
Implications of Alternative Serverless Application

Control Flow Methods

Sterling Quinn, Robert Cordingly, Wes Lloyd
 School of Engineering and Technology

 University of Washington

 Tacoma, WA USA

sterl1789@gmail.com, rcording@uw.edu, wlloyd@uw.edu

ABSTRACT

Function-as-a-Service or FaaS is a popular delivery model of

serverless computing where developers upload code to be

executed in the cloud as short running stateless functions. Using

smaller functions to decompose processing of larger tasks or

workflows introduces the question of how to instrument

application control flow to orchestrate an overall task or

workflow. In this paper, we examine implications of using

different methods to orchestrate the control flow of a serverless

data processing pipeline composed as a set of independent FaaS

functions. We performed experiments on the AWS Lambda FaaS

platform and compared how four different patterns of control flow

impact the cost and performance of the pipeline. We investigate

control flow using client orchestration, microservice controllers,

event-based triggers, and state-machines. Overall, we found that

asynchronous methods led to lower orchestration costs, and that

event-based orchestration incurred a performance penalty.

CCS CONCEPTS

• Computer systems organization → Cloud computing;

KEYWORDS

Serverless Computing, Frameworks, Function-as-a-Service,

Performance Evaluation, Programming Languages

ACM Reference format:

Sterling Quinn, Robert Cordingly, Wes Lloyd. 2021. Implications of

Alternative Serverless Application Control Flow Methods. In Proceedings

of 7th International Workshop on Serverless Computing (WoSC7) 2021.

ACM, Virtual Event, Canada, 6 pages.

1 Introduction

Function-as-a-Service (FaaS) is a “serverless” cloud

computing delivery model where developers provide code that is

run in isolated sandboxes provisioned and managed on demand by

the cloud provider. These sandboxes known as function instances,

provide scalable infrastructure for the code to run that is always

available, and resistant to failure [1][2]. This paper leverages

AWS Lambda as the FaaS platform combined with additional

services to facilitate investigations extending on work from [4].

Function-as-a-Service platforms have recently become a

popular option for hosting microservices. These platforms excel at

hosting and scaling independent microservices. When adopting

these platforms to host larger applications that aggregate

microservices together to constitute a task or workflow, it is

necessary to orchestrate the service-based application’s control

flow given the distributed nature of where functions execute in the

cloud. We refer to methods that instrument function call chains in

serverless applications as “serverless application control flow”.

Different options are possible for orchestrating application control

flow, but it is unclear initially what tradeoffs exist with each

option. When choosing between different methods of control flow

cost, performance, capability, and ease of development are factors

to consider. Methods for remotely triggering serverless calls can

have associated charges, while calling those functions from a

desktop or laptop client are generally free. A cloud-based virtual

machine can provide a low-latency server-side client to instrument

control flow but will also incur always-on costs. If speed is the

primary consideration, how latency varies between the different

control flow options is not intuitive. The capabilities of each

method must also be considered. If data must be exchanged

between functions, some control flow approaches facilitate the

exchange more easily than others. Given that developers time is

extremely valuable, the most economical option that requires the

least effort to implement may be preferred.

In this paper, we examine implications of four alternate

methods of serverless application control flow to orchestrate an

Extract-Transform-Load (ETL) style data processing pipeline.

Client Orchestration: This method involves calling the

individual pipeline steps synchronously from the deve loper’s

computer or from a centralized VM provisioned in the cloud.

Microservice Controller: This method involves provisioning

an additional serverless function to synchronously orchestrate

execution of the serverless functions in the pipeline.

State-Machine: This asynchronous method offered by the

cloud provider enables developers to define a state-machine to

describe function transitions and data flow. The cloud provider

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the owner/author(s).

WoSC '21, December 6, 2021, Virtual Event, Canada

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9172-6/21/12…$15.00

https://doi.org/10.1145/3493651.3493668https://doi.org/10.1145/1234567

890

Implications of Alternative Serverless Application

Control Flow Methods
WoSC’21, December 2021, Virtual Event, Canada

2

instruments a client based on the state-machine definition to

invoke functions for each step of the pipeline or workflow.

