significant impact on the overall runtime and
price of a serverless application. Figure 2 shows the average
runtime of each function and workloads.

Fig. 2. Function Runtime with workload sizes of 100, 10000, 100000, and
500000. Some workloads are excluded for simplicity. Hybrid pipeline consists

of the Go Translate/Query and Java Load functions.

For comparison purposes for a serverless application, it is
useful to extrapolate the cost to run each pipeline 1,000,000
times. For the worst-case scenario to process the 500,000-row
dataset the price for 1,000,000 pipeline invocations would be on
average $2,549, $2,982, $3,922, and $4,967 for Java, Go,
Python, and Node.js respectively. By implementing a data
processing pipeline in Node.js instead of Java, a serverless
application may cost ~95% more for 1,000,000 pipeline
invocations. This price comparison shows how FaaS runtime
directly determines the cost of a serverless application.

Across our four single language pipelines, the Load phase
was by far the slowest. This phase took on average 69%, 60%,
56%, and 59% of the entire pipeline’s runtime in Go, Java,
Python, and Node.js respectively. An interesting observation is
that no single language was consistently the fastest across all
functions. On average, Go delivered the fastest runtime for the
Transform function, Java for the Load function, and Go for the
Query function. Go’s long runtime of the Load function causes
it to have a longer overall runtime than Java: 14010ms vs.
12927ms respectively.

From our available implementations, the fastest pipeline
would be to use Go for the Transform and Query functions, and
Java for the Load function. This demonstrates a potential benefit
for building decoupled multi-function pipelines on serverless
platforms. The freedom of being able to mix multiple languages

6

and tools allows developers to create optimal hybrid pipelines.
Compared to our single language pipelines, our Go/Java/Go
hybrid pipeline processed the 500,000 row dataset 37%, 17%,
81%, and 129% faster than the Go, Java, Python, and Node.js
pipelines respectively.

Using SAAF, we are able to profile Linux CPU Time
Accounting metrics for our functions. This provided insight into
what functions are doing while running. We can observe how
much time is spent executing user code, idling, waiting for
network I/O, or executing privileged kernel code in the
operating system. Figure 3 shows the profile of each function at
3008 MBs running the 500,000-row workload. This graph
depicts differences in resource utilization for each language’s
function implementations.

Fig. 3. Linux CPU Time Accounting profile for each function in the pipeline

at 3008 MBs with 500,000 row workload.

Across all implementations, Node.js required more kernel
time than other languages. For the first function (Transform),
Python and Java had similar resource utilization, while Go
required less CPU User and Idle time. Node.js required a
significant amount of Kernel time, consisting of 37% of the total
runtime. For function 2 (Load), all functions exhibited a
significant amount of CPU Idle time of ~70-100 seconds. Go,
Python and Node.js required a similar amount of CPU User time
while Java used about half. Like function 1, Node.js required
much more Kernel time than the others and exhibited more soft
interrupt request time potentially as a result of function
callbacks. This function is more network bound due to loading
data into the database so it was expected that the vast majority
of the time the CPU would be idle. For function 3 (Query), Go,
Java, and Node.js performed similarly, while Python required
significantly more user and idle time to execute the same task as
the other two languages. Beyond basic runtime, analyzing Linux
CPU Time Accounting metrics affords a deeper understanding
of what the aspects of a workload some languages excel at vs.
others. For example, our Python MySQL driver loaded data very
quickly (INSERT), similar to the other two languages, while

query performance (SELECT), presumably for data retrieval, was

significantly slower.

B. FaaS Platform Scalability Comparison

One of the most important features of a FaaS platform is how
quickly they respond to demand and scale up the amount of
infrastructure allocated to an application. Once many function
instances are deployed, performance can be impacted by multi-
tenancy and resource contention. In this test, we gradually
increased the number of concurrent function invocations to
monitor if there was any change in performance as the number
of concurrent requests increased. Each pipeline was provided

an independent AWS Aurora Serverless (MySQL) relational
database instance.

