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ABSTRACT 

Function-as-a-Service or FaaS is a popular delivery model of 

serverless computing where developers upload code to be 

executed in the cloud as short running stateless functions. Using 

smaller functions to decompose processing of larger tasks or 

workflows introduces the question of how to instrument 

application control flow to orchestrate an overall task or 

workflow. In this paper, we examine implications of using 

different methods to orchestrate the control flow of a serverless 

data processing pipeline composed as a set of independent FaaS 

functions. We performed experiments on the AWS Lambda FaaS 

platform and compared how four different patterns of control flow 

impact the cost and performance of the pipeline. We investigate 

control flow using client orchestration, microservice controllers, 

event-based triggers, and state-machines. Overall, we found that 

asynchronous methods led to lower orchestration costs, and that 

event-based orchestration incurred a performance penalty. 
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1 Introduction 

Function-as-a-Service (FaaS) is a “serverless” cloud 

computing delivery model where developers provide code that is 

run in isolated sandboxes provisioned and managed on demand by 

the cloud provider. These sandboxes known as function instances, 

provide scalable infrastructure for the code to run that is always 

available, and resistant to failure [1][2]. This paper leverages 

AWS Lambda as the FaaS platform combined with additional 

services to facilitate investigations extending on work from [4]. 

Function-as-a-Service platforms have recently become a 

popular option for hosting microservices. These platforms excel at 

hosting and scaling independent microservices. When adopting 

these platforms to host larger applications that aggregate 

microservices together to constitute a task or workflow, it is 

necessary to orchestrate the service-based application’s control 

flow given the distributed nature of where functions execute in the 

cloud. We refer to methods that instrument function call chains in 

serverless applications as “serverless application control flow”. 

Different options are possible for orchestrating application control 

flow, but it is unclear initially what tradeoffs exist with each 

option. When choosing between different methods of control flow 

cost, performance, capability, and ease of development are factors 

to consider. Methods for remotely triggering serverless calls can 

have associated charges, while calling those functions from a 

desktop or laptop client are generally free. A cloud-based virtual 

machine can provide a low-latency server-side client to instrument 

control flow but will also incur always-on costs. If speed is the 

primary consideration, how latency varies between the different 

control flow options is not intuitive. The capabilities of each 

method must also be considered. If data must be exchanged 

between functions, some control flow approaches facilitate the 

exchange more easily than others. Given that developers time is 

extremely valuable, the most economical option that requires the 

least effort to implement may be preferred. 

In this paper, we examine implications of four alternate 

methods of serverless application control flow to orchestrate an 

Extract-Transform-Load (ETL) style data processing pipeline. 

Client Orchestration: This method involves calling the 

individual pipeline steps synchronously from the deve loper’s 

computer or from a centralized VM provisioned in the cloud. 

Microservice Controller: This method involves provisioning 

an additional serverless function to synchronously orchestrate 

execution of the serverless functions in the pipeline. 

State-Machine: This asynchronous method offered by the 

cloud provider enables developers to define a state-machine to 

describe function transitions and data flow. The cloud provider 
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instruments a client based on the state-machine definition to 

invoke functions for each step of the pipeline or workflow. 

Event-Based Triggers: Cloud providers offer methods to 

define ‘rules’ that trigger serverless functions when events occur. 

These rules can be used to asynchronously orchestrate a pipeline. 

1.1 Research Questions 

This paper investigates the following research questions:  

RQ-1 (Performance): What are the performance implications 

for alternate methods of serverless application control flow? 

Specifically, how does pipeline runtime, latency, and data 

processing throughput vary?  

RQ-2 (Cost): What are the cost implications for alternate 

methods of serverless application control flow?   

RQ-3 (Cold Start): What are the implications for cold start 

for alternate methods of serverless application control flow? 

Specifically, how does pipeline runtime, latency, and data 

processing throughput vary when pipelines are run from a cold 

state vs. warm? 

RQ-4 (Memory): What are the implications for memory 

reservation size for alternate methods of serverless application 

control flow? Specifically, how does pipeline runtime, latency, 

and data processing throughput vary when functions are deployed 

with different memory sizes? 