Event-Based Triggers: Cloud providers offer methods to

define ‘rules’ that trigger serverless functions when events occur.

These rules can be used to asynchronously orchestrate a pipeline.

1.1 Research Questions

This paper investigates the following research questions:

RQ-1 (Performance): What are the performance implications

for alternate methods of serverless application control flow?

Specifically, how does pipeline runtime, latency, and data

processing throughput vary?

RQ-2 (Cost): What are the cost implications for alternate

methods of serverless application control flow?

RQ-3 (Cold Start): What are the implications for cold start

for alternate methods of serverless application control flow?

Specifically, how does pipeline runtime, latency, and data

processing throughput vary when pipelines are run from a cold

state vs. warm?

RQ-4 (Memory): What are the implications for memory

reservation size for alternate methods of serverless application

control flow? Specifically, how does pipeline runtime, latency,

and data processing throughput vary when functions are deployed

with different memory sizes?

RQ-5 (Microservice Controller): What are the implications

for performance and cost for alternate memory reservation sizes

and controller programming languages for the microservice

controller application control flow pattern?

2 Background and Related Work

This paper leverages an ETL-style data processing pipeline

from [4] extending prior work that investigated performance and

cost implications of programming language choice for serverless

data processing pipelines. Here we examine alternate control flow

designs to orchestrate steps of a data processing pipeline. Our

efforts specifically aim to quantify cost and performance

implications of alternative control flow approaches.

Previously, López et al. examined different platform specific

FaaS orchestration systems [6] for application control flow. López

examined AWS Step Functions, Azure Durable Functions, and

IBM Composer. Their work focused on cloud platform specific

orchestration tools, and did not compare other control flow

methods. López quantified overhead by subtracting the sum of the

runtime of individual workflow functions from the runtime of an

aggregate function which combined all of a workflows functions

into one. López found that overhead grew linearly with the

number of functions in the sequence, and that overhead grew

exponentially with the number of parallel functions. They

concluded that AWS Step Functions was the most mature and

performant orchestration service. The offerings on other platforms

were still in experimental phases when the paper was published

limiting results of the cost comparison. A key limitation was that

the experiments used a function that slept for one second that did

not perform computational work. In our study, we leverage a

variant of the ETL data processing pipeline with various dataset

sizes to gain insight into how alternate control flow methods

impact the performance of tasks with different runtimes.

3 Serverless Application Control flow

Methods to orchestrate serverless application control flow can

be classified as synchronous or asynchronous. Synchronous

methods involve the caller maintaining an active connection to the

FaaS platform until a result is received. This provides the

advantage of having an immediate awareness of failure, but also

requires that the client dedicate an idle thread to wait for a

response. Asynchronous methods make a call to initiate function

execution without maintaining an open connection. The client

either polls for the final result or subscribes to a notification

service which pushes the result to the client on function

completion. Asynchronous invocations free computing resources

by releasing client threads that must wait for a result. Developers

must determine an appropriate polling interval that considers the

round-trip latency between the client and FaaS platform to strike a

balance between retrieving results and not wasting CPU cycles.

Figure 1: Serverless Application Control Flow Architectures:

(top left) Client Orchestration, (top right) State-Machine, (lower

left) Microservice Controller, (lower right) Event-Based Triggers

In this paper, we investigate four alternate approaches (Figure

1) for serverless application control flow: Client Orchestration,

State-Machine (e.g. AWS Step Functions), Microservice

Controller, and Event-Based Triggers (e.g. S3 triggers).

For Client Orchestration, we performed synchronous control

flow from a cloud based VM using scripts derived from the

Python-based FaaS Runner tool. In practice, client-side

orchestration could involve the use of any client including

personal desktops or laptop computers. To minimize latency and

improve reproducibility of results in our experiments, we

employed c5.xlarge instances in the same region and availability

zone as our FaaS functions. We used larger c5 instances to obtain

more vCPUs as needed for concurrent testing. In addition, all

experiments were performed from the same EC2 instance.

