
Function Memory Optimization for Heterogeneous
Serverless Platforms with CPU Time Accounting

Robert Cordingly
School of Engineering and Technology

University of Washington

Tacoma, United States
rcording@uw.edu

Sonia Xu
School of Engineering and Technology

University of Washington

Tacoma, United States
sxu253@uw.edu

Wes Lloyd
School of Engineering and Technology

University of Washington

Tacoma, United States
wlloyd@uw.edu

Abstract—Serverless Function-as-a-Service (FaaS) platforms

often abstract the underlying infrastructure configuration into

the single option of specifying a function’s memory reservation

size. This resource abstraction of coupling configurations options

(e.g. vCPUs, memory, disk), combined with the lack of profiling,

leaves developers to make ad hoc decisions on how to configure

functions. Solutions are needed to mitigate exhaustive brute

force searches of large parameter input spaces to find optimal

configurations which can incur high costs.

To address these challenges, we propose CPU Time Accounting

Memory Selection (CPU-TAMS). CPU-TAMS is a workload ag-

nostic memory selection method that utilizes CPU time account-

ing principles and regression modeling to recommend memory

settings that reduce function runtime and subsequently, cost.

Comparing CPU-TAMS to eight existing selection methods, we

find that CPU-TAMS finds maximum value memory settings with

only 8% runtime and 5% cost error compared to brute force

testing while only requiring a single profiling run to evaluate

function resource requirements. We adapt CPU-TAMS for use

on four commercial FaaS platforms demonstrating efficacy to op-

timize function memory configurations where platforms feature

heterogeneous infrastructure management policies.

Index Terms—Serverless Computing, Function-as-a-Service,

Performance Evaluation, Performance Modeling

I. INTRODUCTION

The serverless computing design paradigm has grown to
become a popular execution model offered by many cloud
computing providers. Amazon Web Services (AWS), Google
Cloud, IBM Cloud, DigitalOcean, and Microsoft Azure all
provide serverless computing services that offer automatic
scaling, billing models that only charge for resource use,
and fault tolerance with minimal infrastructure configuration
[1]–[5]. Function-as-a-Service (FaaS) is a common serverless
cloud computing delivery model where developers deploy
microservices that run in isolated environments known as
function instances [6]. FaaS platforms automatically create,
destroy, and load balance requests among many function
instances. Cloud consumers are billed only for individual
requests and runtime of function instances. If no requests
are made, consumers are not billed, while deployed functions
remain highly available and ready to rapidly scale to meet
future changes in demand.

Functions on FaaS platforms require configuring different
parameters to optimize performance and hosting cost, the

most common being memory reservation size which usually
determines the number of vCPUs allocated to the function. If
configured sub-optimally, FaaS functions can perform slowly
and cost an order of magnitude more than the same function
hosted using traditional Infrastructure-as-a-Service platforms.

In this paper, we describe and evaluate a novel method
known as CPU Time Accounting Memory Selection (CPU-
TAMS) which leverages regression modeling to identify de-
sirable function memory reservation sizes to automate FaaS
function configuration. While memory selection appears as
simple as choosing a setting higher than what a function
requires to prevent out-of-memory errors, FaaS platforms
often scale infrastructure performance and cost to a function’s
memory reservation size [1], [4]. Without knowing how their
functions will perform or scale with respect to specific memory
configurations, developers are left to make ad hoc decisions
on which setting to choose. Many developers use common
practices to configure function memory, such as selecting
the lowest memory setting possible, selecting the maximum
memory setting, or retaining the default setting [7]. These
options, however, may lead to slower performance and higher
costs [6], [8], [9]. CPU-TAMS targets finding the MAX-
VALUE memory setting, the setting that offers the highest
performance at the lowest cost.

The CPU-TAMS methodology is workload agnostic and
can be applied to support function memory configuration on
many FaaS platforms. In this paper, we describe our imple-
mentation of CPU-TAMS on AWS Lambda, Google Cloud
Functions, IBM Cloud Functions, and DigitalOcean Functions.
We compared the accuracy of our approach to eight baseline
memory selection approaches including: minimum required
memory, maximum platform memory, a mid-range setting
between min and max, brute force search, linear search, binary
search, gradient descent, and the AWS Compute Optimizer.
The AWS Compute Optimizer is a service offered by AWS that
recommends optimal AWS Lambda configurations to reduce
costs and improve performance by using machine learning to
analyze historical utilization metrics.

A. Research Questions

This paper investigates the following research questions:

RQ-1: (FaaS Performance Scaling) How do workload char-
acteristics, such as CPU, disk, or network utilization, impact
FaaS function performance, and how is a function’s share of
these resources scaled with memory reservation size?

RQ-2: (FaaS Memory Configuration) How accurately can
we predict FaaS function memory reservation size to achieve
CHEAPEST, FASTEST, or MAX-VALUE deployments using
CPU-TAMS compared to baseline memory selection methods
and rules of thumb?