Figure 4 shows the average runtime of the pipelines as the
number of parallel requests in the trial were scaled up. The
Python, Java, and Go pipelines show minor linear increases in
runtime as the number of concurrent invocations increase.
Conversely, between 20 and 35 concurrent invocations of
Node.js, there was a large ~5000ms increase in total pipeline
runtime. At 50 concurrent invocations, there was 8%, 9%,
19%, and 35% increase in runtime for Python, Java, Go and
Node.js respectively compared to 1-20 invocations.

Fig. 4. Overall Pipeline Runtime vs Concurrency.

C. Runtime Cold-Start Performance

FaaS platforms dynamically scale the amount of
infrastructure used to host function instances. Given that
allocation of function instances is not instantaneous, initial
function invocations exhibit “cold-start” latency.

In experiment 3, we invoked our pipelines twice to observe
both cold and warm latency and then waited one hour to allow
AWS Lambda to deprecate FaaS Infrastructure. We calculated
latency by first recording the client’s time immediately before a
function invocation, and after receiving the response; also
known as the round-trip time. We then subtracted the runtime
reported by SAAF from the round-trip time giving us the overall
latency caused by networking and infrastructure provisioning.

TABLE II. FUNCTION COLD AND WARM-START LATENCY BY SERVICE,
COLD VS WARM DELTA, AND FUNCTION PACKAGE SIZE. ALL FUNCTIONS RAN

USING THE DEFAULT VPC IN THE US-EAST-1A AVAILABILITY ZONE

Lang Cold (ms)
(Service T, L, Q)

Warm (ms)
(Service T, L, Q)

Delta (ms)
(Service T, L, Q)

Package Size
(Service T, L, Q)

Go 871, 886, 886 402, 402, 406 469, 484, 436 15, 15, 7.8 MBs

Java 988, 1119, 1139 401, 395, 398 587, 724, 741 6.3, 8.7, 8.7 MBs

Python 962, 1034, 1033 408, 406, 410 554, 628, 622 6, 173, 174 KBs

Node.js 889, 1140, 1076 390, 389, 388 499, 751, 688 704, 705, 707 KB

 Table II shows how the cold start latency, and overall cold vs
warm speedup varies between each language. On average, cold
invocations had latency of 867, 1082, 1010, and 1035
milliseconds for Go, Java, Python, and Node.js respectively with
an overall Coefficient of Variation (CV) of 10.8%. Once
functions were warmed, each language had nearly identical
latency averaging 404, 398, 408, 389 milliseconds for Go, Java,
Python, and Node.js with a CV of just 1.9%. The difference in
latency between cold start and warm functions averaged 463,
684, 602, 645 milliseconds for Go, Java, Python, and Node.js
respectively.

Our results provide two interesting observations. On
average, Java had the most cold-start overhead; this was
expected. Alongside that, Node.js and Python were only 39ms
and 82ms better than Java. We assumed that these interpreted

7

languages would be much better than Java. It should be noted
that cold-start overhead is higher when functions are deploying
using a VPC. Another observation is that package size does not
appear to impact cold-start overhead across the languages. The
Python Transform function, with its tiny 6 KB package, still had
more cold start latency than Go’s 14.9 MB package. When
comparing package sizes for the same language, the smaller 6.4
MB package for Java Transform did result in less cold start
latency versus the 8.7 MB packages for the Load and Query
functions (587ms with 6.3 MB package and ~730ms with 8.7
MB package).

Cold start latency is one of the greatest examples of FaaS
language bias that a developer making a serverless application
cannot do anything about. Languages may offer better
performance on some FaaS platforms vs. others as a result of
each platform’s specific language runtime implementation. For
example, by developing an application in Java rather than Go on
AWS Lambda, an application will always have more cold start
latency (here ~221ms) because of how Lambda initializes
function instances. For frequently invoked long running
applications this runtime may be insignificant, but for every
function in an application it compounds the latency. Choosing
Java, Python, or Node.js instead of Go resulted in an average
of 20.2% more cold latency.