Function orchestration performance here will be limited by the

Client Orchestration State-Machine

Microservice Controller
Event-Based Triggers

Implications of Alternative Serverless Application

Control Flow Methods
WoSC’21, December 2021, Virtual Event, Canada

3

VM’s available resources (e.g. vCPUs and memory). For Client

Orchestration, we include the cost of the VM when calculating the

total cost of the data processing pipeline. VM costs for

instrumenting control flow will scale with FaaS pipeline runtime.

For State-Machines, we leveraged AWS Step Functions, a

service provided by Amazon to instrument server-side

asynchronous control flow. When invoked, the client must poll

Step Functions to learn when result(s) are available. Step

Functions enables developers to define workflows using an easy-

to-use GUI, supporting advanced constructs like if statements,

while handling data passing between functions enabling complex

workflows. Step Function bills per function transition on top of

AWS Lambda’s charges. Transitions include a pipeline’s start and

end, meaning a three-step pipeline requires four transitions.

For the Microservice Controller control flow approach, we

implemented a separate FaaS function to provide server-side

synchronous control flow to orchestrate pipelines. We developed

controllers in both Java and Python to compare cost and

performance differences. The Microservice Controller approach

suffers from the double billing problem [5], as cost is incurred for

both the function accomplishing the work and the controller. This

additional cost can be minimized as the controller function can be

provisioned with minimal memory. Specifically, we sought to

investigate the performance vs. cost implications of function

orchestration using low memory (i.e. cheap) controllers.

Most cloud providers offer event-based triggers to invoke

FaaS functions. For the Event-Based Triggers approach, we

leveraged Simple Storage Service (S3) events to trigger Lambda

functions. This way we orchestrate control flow by trapping S3

events occurring on buckets and objects. The event handling

approach is asynchronous, requiring FaaS function response

JSON objects to be pushed to, and then pulled from S3 for each

transition adding cost by increasing function runtime compared to

synchronous approaches. Event-Based Triggering additionally

incurs costs for S3 operations which are billed per operation. For

our data processing pipeline the size of the JSON response objects

published to S3 were constant resulting in a fixed cost for control

flow using the Event-Based Triggers approach regardless of the

size of the dataset processed. This control flow approach was the

only one requiring refactoring to instrument the pipeline due to

differences in how data was exchanged between functions. This

coupled the control flow approach to the function implementation

reducing reusability without first refactoring.

4 Methodology

4.1 Evaluation Metrics

To analyze control flow approaches we leveraged a variety of

metrics which are described in table I.

4.2 ETL Serverless Data Processing Pipeline

In this paper, we investigated alternate control flow

approaches using the three-step ETL-style data processing

pipeline from [4]. Our ETL-style pipeline presents a workflow

consisting of sequential steps without conditional branching. This

pipeline consists of three functions: a Transform function to

format and convert data, a Load function to load data into the

serverless Aurora MySQL database, and a Query function to

perform a series of SQL queries against the backend Aurora

MySQL database. Our pipeline processed sales data including

product order details, transaction pricing, and customer metadata

from CSV files stored in Amazon S3 ranging from 100 to 500,000

rows. Please refer to [4] for additional information regarding the

Transform-Load-Query (TLQ) pipeline.

TABLE I. SERVERLESS APPLICATION CONTROL FLOW METRICS

Metric Description

Pipeline runtime

End-time of last function minus start-time of first

function. Equivalent to pipeline elapsed time. Includes

function execution time and function transition time

Client runtime

Client-to-server round-trip time to execute the full

pipeline. For asynchronous control flow, the round-trip

time reflects when the client learns the pipeline has

completed through polling or push notifications.

Function runtime Function execution time excluding transition time.

Latency

This is latency of the control flow approach calculated as

pipeline runtime minus the combined function runtimes.

This reflects only the transition time between functions.

Billed amount
The total application hosting costs including FaaS

functions and any additional control flow charges.

