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Abstract—Deployment of service oriented applications (SOAs) to public infrastructure-as-a-service (IaaS) clouds presents challenges

to system analysts. Public clouds offer an increasing array of virtual machine types with qualitatively defined CPU, disk, and network

I/O capabilities. Determining cost effective application deployments requires selecting both the quantity and type of virtual machine

(VM) resources for hosting SOA workloads of interest. Hosting decisions must utilize sufficient infrastructure to meet service level

objectives and cope with service demand. To support these decisions, analysts must: (1) understand how their SOA behaves in the

cloud; (2) quantify representative workload(s) for execution; and (3) support service level objectives regardless of the performance

limits of the hosting infrastructure. In this paper we introduce a workload cost prediction methodology which harnesses operating

system time accounting principles to support equivalent SOA workload performance using alternate virtual machine types. We

demonstrate how the use of resource utilization checkpointing supports capturing the total resource utilization profile for SOA

workloads executed across a pool of VMs. Given these workload profiles, we develop and evaluate our cost prediction methodology

using six SOAs. We demonstrate how our methodology can support finding alternate infrastructures that afford lower hosting costs

while offering equal or better performance using any VM type on Amazon’s public elastic compute cloud.

Index Terms—Service oriented application, performance equivalence, predictive models, IaaS cloud, cloud economics
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1 INTRODUCTION

DEPLOYING service oriented applications (SOAs) to Infra-
structure-as-a-Service (IaaS) clouds requires selection

of both the type and quantity of VMs adequate for workload
hosting. Public IaaS clouds offer a wide array of VM appli-
ance types featuring different hardware configurations.
These VM appliance types provide fixed allocations of CPU
cores, system memory, hard disk capacity and type (spindle
versus solid state), and network throughput. By focusing on
providing a limited number of VM types, cloud providers
can leverage economies of scale to improve performance
and availability of VM types in hardware procurement and
management. Given the ever increasing number of VM
types it is increasingly difficult to make informed choices
for SOA deployment. In 2014, Amazon EC2 and HP Helion

offered 34 and 11 predefined VM types respectively, each
with different CPU, memory, disk, and network bandwidth
allocations available for different costs.

Quantifying performance expectations of cloud resources
is difficult. Amazon EC2 andHPHelion’s clouds use qualita-
tive “compute units” to describe relative processing capabili-
ties of VMs. Amazon EC2 describes VM performance using
elastic compute units (ECUs), where one ECU is stated to
provide the equivalent CPU capacity of a 1.0-1.2 GHz 2007
AMDOpteron or Intel Xeon processor [1]. AnHP cloud com-
pute unit (CCU) is advertised to be roughly equivalent to the
minimum power of 2/13th of one logical core (a hardware
hyper-thread) of an Intel 2.6 GHz 2012 Xeon CPU. Recently,
Amazon has stopped directly marketing ECUs for third gen-
eration VM-types, though ECUs are still listed in the man-
agement console interface. Additionally, Amazon employs
approximate network throughput categories. They include:
very low, low (250 Mbps), moderate (500 Mbps), high (1,000
Mbps), and 10 Gigabit.

Not only do cloud vendors offer a diverse array of
VM-types, investigations have shown that VM types are
often implemented using heterogeneous hardware result-
ing in performance variance [2], [3]. Ou et al. identified
no less than five hardware implementations of the m1.
large Amazon VM-type in 2011, with performance vari-
ance up to 28 percent [2]. Ou also observed the use of
different CPU time sharing allotments to implement the
m1.large VM type. In some cases, multi-core VMs were
found to not receive 100 percent allotments of every core.
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Using CPU benchmarking techniques we confirmed this
phenomenon. Timeshare allocations of the four-core m1.
xlarge backed by the Intel Xeon E5-2650 v0 @ 2.0 GHz
could not be made to exceed 100, 100, 95, and 75 percent
CPU for each respective core.

Beyond VM type heterogeneity challenges, previous
research has demonstrated how resource contention from
multi-tenancy on VM hosts results in SOA performance var-
iance and degradation [4], [5], [6], [7]. Provisioning varia-
tion, the uncertainty of the physical location of VMs across
physical hosts, has been shown to contribute to application
performance variance and degradation [8], [9].

Determining the best VM type for SOA hosting is compli-
cated by: (1) a plethora of vendor provided VM-types, (2)
vague qualitative descriptions of VM capabilities, (3) hetero-
geneous vendor hardware and hypervisor configurations,
and (4) performance variance from resource contention and
provisioning variation across shared hardware. Given these
challenges, a practitioner’s effectiveness at employing only
intuition to make architectural choices which account for per-
formance and cost tradeoffs is increasingly in doubt.

1.1 Workload Cost Prediction Methodology

Making informed choices regarding VM deployments for
SOA hosting requires (1) characterization of workloads and
(2) benchmarking performance capabilities of available VM
types. In this paper, we present a workload cost prediction
methodology that harnesses both to support determina-
tion of infrastructure requirements for achieving equiva-
lent performance for SOA workloads.

To develop our approach we investigate SOA workload
hosting consisting of a large number of individual service
requests. We focus on achieving equivalent total execution
time for entire workloads using different VM types, irre-
spective of individual service request execution times. Our
approach supports prediction of the type and quantity of VMs to
achieve equivalent workload performance providing resource alter-
natives. Given alternatives the most economical can be cho-
sen for SOA hosting. Infrastructure costs can be calculated
by multiplying fixed or spot market prices by the predicted
quantity of VMs to derive monetary costs. Cost predictions
can be compared to determine the most cost effective virtual
infrastructure.

We consider SOA hosting using VM pools consisting of a
single VM type. We do not investigate hosting using pools
with mixed VM types. The utility of mixing VM types could
emulate support of vertical scaling in a public cloud. Vertical
scaling is useful when an optimal CPU core requirement is
determined to be 22 cores. With vertical scaling this workload
could be hosted using 5 � 4-core VMs, and 1 � 2-core VM of
similar processing speed. We do not consider provisioning
separate infrastructure for different phases of SOAworkloads,
rather we provision infrastructure for themost resource inten-
sive phase. When necessary, workload phases could be pro-
filed separately and infrastructure provisioned accordingly.

We consider SOA hosting only on VM types which
meet or exceed SOA RAM and disk space requirements.
We do not consider under allocation of VM RAM or disk
space. This would likely result in significant performance
degradation and represents a problem outside the scope
of our investigation.

Unlike related work in cost optimization for cloud
workloads we do not assume that application workloads
are identical [10], [11], [12]. We profile representative
SOA workloads and build predictive resource utilization
models. Our models convert resource requirements from
a selected base VM type to alternate VM types needed to
achieve equivalent performance. We focus our analysis
on service oriented application workloads where many
individual service requests are executed independently in
parallel. As our resource utilization based approaches
are generic, our workload cost prediction methodology is
extensible to any workload that will run across a distrib-
uted pool of VMs.

We initially considered cloud application performance
modeling using resource utilization statistics in [13]. We
harnessed this approach to predict performance of various
component compositions across VMs in [8], [14]. These
efforts demonstrate how intuition is insufficient to deter-
mine the best performing VM component compositions. We
developed VM-Scaler to easily facilitate resource utilization
profiling of application deployments in private and public
cloud settings [15].