RQ-5 (Microservice Controller): What are the implications 

for performance and cost for alternate memory reservation sizes 

and controller programming languages for the microservice 

controller application control flow pattern?   

2 Background and Related Work 

This paper leverages an ETL-style data processing pipeline 

from [4] extending prior work that investigated performance and 

cost implications of programming language choice for serverless 

data processing pipelines. Here we examine alternate control flow 

designs to orchestrate steps of a data processing pipeline. Our 

efforts specifically aim to quantify cost and performance 

implications of alternative control flow approaches. 

Previously, López et al. examined different platform specific 

FaaS orchestration systems [6] for application control flow. López 

examined AWS Step Functions, Azure Durable Functions, and 

IBM Composer. Their work focused on cloud platform specific 

orchestration tools, and did not compare other control flow 

methods. López quantified overhead by subtracting the sum of the 

runtime of individual workflow functions from the runtime of an 

aggregate function which combined all of a workflows functions 

into one. López found that overhead grew linearly with the 

number of functions in the sequence, and that overhead grew 

exponentially with the number of parallel functions. They 

concluded that AWS Step Functions was the most mature and 

performant orchestration service. The offerings on other platforms 

were still in experimental phases when the paper was published 

limiting results of the cost comparison. A key limitation was that 

the experiments used a function that slept for one second that did 

not perform computational work. In our study, we leverage a 

variant of the ETL data processing pipeline with various dataset 

sizes to gain insight into how alternate control flow methods 

impact the performance of tasks with different runtimes. 

3 Serverless Application Control flow 

Methods to orchestrate serverless application control flow can 

be classified as synchronous or asynchronous. Synchronous 

methods involve the caller maintaining an active connection to the 

FaaS platform until a result is received. This provides the 

advantage of having an immediate awareness of failure, but also 

requires that the client dedicate an idle thread to wait for a 

response. Asynchronous methods make a call to initiate function 

execution without maintaining an open connection. The client 

either polls for the final result or subscribes to a notification 

service which pushes the result to the client on function 

completion. Asynchronous invocations free computing resources 

by releasing client threads that must wait for a result. Developers 

must determine an appropriate polling interval that considers the 

round-trip latency between the client and FaaS platform to strike a 

balance between retrieving results and not wasting CPU cycles. 

  

  

Figure 1: Serverless Application Control Flow Architectures: 

(top left) Client Orchestration, (top right) State-Machine, (lower 

left) Microservice Controller, (lower right) Event-Based Triggers 

In this paper, we investigate four alternate approaches (Figure 

1) for serverless application control flow: Client Orchestration, 

State-Machine (e.g. AWS Step Functions), Microservice 

Controller, and Event-Based Triggers (e.g. S3 triggers). 

For Client Orchestration, we performed synchronous control 

flow from a cloud based VM using scripts derived from the 

Python-based FaaS Runner tool. In practice, client-side 

orchestration could involve the use of any client including 

personal desktops or laptop computers. To minimize latency and 

improve reproducibility of results in our experiments, we 

employed c5.xlarge instances in the same region and availability 

zone as our FaaS functions. We used larger c5 instances to obtain 

more vCPUs as needed for concurrent testing. In addition, all 

experiments were performed from the same EC2 instance. 

Function orchestration performance here will be limited by the 

Client Orchestration State-Machine 

Microservice Controller 
Event-Based Triggers 
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VM’s available resources (e.g. vCPUs and memory). For Client 

Orchestration, we include the cost of the VM when calculating the 

total cost of the data processing pipeline. VM costs for 

instrumenting control flow will scale with FaaS pipeline runtime. 

For State-Machines, we leveraged AWS Step Functions, a 

service provided by Amazon to instrument server-side 

asynchronous control flow. When invoked, the client must poll 

Step Functions to learn when result(s) are available. Step 

Functions enables developers to define workflows using an easy-

to-use GUI, supporting advanced constructs like if statements, 

while handling data passing between functions enabling complex 

workflows. Step Function bills per function transition on top of 

AWS Lambda’s charges. Transitions include a pipeline’s start and 

end, meaning a three-step pipeline requires four transitions. 