Data throughput
Measured in data rows processed per second.

Represents the data processing velocity of the pipeline.

4.3 Tools and Platforms

To investigate serverless application control flow we

leveraged the AWS Lambda FaaS platform and related cloud

services [7]. To instrument experiments and benchmark

performance we leveraged the Serverless Application Analytics

Framework (SAAF) and the FaaS Runner tool [8]. SAAF supports

profiling performance, resource utilization, and infrastructure

metrics for FaaS workloads deployed to AWS Lambda written in

Java, Go, Node.js, and Python. Programmers include the SAAF

library and a few lines of code to enable SAAF profiling. SAAF

collects metrics from the Linux /proc filesystem (Linux procfs)

appending them to the JSON payload returned by the function

instance. FaaS Runner is a client-side application for defining and

executing experiments that works in conjunction with SAAF.

4.4 Experiments

To investigate control flow approaches we conducted the

following experiments. Dataset sizes refer to rows of CSV data.

EX-1. Overall Performance Comparison

We performed 11 runs of the TLQ pipeline for each control flow

method, with 100, 1,000, 5,000, 10,000, 50000, 100,000, and

500,000 row datasets.

Implications of Alternative Serverless Application

Control Flow Methods
WoSC’21, December 2021, Virtual Event, Canada

4

EX-2. Cold Performance Comparison

We performed 10 runs of the TLQ pipeline for each control flow

method using a 100,000-row dataset, with 45 minutes of sleep

time between runs. We set the Aurora Serverless database to stay

active for the duration of the experiment to isolate cold start

latency to only the Lambda functions.

EX-3. Lambda Functions Memory Size Comparison

We performed 11 runs of the TLQ pipeline for each control flow

method using a 100,000-row dataset, for each of the following

memory settings: 512, 768, 1024, 1536, and 2048 MB.

EX-4. Microservice Controller Memory & Language Comparison

We performed 11 runs of the TLQ pipeline each using the Java

and Python microservice controllers. We performed the

experiment using the 100,000-row data set with 128, 192, 384,

512 MB memory. 128 MB was insufficient to run the Java

controller, so 192 MB was used as the minimum.

For the Microservice Controller for EX-1, EX-2, and EX-3 we

used the Python controller configured with 128 MB of memory.

For every experiment except EX-3, we configured the TLQ

worker functions with 2048 MB of memory. For every experiment

except EX-2, the initial run was discarded to ensure “warm”

infrastructure. SAAFs newcontainer attribute was used to verify

that all function instances were warm for these experiments. In

addition, when reporting metrics, we discarded outliers (runtimes

more than two standard deviations from the mean).

Table II provides a price comparison of control flow methods.

TABLE II. PRICE COMPARISON - CONTROL FLOW METHODS

Control

flow

Method:

Client

Orchestration

(synchronous)

Microservice

Controller

(synchronous)

State-machine

(asynchronous)

Event-Based

Triggers

(asynchronous)

FaaS

Function

cost:

$.0000166667

/ GB-second

$.0000166667

/ GB-second

$.0000166667

/ GB-second

$.0000166667

/ GB-second

(includes runtime

for S3 download)

Flow

Control

Cost -

1 pipeline

execution

Cost of VM

(e.g. c5.large

EC2 Instance)

Cost of server-side

controller -

memory size may

differ from pipeline

functions

$.00010

4 transitions

@ $.000025 /

transition

$0.000012

2 get requests +

doesObjectExist

call

5 Experimental Results

5.1 Performance Comparison (EX-1)

Figure 2 depicts measured pipeline runtime with alternate

control flow methods for EX-1. The event-based triggers control

flow approach suffered in performance, consistently producing the

most latency as well as function runtime. The higher function

runtime was due to the additional time spent downloading the

previous function’s JSON output file to obtain data passed to the

ensuing function. Given the time spent downloading JSON output

files and latency remained constant as input data size increased,

the overhead was amortized, and the effect minimized on large

data payloads. For the 100-row dataset, event-based control flow

resulted in 384% slower performance compared to the other

asynchronous control flow approach, the state-machine. However,

for the largest dataset, the event-based approach had only a 2%

performance penalty vs. the state-machine. Normalizing results

for the 100,000 row experiments, the Microservice Controller,

State-Machine, and VM-client (Client Orchestration) were 28.1%,

27.7%, and 25.6% faster than Event-Based Triggers. This shows

the performance difference is relatively small between these three

other methods compared to Event-Based Triggers.