1.2 Research Questions

This paper investigates the following research questions:

1 How can equivalent SOA workload performance be
achieved across different virtual machine (VM) types
by harnessing resource utilization profiles? [Equiva-
lent Performance]

2 How effectively can we predict independent
resource utilization variables for SOA workloads
across VM types? Specifically, how well can we pre-
dict: CPU-user-time, CPU-kernel-time, CPU-idle-
time, and CPU-IO-wait-time? [Profile Prediction]

3 When scaling the number ofVMs, how canwe account
for changes in the SOA workload resource utilization
profile variables? Specifically, what changes occur
and, how do we accommodate them for: CPU-user-
time, CPU-kernel-time, CPU-idle-time, and CPU-IO-
wait-time? [Profile Scaling]

1.3 Research Contributions

In this paper we present our workload cost prediction meth-
odology to predict hosting costs of SOA workloads harness-
ing resource utilization models. Our methodology provides
infrastructure configuration alternatives that provide equivalent
performance allowing the most economical infrastructure to be
chosen. Our methodology supports: (1) characterization of
workload requirements, (2) predicting the required number
of VMs of a given type required to host workloads, while
(3) ensuring equivalent performance is achieved. We addi-
tionally contribute:

1. A novel resource checkpointing scheme that sup-
ports profiling SOA workload resource utilization
for jobs executing across VM pools.

2. A research application of Ou et al.’s trial-and-better
approach [2] to normalize VM pools to ensure each
VM has an identical backing CPU to support SOA
workload profiling.
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Our resource utilization checkpointing scheme supports
profiling application resource utilization across VM pools.
Resource utilization data collection is synchronized to the
nearest second to accurately benchmark resource require-
ments. We use a novel application of the trial-and-better
approach to homogenize public cloud infrastructure for all
experiments. We argue that all public cloud research should use
trial-and-better to reduce heterogeneity of tested resources. Trial-
and-better supports normalization of resources to reduce
variance of testing in public clouds.

1.4 Paper Organization

In Section 2 provides an overview of related research for
cloud based cost optimization and prediction for workload
hosting. Section 3 describes our workload cost prediction
methodology that harnesses Linux CPU time accounting
principles for workload cost prediction to address research-
question 1. Section 4 describes our environmental science
SOAs used for evaluation and our hardware and test con-
figurations. Section 5 describes results of our evaluation
while addressing research questions 2 and 3. Section 6 sum-
marizes our findings while Section 7 discusses future work.

2 BACKGROUND AND RELATED WORK

Research on cloud economics and application hosting
costs can be broken down into efforts focused on demand
based pricing models (spot markets), and investigations
on the cost implications of infrastructure management
and scaling approaches.

Amazon introduced spot virtual machine instances as a
method to sell unused datacenter capacity in late 2009. Spot
instances enable bidding for spare public cloud capacity by
granting resources to users whose bids exceed current spot
prices. When demand spikes, user VMs whose bid price falls
below the current market price are terminated instantly,
freeing capacity for higher bidders. Spot instances are ideal
for executing computational workloads for scientific model-
ing where the time of execution is less important than com-
pleting the workloads at minimum cost. Spot instances were
harnessed to conduct our research.

A number of efforts have investigated spot instance pric-
ing and similar demand based pricing mechanisms [11],
[12], [16], [17]. These efforts employed modeling to predict
or set prices. Yi et al. investigated the use of job checkpoint-
ing as a mechanism to reduce job costs executed using spot
instances [11]. Their approach was limited to supporting
jobs with fixed execution times and was evaluated by simu-
lation using spot price histories. Andrzejak et al. developed
a model which supports users by providing bid suggestions
while considering resource availability, reliability, perfor-
mance, and resource costs [12]. Their approach was limited
to compute intensive, embarrassingly parallel jobs whose
computation is easily divided.

Other efforts primarily have focused on infrastructure
management to minimize hosting costs [2], [3], [10], [18],
[19], [20]. In [21], Galante and E. de Bona provide a survey
of recent research on cloud computing elasticity. They
identify 28 works which consider elasticity for infrastruc-
ture, platform, and application hosting. Of these only one

study [10], focused on cost optimization of application
hosting and scaling.

In [10] Sharma et al. describe Kingfisher, a management
system supporting cost-aware application hosting and scal-
ing for IaaS clouds. Kingfisher determines the most cost
effective approach to transition existing application infra-
structures to target infrastructures to meet service level
agreements (SLAs). Transitions considered include vertical
and horizontal scaling, as well as VM live migration. King-
fisher was evaluated using Amazon’s public cloud and a
local private XEN-based cloud. Kingfisher assumes that
each VM can service a fixed volume of incoming requests
and that all requests require the same resources to process.

In [18], Leitner et al. developed an SLA-aware client side
request scheduler which minimizes “aggregate” hosting
costs by balancing both price and SLA requirements. They
evaluated their approach by simulation using workload
archival data to test how their scheduler responds. They
compared the aggregate costs of their algorithms with:
(1) the minimum infrastructure (one VM for all requests),
(2) the maximum infrastructure (one VM for each request)
and (3) a bin-packing approach which fully packs existing
resources before allocating additional VMs. Their approach
provided the lowest aggregate costs but their bin packing
approach did not address infrastructure launch latency.

Simarro et al. provide a cost aware VM-placement sched-
uler which seeks to reduce infrastructure costs by provision-
ing VMs across cloud data centers having the lowest
infrastructure prices [19]. Their schedulers use price forecasts
to predict pricing trends to support themost economical infra-
structure placements. Their approach reduced infrastructure
costs but did not address network latency and performance
issues resulting when application infrastructure is simulta-
neously provisioned across different data centers.

In [20] Villegas et al. provide a performance and cost
analysis of provisioning and job scheduling policies in the
cloud. They assessed policies from recent literature for their
analysis using two private clouds and Amazon EC2. They
found that statically provisioned virtual infrastructure
delivered better performance, but was up to 5Xs more
costly. Conversely dynamically provisioned infrastructure
provided lower hosting costs but with performance caveats
resulting from infrastructure launch latency similar to [22].
This key cost versus performance tradeoff for infrastructure
provisioning highlights the need for good hot spot detection
and load prediction techniques [23].

Farley et al. demonstrated that Amazon EC2 instance
types had heterogeneous hardware implementations in [3].
Their investigation focused on the m1.small instance type
and demonstrated potential for cost savings by discarding
VMs with less performant implementations. Ou et al.
extended their work by demonstrating that several Amazon
and Rackspace VM types exhibit heterogeneous implemen-
tations [2]. They identified four different implementations
of the m1.large VM on Amazon EC2 with varying perfor-
mance. Performance variations were attributed to the use of
different backing CPUs and XEN scheduler configurations.
They harnessed this heterogeneity by developing a “trial-
and-better” approach to test new instances and discard
poor performing instances. The authors demonstrated cost
savings for long running jobs as a result of faster job
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execution. For our work we adopt Ou’s “trial-and-better”
approach to improve homogeneity of VM profiling.

Previous research investigating cost implications of IaaS
clouds has focused on spot market analysis [16], [17], pric-
ing/bid support [11], [12], cost-aware VM scheduling [10],
[19], [20], and job placement schemes [18], [20]. For the sur-
veyed approaches workloads were assumed to be heteroge-
neous. None of the approaches specifically support diverse
workloads with varying resource requirements (e.g. CPU
and I/O) [10], [11], [12]. Conversely, we provide a workload
cost prediction methodology which harnesses SOA work-
load profiles and VM benchmarking to capture the unique
resource requirements of diverse workloads. Our methodol-
ogy provides equivalent workload performance using dif-
ferent VM types and supports cost savings by identifying
infrastructure alternatives.