For the Microservice Controller control flow approach, we 

implemented a separate FaaS function to provide server-side 

synchronous control flow to orchestrate pipelines. We developed 

controllers in both Java and Python to compare cost and 

performance differences. The Microservice Controller approach 

suffers from the double billing problem [5], as cost is incurred for 

both the function accomplishing the work and the controller. This 

additional cost can be minimized as the controller function can be 

provisioned with minimal memory.  Specifically, we sought to 

investigate the performance vs. cost implications of function 

orchestration using low memory (i.e. cheap) controllers. 

Most cloud providers offer event-based triggers to invoke 

FaaS functions. For the Event-Based Triggers approach, we 

leveraged Simple Storage Service (S3) events to trigger Lambda 

functions. This way we orchestrate control flow by trapping S3 

events occurring on buckets and objects. The event handling 

approach is asynchronous, requiring FaaS function response 

JSON objects to be pushed to, and then pulled from S3 for each 

transition adding cost by increasing function runtime compared to 

synchronous approaches. Event-Based Triggering additionally 

incurs costs for S3 operations which are billed per operation. For 

our data processing pipeline the size of the JSON response objects 

published to S3 were constant resulting in a fixed cost for control 

flow using the Event-Based Triggers approach regardless of the 

size of the dataset processed. This control flow approach was the 

only one requiring refactoring to instrument the pipeline due to 

differences in how data was exchanged between functions. This 

coupled the control flow approach to the function implementation 

reducing reusability without first refactoring. 

4 Methodology 

4.1 Evaluation Metrics 

To analyze control flow approaches we leveraged a variety of 

metrics which are described in table I.  

4.2 ETL Serverless Data Processing Pipeline  

In this paper, we investigated alternate control flow 

approaches using the three-step ETL-style data processing 

pipeline from [4]. Our ETL-style pipeline presents a workflow 

consisting of sequential steps without conditional branching. This 

pipeline consists of three functions: a Transform function to 

format and convert data, a Load function to load data into the 

serverless Aurora MySQL database, and a Query function to 

perform a series of SQL queries against the backend Aurora 

MySQL database. Our pipeline processed sales data including 

product order details, transaction pricing, and customer metadata 

from CSV files stored in Amazon S3 ranging from 100 to 500,000 

rows. Please refer to [4] for additional information regarding the 

Transform-Load-Query (TLQ) pipeline.  

TABLE I.  SERVERLESS APPLICATION CONTROL FLOW METRICS 

Metric Description 

Pipeline runtime 

End-time of last function minus start-time of first 

function. Equivalent to pipeline elapsed time. Includes 

function execution time and function transition time 

Client runtime 

Client-to-server round-trip time to execute the full 

pipeline. For asynchronous control flow, the round-trip 

time reflects when the client learns the pipeline has 

completed through polling or push notifications. 

Function runtime Function execution time excluding transition time. 

Latency 

This is latency of the control flow approach calculated as 

pipeline runtime minus the combined function runtimes. 

This reflects only the transition time between functions. 

Billed amount 
The total application hosting costs including FaaS 

functions and any additional control flow charges. 

Data throughput 
Measured in data rows processed per second. 

Represents the data processing velocity of the pipeline. 

4.3 Tools and Platforms 

To investigate serverless application control flow we 

leveraged the AWS Lambda FaaS platform and related cloud 

services [7]. To instrument experiments and benchmark 

performance we leveraged the Serverless Application Analytics 

Framework (SAAF) and the FaaS Runner tool [8]. SAAF supports 

profiling performance, resource utilization, and infrastructure 

metrics for FaaS workloads deployed to AWS Lambda written in 

Java, Go, Node.js, and Python. Programmers include the SAAF 

library and a few lines of code to enable SAAF profiling. SAAF 

collects metrics from the Linux /proc filesystem (Linux procfs) 

appending them to the JSON payload returned by the function 

instance. FaaS Runner is a client-side application for defining and 

executing experiments that works in conjunction with SAAF.  

4.4 Experiments 

To investigate control flow approaches we conducted the 

following experiments. Dataset sizes refer to rows of CSV data. 