Figure 2: Pipeline runtime comparison of alternate control

flow methods

Figure 3: Cost vs. dataset size comparison for alternate

control flow methods

Data processing costs for one million pipeline executions is

shown in Figure 3. Event-Based triggers were consistently the

cheapest option for running the pipeline, though the difference

versus the State-Machine becomes relatively small as the dataset

size increases. When processing large datasets, the runtime of the

Lambda functions overpowers the cost of control flow. The cost

of our synchronous Microservice Controller and Client

Orchestration control flow methods increases quickly and

dramatically when processing larger datasets. This is to be

expected due to increased costs for additional cloud infrastructure

(e.g., a VM, or FaaS function) when data processing time is long.

For the largest dataset, the Microservice Controller was more than

twice the cost Event-Based Triggers, meaning a million pipeline

invocations using the largest dataset would cost ~$2,580 more

using the microservice controller! The elements that constitute

data processing costs for our data processing pipeline (compute +

control flow) are described in Table II.

Controller Type

Control Flow Methods

Implications of Alternative Serverless Application

Control Flow Methods
WoSC’21, December 2021, Virtual Event, Canada

5

5.2 Cold Performance Comparison (EX-2)

Table III depicts average cold vs. warm latency values

observer for the four control flow methods with rankings. The

highest increase in warm vs. cold latency for the TLQ pipeline

was seen when using the Microservice Controller for control flow.

The Microservice Controller, however, had the lowest latency of

any approach being slightly less than the State-Machine approach

implemented using AWS Step Functions. Warm latency was

derived from EX-1. Event based triggers had high cold and warm

latency. For use cases where real time processing is needed,

Event-Based triggers may be ineffective.

TABLE III. COLD-START LATENCY - CONTROL FLOW METHODS

Control flow

Method:

Cold

Latency

ms (rank)

Warm Latency

ms (rank)

Cold-to-Warm

Latency

Increase

ms (rank)

Cold-to-

Warm

latency

ratio (rank)

Client

Orchestration
2944 (3) 933 (3) 2011 (3) 3.16x (2)

Microservice

Controller
1850 (1) 192 (1) 1658 (1) 9.64x (4)

State-machine 1977 (2) 292 (2) 1685 (2) 6.77x (3)

Event-Based

Triggers
4910 (4) 2850 (4) 2060 (4) 1.72x (1)

5.3 Function Memory Size Comparison (EX-3)

We examined how the pipeline runtime varied for each

control flow approach while increasing the allocated memory for

the TLQ functions. Functions were run with 512, 768, 1024, 1536,

and 2048 MB using the 100,000 row dataset. Reducing function

memory from 2048 to 512 MB using event-based triggers control

flow doubled pipeline runtime. Notably, doubling function

memory did not halve the pipeline runtime for any control flow

method. AWS Lambda often claims doubling function memory

should double performance. This result is likely due to pipeline

dependencies on external cloud services (S3 and Aurora). Event-

Based Triggers experienced the greatest decrease in pipeline

runtime between 1024 MB and 1536 MB, 23.1%. Other methods

all experienced the biggest decrease from 512 MB to 1024 MB at

20.0%, 20.0%, and 17.7% for the Microservice Controller, State-

Machine, and VM-client (Client Orchestration) respectively.

Event-based triggers only improved by 12.7% for this memory

step. The plot line for event-based triggers in Figure 4 appears

nearly linear between 512 and 1536 MB meaning additional

memory helped improve performance consistently through this

range. The other methods show more concavity between 512 and

1536 MB. Beyond 1536 MB little performance improvement was

seen, likely because our functions did not utilize multiple threads.