3 RESOURCE UTILIZATION MODELS FOR COST

PREDICTION

Our resource utilization based approach for SOA workload
cost prediction focuses on achieving equivalent performance
for diverse SOA workloads. For the purposes of our evalua-
tion in Section 5, we consider equivalent performance to be
þ/– 2 seconds of the observable wall clock time. This equa-
tes to �2 percent execution time for our SOA workloads.
Our workloads consist of sets of individual service requests
that execute in parallel across virtual infrastructure. We are
not concerned with response time of individual service
requests, but rather the total workload execution time.
In fact, we expect individual requests to perform slower on
VM-types having slower CPU clock speeds.

3.1 Workload Equivalent Performance

Given SOA workloads, we predict the workload resource
utilization requirements for pools of distinct virtual
machine types. For example, we have three pools: one con-
sisting of c3.xlarge VMs, another m1.xlarge, and a third c1.
medium. Our methodology supports determining the
required number of virtual machines to provide equivalent
workload performance using these different VM pools.

We harness Linux CPU time accounting principles to
account for available time across the pool of VMs servicing
the workload. Workload wall clock time can be determined
by summing CPU resource utilization variables across the
VM pool and dividing by the total number of CPU cores.

Workloadtime ¼
cpuUsrT þ cpuKrnT þ cpuIdleT þ cpuIoWaitTþ

cpuIntSrvcT þ cpuSftIntSrvcT þ cpuNiceT þ cpuStealT
VMcores

:

(1)

Eight resource utilization variables contribute to the
observed wall clock time. These eight variables described in
Table 1 include: cpuUsr, cpuKrn, cpuIdle, cpuIoWait,
cpuIntSrvc, cpuSftIntSrvc, cpuNice, and cpuSteal. In practice
we found it unnecessary to consider all eight variables.
For our SOA workloads described in section 4.1, m1.xlarge
wall clock time on average was accounted for by
cpuUsr (45.26 percent), cpuKrn (7.52 percent), and cpuIdle
(43.71 percent). CpuIoWait (3.14 percent) and cpuSftIntSrvc
(0.28 percent) help further improve prediction accuracy. We

ignore cpuIntSrvc (0 percent), cpuNice (0 percent) and
cpuSteal (.08 percent) in practice because the time they
account for was negligible. We use resource utilization
checkpointing, a feature of VM-Scaler cloud to capture the
workload resource utilization as described in Section 4.3.

Of the eight resource utilization variables, cpuUsr and
cpuIdle account for the majority of the time. For our SOA
workload evaluation described in Section 5, approxi-
mately 88.97 percent of m1.xlarge SOA execution time is
accounted for by cpuUsr or cpuIdle. CpuUsr represents the
total amount of computation required by the workload.
Through extensive testing, we observe that cpuUsr time
remains generally the same regardless of the number
VMs used to host the workload. Introducing additional
VMs into the VM pool adds to the total overhead from
background Linux processes. This overhead is relatively
constant and can easily be accounted for. CpuIdle repre-
sents the unused time where CPU cores have been provi-
sioned but remain idle. Workloads exhibiting high cpuIdle
time demonstrate parallel execution inefficiencies. This
indicates significant resource waste in the service imple-
mentation. Applications concerned about cloud hosting
costs should be architected to decrease cpuIdle time.

CpuKrn is the time a workload spends executing kernel
mode instructions. When executing SOA workloads across
VMs, we found the ratio of time spent in kernel mode is
similar, with slightly more cpuKrn time occurring on VMs
with slower I/O. CpuKrn is the third greatest contributor to
workload execution time at approximately 7.52 percent.
CpuIntSrvc and cpuSftIntSrvc represent time spent servicing
system interrupts and is generally small. CpuNice is time
spent executing prioritized processes in user mode. This is
rare, and only occurs when SOAs employ process prioritiza-
tion in an attempt to gain a larger share of the CPU.

CpuSteal is an important, though unusable metric.
CpuSteal registers processor ticks when a virtual CPU core
is ready to execute, but the physical core is busy and
unavailable. The CPU may be unavailable because the
hypervisor is executing native instructions (e.g. XEN Dom0)
or other co-located VMs are currently “stealing” the CPU.
The difficulty with this measure is that ticks are only regis-
tered when execution should occur, but is unable to. These
ticks, unfortunately, do not adequately account for the miss-
ing time. When workloads exhibit high cpuSteal time error is
introduced into the Linux CPU time accounting calcula-
tions. On the VM there is essentially “missing time”, which
is the gap between accounted for time and actual time.
There are a number of factors which cause CpuSteal time to
occur. These include:

1. Processors are shared by too many VMs, and those
VMs are busy

2. The hypervisor is occupying the CPU
3. The VM’s CPU core time share allocation is less than

100 percent, though 100 percent is needed for a CPU
intensive workload

In the case of 3, we observe high cpuSteal time when
executing workloads on Amazon EC2 VMs which under
allocate CPU cores as described earlier in Section 1.
A specific example of this is the m1.small [2] and
m3.medium VMs. In 2014, we observed that the m3.
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medium VM type is only allocated 1 core of a 10-core
2.5 GHz Xeon E5-2670 v2 CPU with an approximate 60
percent timeshare. The m3.medium is advertised to pro-
vide three ECUs. Because of this significant CPU under
allocation, all workloads executing on m3.medium VMs
exhibit high cpuSteal time making time accounting inaccu-
rate. If the degree of cpuSteal in these scenarios remains
relatively constant, it should be possible to buffer time
calculations to compensate for the missing clock ticks.

3.2 Workload Cost Prediction Methodology

The steps of our workload cost prediction methodology for
cost calculation are outlined in Table 2. As an example we
consider prediction of the number of m1.xlarge VMs (four
CPU cores, two ECUs each) required to execute SOA work-
loads with execution time equivalent to a pool of 5 x c3.
xlarge VMs (four CPU cores, 3.5 ECUs each). For the exam-
ple c3.xlarge serves as VMbase.

Step 0 – Train resource utilization models. In this initializa-
tion step we train resource utilization models to convert
workload resource utilization from VMbase c3.xlarge to m1.
xlarge. SOA workload training data is collected using pools

of (5) c3.xlarge and (5) m1.xlarge VMs. Training data must
always be collected using the same number of CPU cores,
though not necessarily the same number of VMs for each
VM type. For example, if the VMbase is 4 � 8-core c1.xlarge
Amazon VMs (32 total cores), training data would be
collected using 8 � 4-core m1.xlarge VMs (32 total cores)
and 16 � 2-core m1.large VMs (32 total cores).

For our evaluation in Section 5, we collect training data
for our six domain related SOAs and train a single set of
resource utilization (RU) conversion models (Mall). This
increases the range of resource utilization scenarios the
models are exposed to and offers the potential to predict
resource requirements for newmodels with similar resource
utilization behavior.

RU models are trained using stepwise multiple linear
regressions (MLR). One model is trained for each VM type
being considered. For our example, our c3.xlarge ! m1.
xlarge model converts RU data from c3.xlarge (VMbase) to
the alternate VM type: m1.xlarge. RU models were trained
using the R statistical package.

Step 1 – Profile workload resource utilization. We next per-
form a single profiling run of the SOA workload on our
VMbase type c3.xlarge to capture its resource requirements.
For our workloads (W) we collect the total resource require-
ments (RUw) across the set of 5 x c3.xlarge VMs.