EX-1. Overall Performance Comparison 

We performed 11 runs of the TLQ pipeline for each control flow 

method, with 100, 1,000, 5,000, 10,000, 50000, 100,000, and 

500,000 row datasets. 
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EX-2. Cold Performance Comparison 

We performed 10 runs of the TLQ pipeline for each control flow 

method using a 100,000-row dataset, with 45 minutes of sleep 

time between runs. We set the Aurora Serverless database to stay 

active for the duration of the experiment to isolate cold start 

latency to only the Lambda functions. 

EX-3. Lambda Functions Memory Size Comparison 

We performed 11 runs of the TLQ pipeline for each control flow 

method using a 100,000-row dataset, for each of the following 

memory settings: 512, 768, 1024, 1536, and 2048 MB. 

EX-4. Microservice Controller Memory & Language Comparison 

We performed 11 runs of the TLQ pipeline each using the Java 

and Python microservice controllers. We performed the 

experiment using the 100,000-row data set with 128, 192, 384, 

512 MB memory. 128 MB was insufficient to run the Java 

controller, so 192 MB was used as the minimum.   

For the Microservice Controller for EX-1, EX-2, and EX-3 we 

used the Python controller configured with 128 MB of memory. 

For every experiment except EX-3, we configured the TLQ 

worker functions with 2048 MB of memory. For every experiment 

except EX-2, the initial run was discarded to ensure “warm” 

infrastructure. SAAFs newcontainer attribute was used to verify 

that all function instances were warm for these experiments.  In 

addition, when reporting metrics, we discarded outliers (runtimes 

more than two standard deviations from the mean).  

Table II provides a price comparison of control flow methods. 

TABLE II.  PRICE COMPARISON - CONTROL FLOW METHODS 

Control 

flow  

Method: 

Client 

Orchestration 

(synchronous) 

Microservice  

Controller 

(synchronous) 

State-machine 

(asynchronous) 

Event-Based 

Triggers 

(asynchronous) 

FaaS 

Function 

cost: 

$.0000166667 

/ GB-second 

$.0000166667 

/ GB-second 

$.0000166667 

/ GB-second 

$.0000166667  

/ GB-second 

(includes runtime 

for S3 download) 

Flow 

Control 

Cost - 

1 pipeline 

execution 

Cost of VM 

(e.g. c5.large  

EC2 Instance) 

Cost of server-side 

controller - 

memory size may 

differ from pipeline 

functions 

$.00010  

 

4 transitions 

@ $.000025 / 

transition 

$0.000012 

 

2 get requests + 

doesObjectExist 

call 

5 Experimental Results 

5.1 Performance Comparison (EX-1) 

Figure 2 depicts measured pipeline runtime with alternate 

control flow methods for EX-1. The event-based triggers control 

flow approach suffered in performance, consistently producing the 

most latency as well as function runtime. The higher function 

runtime was due to the additional time spent downloading the 

previous function’s JSON output file to obtain data passed to the 

ensuing function. Given the time spent downloading JSON output 

files and latency remained constant as input data size increased, 

the overhead was amortized, and the effect minimized on large 

data payloads. For the 100-row dataset, event-based control flow 

resulted in 384% slower performance compared to the other 

asynchronous control flow approach, the state-machine. However, 

for the largest dataset, the event-based approach had only a 2% 

performance penalty vs. the state-machine. Normalizing results 

for the 100,000 row experiments, the Microservice Controller, 

State-Machine, and VM-client (Client Orchestration) were 28.1%, 

27.7%, and 25.6% faster than Event-Based Triggers. This shows 

the performance difference is relatively small between these three 

other methods compared to Event-Based Triggers. 

 

Figure 2: Pipeline runtime comparison of alternate control 

flow methods 

 

Figure 3: Cost vs. dataset size comparison for alternate 

control flow methods  

Data processing costs for one million pipeline executions is 

shown in Figure 3. Event-Based triggers were consistently the 

cheapest option for running the pipeline, though the difference 

versus the State-Machine becomes relatively small as the dataset 

size increases. When processing large datasets, the runtime of the 

Lambda functions overpowers the cost of control flow. The cost 

of our synchronous Microservice Controller and Client 

Orchestration control flow methods increases quickly and 

dramatically when processing larger datasets. This is to be 

expected due to increased costs for additional cloud infrastructure 

(e.g., a VM, or FaaS function) when data processing time is long. 