D. Memory Configuration Performance Scaling

We profiled the resource utilization for each function using
Linux Time Accounting metrics [33] to determine how much
time each function spent executing user code, idling, waiting for
network I/O, or executing code in the operating system’s kernel.
AWS Lambda throttles performances of functions with lower
reserved memory not by reducing clock speed, but by adjusting
the CPU time share to effectively increase CPU idle time when
a function is running. Figure 5a depicts how as the memory
setting increases or decreases, the CPU user time remains fairly
constant. Conversely, Figure 5b shows that when the memory
setting is decreased, the CPU idle time increases.

Fig. 5. (a) Left CPU User Time (b) Right CPU Idle Time

Altering the CPU time share has a massive impact on
performance. Ideally, function performance on AWS Lambda
should scale linearly with the memory setting. If a function
invocation has double the memory as another, the runtime
should be twice as fast. Perfect scaling of the CPU time share
would produce perfectly balanced billing. Regardless of the
memory setting, functions would always have the same cost,
with the only difference being that with higher memory settings
the same work is performed much faster. In this perfect scenario,
the highest memory setting would always be the best choice.
With our case study, this is not the case for multiple reasons.

Figure 6 shows how performance of each pipeline scales
based upon the memory setting. In this graph, pipeline runtime
is normalized to a percentage of each memory setting’s runtime
compared to the maximum memory setting. This allows us to
compare differences between how performance of each
language scales relative to the memory setting. With perfect
scaling, 3008MBs would be 100%, 1536MBs would be 50%,
768MBs would be 25% and so on.

For our pipelines, we did not see significant performance
improvements above 1536 MBs. In some trials, higher memory
settings produced worse performance than lower memory
settings. For example, the Go pipeline took on average 1895ms
with 2560 MBs of RAM while it took 1992ms with 3008 MBs.
The primary reason we did not see performance improvements
after 1536 MBs was because our functions are all single
threaded. Above 1536MB, functions gain access to a second
CPU core on AWS Lambda which our functions do not utilize.
This provides an example of how FaaS platforms obscure
pricing. Without testing, a developer may assume that 3008 MBs
would always be the fastest memory setting when they actually
get nearly equivalent performance to 1536 MBs while then
paying double.

Fig. 6. Relative Performance Decrease of Low Memory Settings

With low memory settings, we did not observe perfect
scaling as memory size was decreased. Going from 1024 MBs
to 512 MBs relative function speed dropped from 69%→35%
(x0.51), 82%→44% (x0.54), 74%→42% (x0.57), and
76%→44% (x0.58) for Go, Java, Python, and Node.js
respectively. At 1024 MBs and below, Go consistently saw
lower scaled performance compared to the other three languages
with memory settings lower than 1536 MBs. For 1,000,000
invocations, choosing the 3008 MB setting instead of 1536
MB would result in paying $310, $220, $374, and $581 more
for Go, Java, Python, and Node.js respectively. This equates
to paying up to 95% more for a mere 4.8% performance
improvement.

V. CONCLUSIONS

In this paper, we developed a multi-function Transform-
Load-Query data processing pipeline in Java, Python, Go, and
Node.js. Using these pipelines, we investigated the overall
performance variation, cold start latency, scalability, and
implications of memory size. We investigated how
programming language selection impacts the efficiency of
serverless data processing pipelines with a series of experiments.

Our research findings include: RQ-1: Executing each
pipeline with varying workload sizes showed which language
was able to run each function of the pipeline the fastest. Go had
the lowest runtime for the Transform and Query functions, while
Java performed the Load function the fastest. Due to poor Load
function performance in Go, Java achieved the best performance