Step 2 – Convert resource utilization profile. The c3.xlarge
workload resource utilization profile for RUw(VM-base) is
then converted to our target VM-type m1.xlarge using the
resource utilization conversion model trained in step 0
(Mm1.xlarge). Mall models from step 0 generate “predicted”
resource utilization profiles, (RUw(VM-type(1..j))), for each pos-
sible VM type (1..j). For our example, we are only interested
in 5 x m1.xlarge VMs. We generate (RUw(m1.xlarge)) which
represents the resource utilization to execute the workload
(W) with 5 x m1.xlarge VMs. However, we know based on
m1.xlarge’s two ECU performance rating that five VMs are
insufficient for equivalent performance to 5 x c3.xlarge
VMs. We address scaling up from n to nþx VMs in step 3.

To simplify the cost prediction methodology, it is best to
select the profiling VMbase type for Step 1 to be either a very
fast or slow offering so resource utilization is scaled in the
same direction for all predicted VM types. The required
number of VMs (n), should be scaled up (or down) for
equivalent performance depending on the VMbase’s VM
type relative to VMtype

i.
Step 3 – Scale resource utilization profile. To identify infra-

structure configurations that provide equivalent workload

TABLE 1
Resource Utilization Variables Tracked by VM-Scaler

RU variable Description

cpuUsr CPU time in user mode
cpuKrn CPU time in kernel mode
cpuIdle CPU idle time
cpuIoWait CPU time waiting for I/O to complete
cpuIntSrvc CPU time servicing interupts
cpuSftInt
Srvc

CPU time servicing soft interrupts

cpuNice CPU time executing prioritized processes
(user mode)

cpuSteal CPU ticks lost to other virtualized guests
contextsw Number of context switches
dsr Disk sector reads (1 sector ¼ 512 bytes)
dsw Disk sector writes (1 sector ¼ 512 bytes)
nbs Network bytes sent
nbr Network bytes received
dsreads Number of completed disk reads
drm Number of adjacent disk reads merged
readtime Time in ms spent reading from disk
dswrites Number of completed disk writes
dwm Number of adjacent disk writes merged
writetime Time in ms spent writing to disk
loadavg Avg # of running processes in last 60 sec

TABLE 2
Workload Cost Prediction Methodology

Step Task

0 Train RU conversion models: MVMtype1, .. MVMtype-j

1 Profile workload: RUw(VM-base) (W) on n x VMbase n ¼ base #VMs
2 Convert: RUw(VM-base)! (Mall)! RUw{n x VMtype1, .. n x VMtype-j},

n ¼ base #VMs, j ¼ number VM types
3 Scale profiles: RUw{n x VMtype1, .. n x VMtype-j}, n ¼ n to nþx

n ¼ base #VMs, x ¼ scale up #VMs
4 Select profile: perf(VMbase) ¼ {perf(n x VMtype1),.. perf(n x VMtype-j)} n ¼ #VMs

w/ equivalent performance
5 Minimize cost: Select min{cost(VMtype1), .. cost(VMtype-j)}
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performance to VMbase, we scale resource utilization pro-
files RUw{n x VMtype1, . . ., n x VMtype-j} from n to nþx VMs,
where x is the maximum quantity of VMs over n required
for equivalent performance. In Table 3 we show scaling
from 5 to 10 m1.xlarge VMs. For SOA workloads consisting
of individual service requests, the maximum number of
VMs to ever consider is equal to the number of workload
service requests divided by the number of CPU cores. For a
workload of 100 requests for example, 25 x m1.xlarge VMs
would be the worst case infrastructure to consider for
equivalent performance. This infrastructure enables every
request to run in parallel. A complete SOA workload can
never execute faster than its longest service request.

To scale our resource utilization profiles RUw{m1.xlarge}
from 5 to 10 VMs, we address how individual profile varia-
bles change when VM resources are added to execute the
workload. This is research question 3 from section 1. We
investigate two different scaling approaches: Resource Scal-
ing Approach 1 (RS-1) and Resource Scaling Approach 2
(RS-2). For scaling CPU-bound SOA workloads we focus on scal-
ing up cpuUsr and cpuKrn time. For RS-1, we only scale
cpuUsr and cpuKrn because they account for most of the sys-
tem time (98.94 percent). If scaling workloads are I/O
bound, it becomes important to address scaling of cpuIo-
Wait. For RS-2, we incorporate additionally cpuIoWait
scaling. These approaches exhibit an effort vs. accuracy
tradeoff. More accuracy can be obtained with greater effort.
From a research perspective, we investigate how much
accuracy is required (Research question 3).

RS-1: Application Agnostic. Resource Scaling Approach
1 (RS-1) is agnostic to the SOA being scaled. For RS-1,
idle m1.xlarge VMs are benchmarked to determine their
background resource consumption. Observed idle
resource utilization consists of typical background Linux
server processes. Observed cpuUsr time represents over-
head incurred for adding these VMs to the pool. Each
VM type being considered should be tested separately to
determine its background resource consumption. The
average number of background cpuUsr ticks per second is
determined. This background overhead/VM rate is used

to scale cpuUsr for Step 3. For RS-1, remaining parameters
are converted using the c3.xlarge!m1.xlarge model from
step 0, but not scaled up: cpuKrn, cpuIoWait, and cpuSf-
tIntSrvc. These parameters account for only a small frac-
tion of the total time, and represent background activity
not directly related to the SOA workload. Table 3 shows
RS-1 scaling of cpuUsr with cpuKrn conversion but no
scaling for the WEPS SOA (described in 4.1) for c3.
xlarge!m1.xlarge.

RS-2: Application Aware Heuristic. Resource Scaling
Approach 2 (RS-2) addresses how application specific
characteristics of how resource utilization profiles change
when VMs are added to the pool. A set of scaling runs is
used for sample workloads for each SOA scaling from n
to nþx, in our case 5 to 10. The average percentage
change for scaling up by 1 VM is calculated for cpuUsr,
cpuKrn, and cpuIoWait. Use of this average percentage
change supports scaling resource utilization profiles to
better account for changes based on specific SOAs. This
approach helps incorporate application specific informa-
tion into resource predictions.

Step 4 – Select resource utilization profile. Once SOA work-
load resource utilization profiles have been converted to
alternate VM types (step 2), and scaled (step 3), the final
step is to determine the number of VMs required for equiva-
lent SOA performance. An illustration of this selection prob-
lem appears in Table 3. The first row represents converted
profile output from step 2: 5 x c3.xlarge VMs to 5 x m1.
xlarge VMs. Harnessing equation (1) allows us to solve for
cpuIdle time. With only five VMs cpuIdle is negative! With
the specified “wall-time goal” for equivalent performance,
there is not enough physical time to execute the workload.
Each additional VM increases the total available clock ticks.
However, it is insufficient to simply select the first line where
cpuIdle is positive. To achieve equivalent performance for
SOA workloads there has to be extra cpuIdle time to
account for overhead, context switching, I/O, etc.

We need an approach which estimates when enough
cpuIdle time is available to provide equivalent performance
to VMbase. We describe two alternative profile selection
approaches: Profile Scaling Approach 1 (PS-1) and Profile
Scaling Approach 2 (PS-2) to estimate the required cpuIdle
time for equivalent performance.