For the largest dataset, the Microservice Controller was more than 

twice the cost Event-Based Triggers, meaning a million pipeline 

invocations using the largest dataset would cost ~$2,580 more 

using the microservice controller! The elements that constitute 

data processing costs for our data processing pipeline (compute + 

control flow) are described in Table II. 

Controller Type 

Control Flow Methods 
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5.2 Cold Performance Comparison (EX-2) 

Table III depicts average cold vs. warm latency values 

observer for the four control flow methods with rankings. The 

highest increase in warm vs. cold latency for the TLQ pipeline 

was seen when using the Microservice Controller for control flow. 

The Microservice Controller, however, had the lowest latency of 

any approach being slightly less than the State-Machine approach 

implemented using AWS Step Functions. Warm latency was 

derived from EX-1. Event based triggers had high cold and warm 

latency. For use cases where real time processing is needed, 

Event-Based triggers may be ineffective. 

TABLE III.  COLD-START LATENCY - CONTROL FLOW METHODS 

Control flow  

Method: 

Cold 

Latency  

ms (rank) 

Warm Latency  

ms (rank) 

Cold-to-Warm 

Latency 

Increase 

ms (rank) 

Cold-to-

Warm 

latency  

ratio (rank) 

Client 

Orchestration 
2944 (3) 933 (3) 2011 (3) 3.16x (2) 

Microservice 

Controller 
1850 (1) 192 (1) 1658 (1) 9.64x (4) 

State-machine 1977 (2) 292 (2) 1685 (2) 6.77x (3) 

Event-Based 

Triggers 
4910 (4) 2850 (4) 2060 (4) 1.72x (1) 

5.3 Function Memory Size Comparison (EX-3) 

We examined how the pipeline runtime varied for each 

control flow approach while increasing the allocated memory for 

the TLQ functions. Functions were run with 512, 768, 1024, 1536, 

and 2048 MB using the 100,000 row dataset. Reducing function 

memory from 2048 to 512 MB using event-based triggers control 

flow doubled pipeline runtime. Notably, doubling function 

memory did not halve the pipeline runtime for any control flow 

method. AWS Lambda often claims doubling function memory 

should double performance. This result is likely due to pipeline 

dependencies on external cloud services (S3 and Aurora). Event-

Based Triggers experienced the greatest decrease in pipeline 

runtime between 1024 MB and 1536 MB, 23.1%. Other methods 

all experienced the biggest decrease from 512 MB to 1024 MB at 

20.0%, 20.0%, and 17.7% for the Microservice Controller, State-

Machine, and VM-client (Client Orchestration) respectively. 

Event-based triggers only improved by 12.7% for this memory 

step. The plot line for event-based triggers in Figure 4 appears 

nearly linear between 512 and 1536 MB meaning additional 

memory helped improve performance consistently through this 

range. The other methods show more concavity between 512 and 

1536 MB. Beyond 1536 MB little performance improvement was 

seen, likely because our functions did not utilize multiple threads. 

Above 1536 MB, Lambda functions gain access to an additional 

vCPU [9].  The Event-Based Trigger control flow approach better 

performance improvements relative to memory size may be 

attributed to I/O improvements as these functions download the 

prior function’s JSON response object from S3, a step unique to 

this control flow method.  

 

 

Figure 4: Pipeline runtime vs. memory reservation size (top), 

Pipeline throughput vs. memory reservation size (bottom) 

5.4 Microservice Controller Comparison (EX-4) 

In EX-4 we investigated memory and programming language 

implications when using a server-side function to orchestrate 

control flow. Figure 5 depicts pipeline runtime across the different 

controller memory settings. The figure shows consistent 

performance improvements for the Java controller. The Python 

controller, however, did not exhibit a relationship between 

memory allocation and performance, as the lowest memory 

setting provided the lowest pipeline runtime! It is important to 

note that the relative performance difference was very small with 

the difference between the fastest memory setting and the slowest 

being 3.2% for the Python controller, and 2.4% for the Java 

controller. Comparing performance across languages at the 192 

MB setting shows a 3.2% improvement for the Java controller vs. 