8

on average for the entire pipeline. For these workloads, choosing
Node.js instead of Java resulted in 94% higher costs. We also
identified the potential for performance improvements by
building hybrid pipelines that combine functions written in
multiple languages. The fastest configuration was a pipeline
using Go for Translate/Query functions, and Java for the Load
function. Our hybrid pipeline provided performance
improvements ranging from 17% to 129% compared to single
language pipelines. RQ-2: Running up to 50 concurrent
instances of our data processing pipeline introduced minor linear
increases in runtime for Python, Java, and Go (8%-19% increase
in runtime). Node.js was affected much more negatively (35%
runtime increase). RQ-3: Our cold state latency testing for each
language agreed with previous research in [15] where Java had
the highest cold start latency, while Go was found to outperform
every other language. Reducing package size reduced cold
latency when comparing functions in the same language, but not
when comparing functions from different languages (e.g.
Python and Go). Due to cold start latency, using Java, Python,
or Node.js to process small datasets was 20% more expensive
than Go. RQ-4: Performance scaled approximately linearly for
memory sizes up to 1536MBs for each language. For memory
settings higher than 1536MBs, there was no major performance
improvement, but significant increases in hosting costs (95%
cost increase for 4.8% performance improvement). Notably,
runtime of our Go pipeline was impacted more at memory
settings below 1024 MBs, resulting in lower relative
performance compared to the other languages.

This paper provides a comparison of a multi-language
serverless data processing pipeline that developers can refer to
when considering serverless designs. Overall, there is likely no
definite best language for all serverless applications. Ultimately
developers should consider resource requirements, and profile
performance to optimize their designs before deployment on
serverless platforms to mitigate any potential pitfalls.

ACKNOWLEDGMENTS

This research is supported by the NSF Advanced
Cyberinfrastructure Research Program (OAC-1849970), NIH grant
R01GM126019, and the AWS Cloud Credits for Research program.

REFERENCES

[1] M. Yan, P. Castro, P. Cheng, and V. Ishakian, “Building a chatbot with serverless
computing,” in Proceedings of the 1st International Workshop on Mashups of

Things and APIs, 2016, p. 5.
[2] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-

Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation with openlambda,”
in 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16),

2016.
[3] I. Baldini et al., “Serverless Computing: Current Trends and Open Problems,” in

Research Advances in Cloud Computing, 2017.
[4] A. Sill, “The Design and Architecture of Microservices,” IEEE Cloud Comput.,

2016, doi: 10.1109/MCC.2016.111.
[5] “Openwhisk common use cases.” https://console.bluemix. net/docs/openwhisk/.
[6] “Fn Project – The Container Native Serverless Framework.” https://fnproject.io/.

[7] E. Oakes, L. Yang, K. Houck, T. Harter, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Pipsqueak: Lean Lambdas with Large Libraries,” in Proceedings -
IEEE 37th International Conference on Distributed Computing Systems
Workshops, ICDCSW 2017, 2017, doi: 10.1109/ICDCSW.2017.32.

[8] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Serverless
computing: An investigation of factors influencing microservice performance,” in
Proceedings - 2018 IEEE International Conference on Cloud Engineering, IC2E
2018, 2018, doi: 10.1109/IC2E.2018. 00039.

[9] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking Behind the
Curtains of Serverless Platforms,” 2018 USENIX Annu. Tech. Conf. (USENIX ATC
18), 2018.

[10] I. Baldini et al., “The serverless trilemma: Function composition for serverless
computing,” in Onward! 2017 - Proceedings of the 2017 ACM SIGPLAN

International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, co-located with SPLASH 2017, 2017, doi:
10.1145/3133850.3133855.

[11] A. Eivy, “Be Wary of the Economics of ‘Serverless’ Cloud Computing,” IEEE

Cloud Comput., 2017, doi: 10.1109/MCC.2017.32.
[12] G. Adzic and R. Chatley, “Serverless computing: economic and architectural

impact,” 2017, doi: 10.1145/ 3106237.3117767.
[13] A. Pérez, G. Moltó, M. Caballer, and A. Calatrava, “Serverless computing for

container-based architectures,” Futur. Gener. Comput. Syst., 2018, doi:
10.1016/j.future.2018.01.022.

[14] W. Lloyd, M. Vu, B. Zhang, O. David, and G. Leavesley, “Improving application

migration to serverless computing platforms: Latency mitigation with keep-Alive
workloads,” in Proceedings - 11th IEEE/ACM International Conference on Utility
and Cloud Computing Companion, UCC Companion 2018, 2019, doi:
10.1109/UCC-Companion.2018.00056.