PS-1: Application agnostic. Profile Selection Approach 1
(PS-1) is agnostic to the SOA being scaled. For PS-1 we con-
vert the cpuIdle time from n x VMbase to n x VMtype-j, in our
case 5 x c3.xlarge to 5 x m1.xlarge. We know there must be
more than 5 x m1.xlarge cpuIdle time after scaling to achieve
equivalent performance. We also expect more cpuIdle to be
required than the value from our Step 2 conversion
(c3.xlarge!m1.xlarge) value for five VMs. We need to know
cpuIdle time with 5 þ x VMs. For PS-1 we use a simple linear
function to determine a percentage to increase cpuIdle time
for each additional VM. Our equation is derived by calculat-
ing the average observed percent growth in cpuIdle time for
all SOAs when scaling up with m1.xlarge VMs. We then
assumed 0 percent growth for the VMbase of c3.xlarge
(3.5 ECUs), and linear growth based on the VM’s ECU rat-
ing to derive the linear scaling equation:

cpuIdle%growth ¼ �6:5715 ECUsþ 23: (2)

TABLE 3
Scaling Profile: RS-1 (WEPS—c3.xlarge->m1.xlarge)
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Our equation expresses percentage growth as a num-
ber from 1 to 100, and supports increasing cpuIdle time
faster for slower VM types. From SOA workload testing
we observe that slower VMs require more cpuIdle to
achieve equivalent performance. This approach to scale
cpuIdle for profile selection is application agnostic. We
take advantage of ECUs already being a normalized mea-
sure of CPU performance. If ECUs were unavailable a
similar approach using CPU clock speed could be derived
though we would need to compensate for generational
improvements in CPU performance. For example a 2012
Intel Xeon CPU at 2.5 GHz is somewhat faster than a
2007 Xeon at the same clock rate. Table 3 shows PS-1
selection as the dark grey row. PS-1 and PS-2 identify the
same row in the scaling profile example.

PS-2: Application aware heuristic. Our second Profile
Selection Approach (PS-2) attempts to address application
specific characteristics relating to cpuIdle time when infra-
structure is scaled up. We convert cpuIdle time from c3.
xlarge to m1.xlarge. After conversion, we scale the
required cpuIdle time for selection using the SOA specific
average percentage change in cpuIdle derived from appli-
cation scaling test observations. This approach does not
assume cpuIdle scales the same for all SOAs, but applies
an application specific scaling factor to support prediction
of required cpuIdle time. Table 3 shows PS-2 selection as
the dark grey row.

Step 5 – Minimize cost. Once profile selection has identi-
fied the number of VMs for equivalent performance using
alternate VM types, infrastructure costs can be calculated.
Cost is determined by multiplying the required number
of VMs by fixed or spot market VMtype prices to deter-
mine deployment costs. The lowest priced infrastructure
can be selected for SOA hosting while ensuring equiva-
lent performance.

4 EXPERIMENTAL INVESTIGATION

4.1 Environmental Modeling Services

To evaluate our workload cost prediction methodology
and investigate the research questions presented in
Section 1, we harness six environmental science SOAs
from the cloud services innovation platform (CSIP) [24],
[25]. These six SOAs represent a diverse array of applica-
tions with varying computational requirements and archi-
tectures. CSIP has been developed by Colorado State
University with the US Department of Agriculture
(USDA) to provide environmental modeling services.

CSIP provides a common Java-based framework for
REST/JSON based service development. CSIP services
are deployed using the Apache Tomcat web container
[26]. Our six SOAs include: the Revised Universal Soil
Loss Equation – Version 2 (RUSLE2) [27], the Wind Ero-
sion Prediction System (WEPS) [28], two versions of the
Soil Water Assessment Tool for modeling interactive
channel degradation (SWAT-DEG) [29], [30], the Compre-
hensive Flow Analysis LOAD ESTimator (CFA-LOAD-
EST) [31], [32], and the Comprehensive Flow Analysis
Load Duration Curve (CFA-LDC) [33].

RUSLE2 and WEPS are the USDA—Natural Resource
Conservation Service standard models for soil erosion
used by over 3,000 county level field offices. RUSLE2
(Windows/MS Visual Cþþ) contains empirical and pro-
cess-based science that predicts rill and interrill soil ero-
sion by rainfall and runoff. The Wind Erosion Prediction
System is a daily simulation model which outputs aver-
age soil loss and deposition values to predict soil erosion
due to wind. WEPS (Linux/Java/Fortran) consists of
seven sub models for weather, crop growth, decomposi-
tion, hydrology, soil, erosion, and tillage. M, D, F , and
L components used by RUSLE2 and WEPS are described
in Table 4. All other tested SOA workloads used only M
and L components. Resource profiling occurred only on
M VMs. One VM was statically allocated for D, F , and
L components.

Two variants of SWAT-DEG (Fortran/Linux) were
used. A deterministic version simulates stream down-cut-
ting and widening while also outputting a flow duration
curve and cumulative stream power. A stochastic version
supports Monte Carlo model calibration for model uncer-
tainty encountered within nature for river restoration/
rehabilitation projects. SWAT-DEG stochastic invokes
SWAT-DEG deterministic repeatedly to perform calibra-
tion runs and performs Map-Reduce operations. Individ-
ual runs are distributed to M worker VMs to perform
local computations which are later reduced. The reduce
phase was largely sequential, resulting in a heavy parallel
computation phase followed by a largely sequential
reduction phase.

CFA-LOADEST (Windows/FORTRAN) estimates the
amount of constituent loads in streams and rivers given a
time series of stream flows and constituent concentrations.
Estimation of constituent loads occurs in two steps, the cali-
bration procedure and the estimation procedure based on
statistical methods. CFA-LDC (java) graphsWeibull plotting
position ranks of river flows on a scale of percent exceedance.

TABLE 4
RUSLE2/WEPS SOA Components

Component RUSLE2 WEPS

M Model Apache Tomcat 6, Wine, OMS3 [34], [35] Apache Tomcat 6

D Database Postgresql-8.4, PostGIS 1.4: soils (4.3 m shapes), mgmt
(98 k shapes), climate (31 k shapes), 4.6 GB total
(Tennessee)

Postgresql-8.4, PostGIS 1.4, soils (4.3 m shapes),
climate/wind (850 shapes), 17 GB total (western
US data)

F File server nginx file server, 57 k XML files (305 MB),
parameterizes RUSLE2 model runs.

nginx file server, 291 k files (1.4 GB), parameterizes
WEPS model runs.

L Logger Redis - distributed cache server Redis - distributed cache server

LLOYD ET AL.: DEMYSTIFYING THE CLOUDS: HARNESSING RESOURCE UTILIZATION MODELS FOR COST EFFECTIVE INFRASTRUCTURE... 673



Graphing flow values in this way allows for a quick visuali-
zation of the variability of flow for different flow regimes.

4.2 The Virtual Machine Scaler

To facilitate performance profiling of virtual infrastruc-
tures for hosting SOA workloads we developed the Vir-
tual Machine Scaler, a REST/JSON-based web services
application [15]. VM-Scaler harnesses the Amazon EC2
API to support application profiling and cloud infrastruc-
ture management and currently supports Amazon’s pub-
lic cloud (EC2) and private clouds running Eucalyptus.
VM-Scaler provides cloud control while abstracting the
underlying IaaS cloud and can be extended to support
any EC2 compatible virtual infrastructure manager. Key
features are provided to support workload management
and IaaS cloud research. Features include: hotspot detec-
tion, dynamic scaling, VM management and placement,
job scheduling and proxy services, VM workload profil-
ing, and VM worker pools.

Upon initialization VM-Scaler probes the host cloud and
collects metadata including location and state information
for all VMs and physical hosts (private IaaS only). An agent
installed on each VM sends resource utilization data to VM-
Scaler at fixed intervals. Collected resource utilization varia-
bles are described previously in Table 1. Application and
load balancer configuration is performed automatically as
needed to support workload execution and profiling tasks.
VM-Scaler builds on previous research investigating the use
of resource utilization variables for guiding cloud applica-
tion deployment [8], [13].