Above 1536 MB, Lambda functions gain access to an additional

vCPU [9]. The Event-Based Trigger control flow approach better

performance improvements relative to memory size may be

attributed to I/O improvements as these functions download the

prior function’s JSON response object from S3, a step unique to

this control flow method.

Figure 4: Pipeline runtime vs. memory reservation size (top),

Pipeline throughput vs. memory reservation size (bottom)

5.4 Microservice Controller Comparison (EX-4)

In EX-4 we investigated memory and programming language

implications when using a server-side function to orchestrate

control flow. Figure 5 depicts pipeline runtime across the different

controller memory settings. The figure shows consistent

performance improvements for the Java controller. The Python

controller, however, did not exhibit a relationship between

memory allocation and performance, as the lowest memory

setting provided the lowest pipeline runtime! It is important to

note that the relative performance difference was very small with

the difference between the fastest memory setting and the slowest

being 3.2% for the Python controller, and 2.4% for the Java

controller. Comparing performance across languages at the 192

MB setting shows a 3.2% improvement for the Java controller vs.

Python. Allocating additional memory to the controller only

resulted in a small performance improvement. For the 100,000

row dataset, the controller was shown to spend the majority of its

time idling because data processing time was much larger than the

pipeline latency. Figure 5 (right), shows controller price vs.

memory allocation. A linear relationship between price and

memory allocation is seen because the cost of allocating

additional memory to the controller was not offset by a significant

Control Flow Methods

Control Flow Methods

Implications of Alternative Serverless Application

Control Flow Methods
WoSC’21, December 2021, Virtual Event, Canada

6

runtime improvement as EX-4 processed a large number of rows

(100,000). Doubling memory led to about a doubling in price.

Figure 5: Comparison of pipeline runtime (left), and transition

costs (right) for Java vs. Python microservice controllers

6 Conclusions

In this case study we compared different methods for

orchestrating a multi-function data processing pipeline

implemented on AWS Lambda. We implemented four alternate

control flow approaches and performed experiments to investigate

performance and cost implications for hosting a serverless data

processing pipeline. We investigated control flow implications of

different function memory configurations and infrastructure state

(i.e. cold vs. warm). The summary of our findings is as follows:

RQ-1 (Performance): Executing the TLQ pipeline using

each control flow method for various data sizes allowed us to

examine how latency, pipeline runtime, and cost varied depending

on the control flow method. We found that Event-Based Triggers

had a noticeable performance penalty vs. the other methods. The

difference in pipeline runtime using Event-Based Triggers

compared to the State-Machine was 384%, 28%, and 2% for the

100, 100,000 and 500,000 row datasets. Performance of the VM-

client (Client Orchestration), Microservice Controller, and State-

Machine control flow was relatively similar, with the difference in

pipeline runtime for these methods being less than 3% for the

100,000 row dataset.

RQ-2 (Cost): We found that the synchronous control flow

methods, Microservice Controller and the VM-client (Client

Orchestration), exhibited significantly higher costs compared to

the asynchronous methods for all but the smallest datasets. A cost

increase of over 200% was seen with the largest dataset. This

equates to a premium of ~$2,580 (137%) when using the

Microservice Controller compared to Event-Based Triggers for

one million pipeline executions with the 500,000 row dataset.

RQ-3 (Cold Start): Our cold start experiment revealed that

the Microservice Controller had the lowest latency, even less that

the State-Machine supported by AWS Step Functions. Event -

Based Triggers had the highest warm and cold latency and may

not be suitable where very fast response times are needed.

RQ-4 (Memory): Event-Based triggers experienced the

largest improvement in pipeline runtime (43%) at 2048MB

compared to 512MB. Scaling TLQ function memory from 512

MB to 1024 MB resulted in the largest pipeline runtime

improvements for the other control flow approaches, while

pipeline runtime only improved by nearly half as much for Event-

Based Triggers. Event based triggers exhibited the largest

performance improvement when scaling from 1024 MB to 1536

MB. All control flow methods improved the least when scaling

from 1536 MB to 2048 MB.