[15] D. Jackson and G. Clynch, “An investigation of the impact of language runtime
on the performance and cost of serverless functions,” in Proceedings - 11th
IEEE/ACM International Conference on Utility and Cloud Computing
Companion, UCC Companion 2018, 2019, doi: 10.1109/UCC-

Companion.2018.00050.
[16] “SAAF: Serverless Application Analytics Framework.”

https://github.com/wlloyduw/SAAF.
[17] E. Jonas et al., “Cloud programming simplified: a berkeley view on serverless

computing,” arXiv Prepr. arXiv1902.03383, 2019.
[18] L. Prechelt, “Empirical comparison of seven programming languages,” Computer

(Long. Beach. Calif)., 2000, doi: 10.1109/2.876288.

[19] P. Singh, S. Shukla, S. Chandra, and V. Dixit, “Performance evaluation of
programming languages,” in 2017 International Conference on Innovations in
Information, Embedded and Communication Systems (ICIIECS), 2017, pp. 1–4.

[20] J. Spillner, C. Mateos, and D. A. Monge, “Faaster, better, cheaper: the prospect of

serverless scientific computing and HPC,” in Communications in Computer and
Information Science, 2018, doi: 10.1007/978-3-319-73353-1_11.

[21] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless execution
of scientific workflows: Experiments with HyperFlow, AWS Lambda and Google

Cloud Functions,” Future Generation Computer Systems, 2017.
[22] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “Serverless execution of scientific

workflows,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, doi:
10.1007/978-3-319-69035-3_51.

[23] M. Malawski, K. Figiela, A. Gajek, and A. Zima, “Benchmarking heterogeneous
cloud functions,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2018, doi: 10.1007/978-3-319-75178-8_34.

[24] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning models in
a serverless platform,” in Proceedings - 2018 IEEE International Conference on

Cloud Engineering, IC2E 2018, 2018, doi: 10.1109/IC2E.2018.00052.
[25] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and G. Karsai,

“BARISTA: Efficient and Scalable Serverless Serving System for Deep Learning

Prediction Services,” in 2019 IEEE International Conference on Cloud
Engineering (IC2E), Jun. 2019, pp. 23–33, doi: 10.1109/IC2E.2019.00-10.

[26] L. Feng, P. Kudva, D. Da Silva, and J. Hu, “Exploring Serverless Computing for
Neural Network Training,” in IEEE International Conference on Cloud

Computing, CLOUD, 2018, doi: 10.1109/CLOUD.2018.00049.
[27] E. F. Boza, C. L. Abad, M. Villavicencio, S. Quimba, and J. A. Plaza, “Reserved,

on demand or serverless: Model-based simulations for cloud budget planning,” in
2017 IEEE 2nd Ecuador Technical Chapters Meeting, ETCM 2017, 2018, doi:

10.1109/ETCM.2017.8247460.
[28] M. Villamizar et al., “Infrastructure Cost Comparison of Running Web

Applications in the Cloud Using AWS Lambda and Monolithic and Microservice

Architectures,” in Proceedings - 2016 16th IEEE/ACM International Symposium
on Cluster, Cloud, and Grid Computing, CCGrid 2016, 2016, doi:
10.1109/CCGrid.2016.37.

[29] L. F. A. Jr, F. S. Ferraz, R. F. A. P. Oliveira, and S. M. L. Galdino, “Function-as-

a-Service X Platform-as-a-Service : Towards a Comparative Study on FaaS and
PaaS,” Twelfth Int. Conf. Softw. Eng. Adv. Funct., 2017.

[30] S. Shrestha, “Comparing Programming Languages used in AWS Lambda for
Serverless Architecture,” Master’s Thesis, Metropolia University of Applied

Sciences, 2019.
[31] Amazon, “AWS Lambda - Serverless Compute,” Amazon Web Services, Inc,

2014. .
[32] “Multi-function Translate Load Query Data Processing Pipeline.”

https://github.com/wlloyduw/FaaSProgLangComp.
[33] W. J. Lloyd et al., “Demystifying the Clouds: Harnessing Resource Utilization

Models for Cost Effective Infrastructure Alternatives,” IEEE Trans. Cloud

Comput., 2015, doi: 10.1109/tcc.2015.2430339.