VM-Scaler supports group management of VMs using a
construct known as a “VM pool”. Common operations can
be applied to pools in parallel to support flushing memory
caches, restarting the web container, checkpointing resource
utilization and running scripts. Pools support reuse of VMs
for multiple workloads as VMs can be returned to the pool
after job assignment. For Amazon’s public cloud, VMs are
billed for a minimum of one hour. This coarse-grained bill-
ing cycle makes it advantageous to retain VMs for at least
1 hour for potential reuse. Pools maintain a minimum num-
ber of members and can be instructed to spawn new VMs
in anticipation of future demand to help alleviate VM
launch latency.

4.3 Resource Utilization Checkpointing

VM-Scaler supports collection of resource utilization data
across a pool of worker VMs providing SOA workload exe-
cution. A simple script installed on each VM sends VM-
Scaler resource utilization data at preconfigured intervals.
VM-Scaler’s checkpoint service is called to mark the start
time for workload execution. Resource utilization deltas can
be calculated from any checkpoint to the present to capture
total resource utilization across a pool of VMs. All VMs run
Linux’s Network Time Protocol daemon (ntpd) to synchro-
nize clock times. VM-Scaler ensures resource utilization
data collection is synchronized to within one second.
Resource utilization checkpointing in VM-Scaler has been
tested using pools >100 VMs.

Resource utilization checkpoints allow for a composite
view of the total resource consumption of an SOA

workload. This novel feature helps characterize diverse
SOA workloads whose execution is distributed across an
array of VMs. Composite resource utilization profiles can
be harnessed to examine SOA workload characteristics,
resource use efficiency, perform analysis, and to build
models to support infrastructure and cost prediction.

4.4 Hardware Configuration

We develop and evaluate our methodology to achieve
equivalent SOA workload performance using different
VM types using Amazon’s public elastic compute cloud
(EC2). Amazon offers a diverse array of VM types, as well
as spot instances which enabled this research to be con-
ducted at a low cost in a public cloud environment with
real world multi-tenancy challenges. VM types used in the
evaluation of our workload cost prediction methodology
are described in Table 5. Trial-and-better was used to nor-
malize the backing CPUs of all VM pools to those
described in the table. We selected VMbase to be the c3.
xlarge. This third generation VM from Amazon provides
four cores at 3.5 ECUs per core. The c3 VMs are known as
“compute” optimized instances, as they are configured
with better CPUs but less memory and disk storage capac-
ity. Third generation VMs are all equipped with solid state
storage disks, though most are smaller in capacity than
previous first and second generation spindle disks. For
our investigation we benchmark all SOA workloads using
a pool of 5 x c3.xlarge VMs. Using our workload cost pre-
diction methodology we investigate what is required to
achieve equivalent SOA performance using m1.xlarge,
c1.medium, m2.xlarge, and m3.xlarge VMs.

4.5 Test Configurations

We train our VM-type resource utilization models
(MVMtype1, .. MVMtype-j) using workloads from six CSIP
applications as described in Table 6. Distinct training work-
loads were used to train models, while other unique work-
loads were used for validation. These models support
conversion of resource utilization profiles from one VM-
type to another. We train models to convert cpuUsr, cpuKrn,
cpuIdle, and cpuIoWait resource utilization between VM
types. We could also construct models to convert cpuIntSrvc,

TABLE 5
Equivalent Performance Investigation VM Types
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cspuSftIntSrvc, cpuNice, and cpuSteal. However, for our SOA
workloads, these resource utilization variables are shown to
have very little impact on total wall clock time.

In Section 3.1, we discussed the challenges cpuSteal
presents in accounting for wall clock time. We have chosen
to avoid these challenges by selecting SOA workloads and
VM type configurations which exhibit very low cpuSteal
time. It should be noted that it was not difficult to avoid
these cpuSteal challenges for this work. Accounting for cpuS-
teal time may be possible by investigating the use of offset
values to account for missing clock ticks in the presence of
relatively constant cpuSteal.

Fig. 1 illustrates the resource utilization of our CSIP SOA
workloads on 5 x c3.xlarge 4-core VMs. 25 percent cpuUsr is
equivalent to exercising one core at 100 percent for the dura-
tion of the SOAworkload. The figure demonstrates that these
six workloads are primarily CPU bound but vary widely as
to how effectively they exercise available cores. WEPS and
SWATDEG-deterministic were most effective at using avail-
able cores. RUSLE2 and SWATDEG-stochastic appear to
continuously exercise from one to two CPU cores. CFA-
LOADEST and CFA-LDC appear to utilize less than one
CPU core. The balance between cpuUsr time and cpuIdle time
illustrates how well a given workload performs computa-
tions in parallel. Adding increasingly more resources to
largely sequential workloads provides little performance
benefit as described by Amdahl’s Law. VM-Scaler’s resource
utilization checkpointing supports profiling the parallel

efficiency of SOA workloads. Fig. 1 illustrates the range of
efficiencies we observed for our six modeling SOAs.

Between individual training and validation SOA work-
loads, all application services were stopped, caches cleared,
and services restarted. The Linux virtual memory drop_c-
aches function was used to clear caches, dentries, and ino-
des. Clearing caches served to negate training effects
resulting from reusing test cases.

5 EXPERIMENTAL RESULTS

5.1 Resource Utilization Profile Prediction

Training resource utilization models which convert SOA
workload profiles between VM types requires execution
of SOA training workloads. We executed these workloads
using isolated dedicated M VMs. Resource utilization
checkpointing enabled profiling data to be collected with
minimum overhead. The effectiveness of our methodol-
ogy is confirmed by the high statistical predictably of key
resource utilization variables using linear regression. A
linear regression of cpuUsr for m1.xlarge vs. c3.xlarge pro-
vides R2 of .9924 when trained with our 6 CSIP SOAs. This
relationship is shown in Fig. 2. Clusters of data can be
seen in groups which represents our distinct SOA
workloads.

Using linear regression we tested if the same approach
was viable to predict cpuKrn, cpuIdle, and cpuIoWait, the
most important variables which account for wall clock time.
We observed good, though lower, R2 values for these
predictions. To refine our predictions we then applied step-
wise multiple linear regressions. We fed stepwise-MLR
every available resource utilization variable from Table 1 to
construct MLR models for cpuUsr, cpuKrn, cpuIdle, and
cpuIoWait. Stepwise MLR begins by modeling the depen-
dent variable using the complete set of independent varia-
bles and iterates by dropping the least powerful predictor
based on significance for each step. This enables testing var-
ious combinations until the best fit model which explains
the most variance (R2) is found. The resulting MLR models
had either seven or eight independent variables. The

TABLE 6
SOAWorkloads

CSIP SOA Test cases
per workload

# training
workloads

Avg. duration
5 x c3.xlarge

WEPS 100 10 96.6 s
RUSLE2 800 10 104.6 s
SwatDeg-Stoc 10 users � 150 sims 10 133.6 s
SwatDeg-Det 500 10 13.5 s
CFA-LOADEST 500 10 99.6 s
CFA-LDC 500 10 103.7 s

Fig. 1. CSIP SOA workload resource utilization: This figure shows the
diversity of resource utilization of the SOA workloads used to evaluate
our workload cost prediction methodology.

Fig. 2. CpuUsr c3.xlarge ! m1.xlarge linear regression: This figure
shows how linear regression nicely fits cpuUsr data explaining most
variance observed in our data demonstrated by the high R2 value.
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independent variables having the highest significance and
use for these models besides the variable being predicted
include (in decreasing order): dsw, cpuCtxtSw, dskWrts, cpuS-
teal, and cpuKrn. R2 values for our resource utilization vari-
able conversion models are shown in Table 7.