Python. Allocating additional memory to the controller only 

resulted in a small performance improvement. For the 100,000 

row dataset, the controller was shown to spend the majority of its 

time idling because data processing time was much larger than the 

pipeline latency. Figure 5 (right), shows controller price vs. 

memory allocation. A linear relationship between price and 

memory allocation is seen because the cost of allocating 

additional memory to the controller was not offset by a significant 

Control Flow Methods 

Control Flow Methods 
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runtime improvement as EX-4 processed a large number of rows 

(100,000). Doubling memory led to about a doubling in price. 

 

Figure 5: Comparison of pipeline runtime (left), and transition 

costs (right) for Java vs. Python microservice controllers 

6 Conclusions 

In this case study we compared different methods for 

orchestrating a multi-function data processing pipeline 

implemented on AWS Lambda. We implemented four alternate 

control flow approaches and performed experiments to investigate 

performance and cost implications for hosting a serverless data 

processing pipeline.  We investigated control flow implications of 

different function memory configurations and infrastructure state 

(i.e. cold vs. warm). The summary of our findings is as follows: 

RQ-1 (Performance): Executing the TLQ pipeline using 

each control flow method for various data sizes allowed us to 

examine how latency, pipeline runtime, and cost varied depending 

on the control flow method. We found that Event-Based Triggers 

had a noticeable performance penalty vs. the other methods. The 

difference in pipeline runtime using Event-Based Triggers 

compared to the State-Machine was 384%, 28%, and 2% for the 

100, 100,000 and 500,000 row datasets. Performance of the VM-

client (Client Orchestration), Microservice Controller, and State-

Machine control flow was relatively similar, with the difference in 

pipeline runtime for these methods being less than 3% for the 

100,000 row dataset.  

RQ-2 (Cost): We found that the synchronous control flow 

methods, Microservice Controller and the VM-client (Client 

Orchestration), exhibited significantly higher costs compared to 

the asynchronous methods for all but the smallest datasets. A cost 

increase of over 200% was seen with the largest dataset. This 

equates to a premium of ~$2,580 (137%) when using the 

Microservice Controller compared to Event-Based Triggers for 

one million pipeline executions with the 500,000 row dataset.   

RQ-3 (Cold Start): Our cold start experiment revealed that 

the Microservice Controller had the lowest latency, even less that 

the State-Machine supported by AWS Step Functions. Event -

Based Triggers had the highest warm and cold latency and may 

not be suitable where very fast response times are needed.  

RQ-4 (Memory): Event-Based triggers experienced the 

largest improvement in pipeline runtime (43%) at 2048MB 

compared to 512MB. Scaling TLQ function memory from 512 

MB to 1024 MB resulted in the largest pipeline runtime 

improvements for the other control flow approaches, while 

pipeline runtime only improved by nearly half as much for Event-

Based Triggers. Event based triggers exhibited the largest 

performance improvement when scaling from 1024 MB to 1536 

MB. All control flow methods improved the least when scaling 

from 1536 MB to 2048 MB.  

RQ-5 (Microservice Controller): Performance and cost of 

the Microservice Controller control flow approach had only 

minimal improvements when varying the controller memory 

allocation or programming language (Java vs. Python). 

Performance improved by 2.4% with additional memory for the 

Java implementation, while Python showed no discernible 

relationship between memory and performance with the lowest 

memory setting performing over 2% better than the highest. Given 

that the controllers spent most of their active time idling, the 

additional memory increased costs while not providing a 

significant performance improvement. The Java controller at 512 

MB was the fastest, while the Python controller at 128 MB was 

the cheapest. 

In conclusion, synchronous control flow methods such as the 

Microservice Controller exhibited higher costs, but low latency, 

while Event-Based Triggers required FaaS function refactoring, 

while having low costs, though high latency. The State-Machine 

approach implemented with AWS Step Functions provided a good 

balance of high performance and intuitive developer experience. 
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