RQ-5 (Microservice Controller): Performance and cost of

the Microservice Controller control flow approach had only

minimal improvements when varying the controller memory

allocation or programming language (Java vs. Python).

Performance improved by 2.4% with additional memory for the

Java implementation, while Python showed no discernible

relationship between memory and performance with the lowest

memory setting performing over 2% better than the highest. Given

that the controllers spent most of their active time idling, the

additional memory increased costs while not providing a

significant performance improvement. The Java controller at 512

MB was the fastest, while the Python controller at 128 MB was

the cheapest.

In conclusion, synchronous control flow methods such as the

Microservice Controller exhibited higher costs, but low latency,

while Event-Based Triggers required FaaS function refactoring,

while having low costs, though high latency. The State-Machine

approach implemented with AWS Step Functions provided a good

balance of high performance and intuitive developer experience.

ACKNOWLEDGMENTS

This research is supported by the NSF Advanced

Cyberinfrastructure Research Program (OAC-1849970), NIH

grant R01GM126019, and AWS Cloud Credits for Research.

REFERENCES

[1] Wang, L., Li, M., Zhang, Y., Ristenpart, T. and Swift, M., 2018. Peeking

behind the curtains of serverless platforms. In Proc. of the 2018 USENIX

Annual Technical Conference (ATC '18), pp. 133-146.

[2] Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., Pallickara, S., Serverless

Computing: An Investigation of Factors Influencing Microservice Performance,

IEEE Int. Conf. on Cloud Engineering (IC2E 2018), Apr 17-20, 2018.

[3] Van Eyk, E., Toader, L., Talluri, S., Versluis, L., Uță, A. and Iosup, A.,

Serverless is more: From PaaS to Present Cloud Computing. IEEE Internet

Computing, Sept. 2018, 22(5), pp.8-17.

[4] Cordingly, R., Yu, H., Hoang, V., Perez, D., Foster, D., Sadeghi, Z., Hatchett,

R. and Lloyd, W.J., Implications of Programming Language Selection for

Serverless Data Processing Pipelines. In Proc. of the 6th IEEE Intl Conf on

Cloud and Big Data Computing (CBDCom 2020), August 2020, pp. 704-711.

[5] Baldini, I., Cheng, P., Fink, S.J., Mitchell, N., Muthusamy, V., Rabbah, R.,

Suter, P. and Tardieu, O., The serverless trilemma: Function composition for

serverless computing. In Proceedings of the ACM SIGPLAN International

Symposium on New Ideas, New Paradigms, and Reflections on Programming

and Software (Onward! 2017), Oct 2017, pp. 89-103.

[6] López, P.G., Sánchez-Artigas, M., París, G., Pons, D.B., Ollobarren, Á.R. and

Pinto, D.A., Comparison of FaaS Orchestration Systems. In 11th IEEE/ACM

International Conference on Utility and Cloud Computing Workshops: 4th

Workshop on Serverless Computing (WoSC '18), December 2018, pp. 148-153.

[7] “AWS Lambda,” AWS, [Online]. Available: https://aws.amazon.com/lambda/.

[Accessed: 13-Dec-2020].

[8] Cordingly, R., Yu, H., Hoang, V., Sadeghi, Z., Foster, D., Perez, D., Hatchett,

R., Lloyd, W., The Serverless Application Analytics Framework: Enabling

Design Trade-off Evaluation for Serverless Software, 2020 21st ACM/IFIP Int.

Middleware Conference: 6th Int. Workshop on Serverless Computing (WoSC

'20), Dec 7-11, 2020.

[9] Cordingly, R., Heydari, N., Yu, H., Hoang, V., Sadeghi, Z., Lloyd, W.,

Enhancing Observability of Serverless Computing with the Serverless

Application Analytics Framework, Tutorial Paper. 2021 12th ACM/SPEC Int.

Conference on Performance Engineering (ICPE '21), Apr 19-23, 2021.