To test the effectiveness of combining six different
SOAs into a single MLR model to convert resource utili-
zation variables across VM-types we inspected regression
residual plots. A regression residual plot for the cpuUsr
c3.xlarge ! m1.xlarge model is shown in Fig. 3. Good
residual plots show points randomly dispersed around
the horizontal X-axis. This indicates linear regression is
appropriate for the data; otherwise, a non-linear model is
more appropriate. Fig. 3 shows a nice random distribu-
tion of predictions. We do note on the tails of our residual
plot cpuUsr is more often under or over predicted. This
effect causes poor cpuIdle predictions for SWATDEG-det
discussed later in Section 5.3. This behavior suggests cre-
ating separate resource utilization prediction models for
different workload types. SWATDEG-det workloads were
only 1/10 as long in duration as the majority of our SOAs
explaining reduced quality in model output.

Using linear and multiple regression we achieve signif-
icantly positive results at resource variable conversion
across VM-types enabling us to harness this approach
for SOA workload VM-type profile prediction (Research
question 2).

5.2 Resource Utilization Profile Scaling

In Section 3.2 we proposed our workload cost prediction
methodology. After profiles are converted, we must scale
up the profiles to determine the required number of VMs
for an alternative type to achieve equivalent performance.
We have designed two methods to support resource scaling
referred to as RS-1 (application agnostic) and RS-2 (applica-
tion aware heuristic). We evaluate their effectiveness by
scaling 2 validation workloads for each of our six SOAs. We
predict the required number of VMs to host our workloads
with performance equivalent to 5 x c3.xlarge VMs using m1.
xlarge, c1.medium, m2.xlarge, and m3.xlarge VM pools.

We discovered that our CFA-LOADEST and CFA-LDC
workloads did not scale properly. When additional VMs
were added to their VM pools, total workload execution
time either remained the same or increased! This explains

why these SOAs exhibit very high cpuIdle time as shown in
Fig. 1. Consequently, our workload cost prediction method-
ology predicted equivalent performance with five or six
alternate typed VMs. This was an accurate prediction
because indeed there was no improvement in workload exe-
cution time when the VM pools were scaled. We used CFA-
LOADEST and CFA-LDC resource utilization data for train-
ing our RU (MVMtype1, .. MVMtype-j) models for Research
question 2, but not for validation.

For our evaluations, we assume equivalent SOA work-
load performance as the ability to execute the workload
within � 2 seconds total wall clock time of the alternate
infrastructure.

For RS-1we profiled idleCSIPMVMs in isolation to deter-
mine their background CPU usage. We observed the cpuUsr
overhead per wall clock second and added the relative
amount to cpuUsr to scale SOA workload profiles in an appli-
cation agnostic way. For RS-1, we do not scale cpuKrn, cpuIo-
Wait, and cpuSftIntSrvc. We use VM-type converted values
but do not scale them further. We make 64 evaluations, eight
each for scaling with m1.xlarge, c1.medium, m2.xlarge, and
m3.xlarge profiles, with one evaluation each with PS-1 and
PS-2. RS-1 supported VM prediction with a mean absolute error of
.391 VMs per prediction. RS-1 led to scaling profiles that pro-
duced 20 under predictions and only four over predictions.
Of the prediction errors only one had a prediction error of
two VMs. All other predictionswere off by only one VM.

For RS-2 we conducted two workload scaling tests for
each SOA and averaged the percentage increase for cpuUsr,
cpuKrn, and cpuIoWait resulting from scaling the number of
M VMs. To generate scaled profiles we increase these
resource utilization variables by this percentage for each
VM added. For two-core VMs we always scale using two
VMs at a time since our VMbase c3.xlarge has four cores. For
RS-2 we made the same 64 evaluations, eight for scaling

TABLE 7
Linear Regression Models for VM-Type Resource

Variable Conversion

Fig. 3. CpuUsr c3.xlarge ! m1.xlarge residuals plot: This figure shows
the residual plot of our cpuUsr linear regression model. Predictions are
randomly distributed around the X-axis indicating that linear regression
is appropriate for dataset.
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with m1.xlarge, c1.medium, m2.xlarge, and m3.xlarge, twice
with PS-1 and PS-2 respectively. RS-2 supported VM predic-
tion with a mean absolute error of .328 VMs per prediction. RS-2
led to scaling profiles that produced 17 under predictions
and only four over predictions. All prediction errors were
off by one VM only.

RS-1 and RS-2 represent heuristic-based approaches to
scaling the resource utilization profile and provide potential
solutions to (Research question 3). RS-1 has the advantage of
being SOA agnostic and very simple to implement. SOA
specific scaling data is not required to scale resource pro-
files. However, predictions were about �17 percent less
accurate.

5.3 Profile Selection for Equivalent Performance

In addition to scaling converted resource utilization pro-
files, determining equivalent infrastructure performance
requires a method to select the resource utilization profile
from the set of scaled profiles. It is not sufficient to simply
select the first profile that has positive cpuIdle time. A
healthy surplus of cpuIdle time is necessary for most SOAs
to achieve equivalent performance. In Section 3.2, we pro-
posed two heuristic based approaches to resource utiliza-
tion profile selection for equivalent performance: PS-1
(application agnostic) and PS-2 (application aware).

For SWATDEG-det m1.xlarge evaluations, we observed
that our multiple linear regression model over predicted
cpuIdle time. We believe this prediction error occurred
because the average SWATDEG-det workload execution
time was only 1/10th of the other SOAs. This caused our
regression model to over predict cpuIdle time which pre-
vented profile selection. In this case, to correct the SWAT-
DEG-det cpuIdle prediction error we used raw c3.xlarge
cpuIdle values for profile selection.

PS-1 uses a simple linear equation to scale cpuIdle time as
the VM pool is scaled. The initial cpuIdle value is taken from
the VM-type resource utilization conversion. Equation (2)
(Section 3.2, PS-1) is then used to grow cpuIdle for each addi-
tional VM added. The output value represents the cpuIdle
threshold for profile selection. Linux CPU time accounting
principles are used to calculate the available cpuIdle time.
The first profile which exceeds the threshold is selected to
determine the minimum number of VMs required for
equivalent performance. PS-1 supported VM prediction with a
mean absolute error of .375 VMs per prediction. PS-1 led to pro-
file selections that produced 19 under predictions and only
four over predictions. Of the prediction errors only one had
a prediction error off by two VMs. All other predictions
were off by only one VM.

For PS-2 we conducted two SOA specific scaling tests
and averaged the observed percentage increase in cpuIdle
time. The initial cpuIdle value is taken from the VM-type
resource utilization conversion. The required cpuIdle time is
increased by the SOA specific percentage to establish a
threshold for profile selection. The first profile that exceeds
the threshold is selected to determine the minimum number
of VMs required for equivalent performance. PS-2 supported
VM prediction with a mean absolute error of .344 VMs per predic-
tion. PS-2 led to profile selections that produced 18 under
predictions and only four over predictions. All prediction
errors were off by one VM only.

PS-1 and PS-2 represent heuristic-based approaches to
selecting the correct resource utilization profile which will
provide equivalent SOA workload performance and pro-
vide potential solutions to (Research question 1). PS-1 has the
advantage of being SOA agnostic and very simple to imple-
ment. SOA specific scaling data is not required. Predictions
supported by our application agnostic approach PS-1 were
�9 percent less accurate, which is to be expected.

In Section 3.2 we proposed three alternatives for resource
scaling and profile selection each with increasing imple-
mentation costs though offering improved accuracy.
Mean absolute error (# VMs) for our SOA infrastructure
predictions using our resource scaling and profile selection
heuristics is summarized in Table 8. The combination of PS-1
and RS-2 together provided the most accurate predictions with a
mean absolute error of only .3125 VMs per prediction. For
resource scaling and profile selection, the application agnos-
tic approaches had slightly more error but were easy and
fast to implement with no scaling tests required. Our evalu-
ation demonstrates improvement with an application spe-
cific approach. We posit that training regression models
proposed for RS-3 and PS-3 will provide even greater accu-
racy in exchange for the effort.

5.4 Cost Prediction

We evaluated our workload cost prediction methodology’s
ability to predict workload costs for infrastructure alterna-
tives that provide equivalent performance. For this evalua-
tion we considered 10,000 compute hours of concurrent
SOA workload execution (<10 VMs) using m1.xlarge VMs
for WEPS, Rusle2, and SwatDeg-det, and 10,000 compute
hours of workload execution using c1.medium, m2.xlarge,
and m3.xlarge VMs for WEPS, Rusle2, SWATDEG-stoc, and
SWATDEG-det. We identified the number of VMs required
to achieve equivalent workload performance relative to
VMbase ¼ c3.xlarge for 1 compute hour using brute force
testing. We omit m1.xlarge SWATDEG-stoc testing because
our models predicted c3.xlarge equivalent performance
could not be achieved and testing verified this outcome. We
apply the fixed instance prices from Table 5. Using the allo-
cation required for 1 compute hour we multiply by 10,000
to estimate cost requirements for 10,000 compute hours.

The results of this evaluation appear in Table 9. These
cost predictions use our application specific PS-2/RS-2
approach. The total error column represents the cost
prediction error. Observed error was caused by under

TABLE 8
Equivalent Infrastructure Predictions Mean

Absolute Error (# VMs)

SOA / VM-type PS-1
(RS-1)

PS-2
(RS-1)

PS-1
(RS-2)

PS-2
(RS-2)

WEPS .5 .5 .5 .5
RUSLE2 .25 0 .125 .125
SWATDEG-STOC .75 .5 .5 .625
SWATDEG-DET .25 .375 .125 .125

m1.xlarge .375 .25 .25 .25
c1.medium .875 .625 .5 .625
m2.xlarge .25 .25 .25 .25
m3.xlarge .25 .25 .25 .25
Average .4375 .34375 .3125 .34375
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predicting the number of VMs required for equivalent
SOA performance. A perfect cost prediction methodology
accurately predicts hosting costs for alternate VM types
with no error. Our workload cost prediction methodology
produces a cost estimate only 3.59 percent below the actual
hosting cost for equivalent performance using alternate VM
types. Our results demonstrate how different VM-types
offer a range of economic outcomes for SOA workload
hosting. For 10,000 hours of scientific model execution
our predictions support a maximum potential cost sav-
ings of $25,600 (c1.medium versus m1.xlarge) nearly a 25
percent cost variance.

6 CONCLUSIONS

This paper describes our workload cost prediction method-
ology to support hosting SOAs using any virtual machine
type to provide equivalent performance. Our cost predic-
tion methodology provides architecture alternatives to min-
imize hosting costs for diverse SOA workloads. Armed
with infrastructure decision support, system analysts are
better able to make informed decisions that balance cost
and performance tradeoffs for SOA deployments.

Harnessing Linux time accounting principles and VM-
type resource predictions, our approach predicts the
required infrastructure to achieve equal or better workload
performance using any VM type (Research question 1). Multi-
ple linear regression is shown to support prediction of key
resource utilization variables required for Linux time
accounting. Strong predictability is found with coefficients
of determination of R2 ¼ .9993, .989, .9674, .9585 for cpuUsr,
cpuKrn, cpuIdle, and cpuIOWait respectively when convert-
ing Amazon EC2 VM resource utilization from the c3.xlarge
VM-type to m1.xlarge (Research question 2). A series of
resource scaling heuristics were tested to support resource
utilization predictions from n to n + x VMs. Profile selection
heuristics were evaluated to support determining infra-
structure required to provide equivalent or better perfor-
mance. The efficacy of these heuristics to predict the
required number of VMs to host SOA workloads while pro-
viding equivalent performance was shown to be as low as
.3125 VMs (PS-1 / RS-2) (Research question 3).

We implement a novel resource utilization checkpointing
technique which enables capturing composite resource utili-
zation profiles for SOA workloads executed across VM
pools. We applied the Trial-and-Better approach [2] to

normalize the CPUs backing VMs in our study to reduce
resource profile variance from VM implementation hetero-
geneity. Given these profiles we demonstrate the use of
stepwise multiple linear regression to convert SOA resource
utilization profiles to alternative VM types. We offer heuris-
tics to scale our predicted profiles and support infrastruc-
ture decisions for equivalent SOA workload performance.
Our workload cost prediction methodology provides mean
absolute error as low as .3125 VMs, and hosting cost esti-
mates to within 3.59 percent of actual.

In closing we predict all of the following will change:
(1) VM-types offered by public cloud providers, (2) price for
these VMs, and (3) the performance levels they provide.
Our workload cost prediction methodology helps demystify
the plethora of VM types offered by cloud vendors and
supports future changes. Our approach is generalizable to
any VM-type and helps to clarify ambiguous performance
rankings (e.g. ECUs, CCUs) with a quantitative statistically
backed approach which combines both application profiling
and VM benchmarking.

7 FUTURE WORK

As future work we propose Resource Scaling Approach 3
(RS-3), and Profile Selection Approach 3 (PS-3). Both
approaches should provide additional accuracy by training
SOA workload specific models beyond the heuristics pres-
ent in Section 3.2.

RS-3: Scaling models. Resource scaling approach (RS-3)
involves training a set of models, one each for cpuUsr,
cpuKrn, cpuIoWait, and cpuSftIntSrvc using resource utili-
zation data collected when scaling infrastructure for SOA
workloads. Scaling models incorporate resource utiliza-
tion parameters and the number of CPU cores as depen-
dent variables. One set of models is required for each
VM type. The models can then be trained using multiple
linear regressions or an alternate machine learning tech-
nique. This approach should provide high accuracy with
more testing effort.

PS-3: cpuIdle scaling models. Our third profile selection
approach (PS-3) involves training a set of models with scal-
ing runs to predict how cpuIdle time increases as infrastruc-
ture is scaled up. These cpuIdle models incorporate all
resource utilization variables from Table 1 and the number
of CPU cores for scaled deployments as dependent varia-
bles. One cpuIdle model is required for each VM type. These
models can then be trained using multiple linear regressions
or an alternate machine learning technique. This approach
should provide high accuracy with more testing effort.

An interesting extension for this work involves develop-
ing an approach to predict resource requirements (CPU
time, disk I/O, etc.) for SOA workloads based on scientific
model service parameterization. It is possible to analyze the
model parameterizations to characterize the expected dura-
tion and computing requirements for service quests before
they execute. We have attempted initial trials using the
WEPS model and have achieved R2 = �.5 using multiple lin-
ear regression using only a subset of the model parameters.
This white box approach to predict workload resource
requirements would enable initial workload profiling
(Step 1) to be eliminated. Service requests could be analyzed,

TABLE 9
Hourly SOA Hosting Cost Predictions with Alternate VM-Types
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not run, to predict workload execution costs and deployment
infrastructure. Developing this approach requires harness-
ing domain specific characteristics of service requests and
there will likely be limitations to the ability when training
models to accurately predict model service behavior.
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