B. Paper Contributions

This paper makes the following research contributions:
1) We present our CPU Time Accounting Memory Selec-

tion (CPU-TAMS) approach that leverages CPU metrics
to predict maximum value FaaS memory configurations.
We identify common goals for function memory config-
urations (e.g. CHEAPEST, FASTEST, MAX-VALUE),
and compare our memory configuration approach to
eight baseline approaches.

2) Using a suite of twelve functions we investigate memory
selection methodologies to quantify their effectiveness at
selecting settings to meet specific goals (e.g. CHEAP-
EST, FASTEST, MAX-VALUE).

3) We apply CPU-TAMS to the AWS Lambda, Google
Cloud Functions, IBM Cloud Functions, and DigitalO-
cean Functions FaaS platforms to investigate implica-
tions of heterogeneous platform scaling policies and dif-
ferences in observability of CPU metrics when profiling
functions on specific platforms.

II. BACKGROUND

The challenge of FaaS function configuration has been
addressed by existing literature in two ways: research that ob-
serves the performance and scaling characteristics of serverless
platforms, and methods to predict optimal serverless function
configurations.

A. Serverless Performance Modeling and Scaling

Several efforts have investigated performance implications
for hosting a variety of workloads using serverless computing
including: scientific computing [10]–[13], machine learning
inferencing [14], [15], NLP inferencing [16], and even neural
network training [17]. Other literature have evaluated how
performance scales on FaaS platforms when changing function
configurations. Wang et al. identified AWS Lambda perfor-
mance at 128MB as only ⇠1/10th of 1-core VM performance
in [6] which more recently is estimated to be ⇠1/12th of 1-core
performance [18]. Multiple efforts have investigated the impact
of memory settings on the performance and cost of serverless
functions [8], [19]. These studies found that functions often
exhibit behaviour where the lowest memory setting does not
offer the lowest cost due to increased runtime. A 2020 survey
found that 86% of functions on AWS Lambda use a memory
setting less than 512MB, with over half using the default min-
imum memory of 128MB [7]. Copik et. al and Kim developed
a suite of functions for different FaaS platforms and evaluated

the impact of memory settings on performance, showing that
the lowest memory setting (128MB) often provided slower
performance and higher costs [20], [21]. Multiple authors
have bench marked various workload characteristics of FaaS
platforms such as memory scaling, cold start performance,
latency, and network I/O [8], [22]. Many research efforts that
benchmark serverless performance did not address optimizing
function memory. Recent enhancements to FaaS platforms,
such as the ability to increase the maximum function memory
up to 10GB on AWS Lambda, have introduced new challenges
not yet addressed. For example, after 3GB of RAM (which was
the previous maximum on AWS Lambda) function instances
are allocated more than 2 vCPUs, up to a maximum of six
at 10GB. The second generation of Google Cloud Functions
also introduced expanded memory options up to 16GB.

B. FaaS Memory Configuration Methods

Different methods of configuring memory for serverless
functions have been investigated previously. Tools such as
the AWS Lambda Power Tuning tool support the automation
of brute force testing to find different configuration goals
[23]. Eismann et al. proposed a modeling method called
Sizeless to predict optimal memory reservation size on AWS
Lambda using multi-target regression modeling [24]. Akhtar et
al. proposed COSE, another modeling approach that utilized
Bayesian Optimization to find optimal serverless configura-
tions [25]. Cordingly et al. utilized CPU metrics to create
regression models to predict runtime across different memory
configurations [26], [27].

All three methods [24]–[26] predicted memory configu-
rations by estimating function runtime across a variety of
memory settings starting with one base configuration. In these
examples, evaluations were limited to a finite set of memory
sizes (e.g. 128MB, 256MB, 512MB), and these sizes did
not span the 10240MB range available on AWS Lambda or
consider the corresponding scaling of vCPU cores. These mod-
eling approaches also required large training data sets resulting
in high costs, limited support for evaluating functions written
in different programming languages, and the requirement for
models to be trained for specific workloads.

In [28], the authors proposed methods to model perfor-
mance of serverless platforms focusing on optimization of
infrastructure state (cold vs. warm), and the infrastructure life
cycle on serverless platforms. In [29], the authors predicted
performance of serverless workflows using mixture density
networks and continuous model learning to predict FaaS round
trip time. Another common approach to finding optimal mem-
ory configurations is creating techniques to search through the
range of available memory settings. Zubko et. al. created the
Memory Allocation Framework for FaaS functions (MAFF)
to search for optimal memory settings using a linear search,
binary search, and gradient descent algorithms [30]. Safaryan
et. al. created a search technique that focuses on optimizing
configurable service level objectives using a max-heap binary
tree data structure for their search algorithm [31]. Even with
a small 2GB memory setting range these search techniques

require dozens of function invocations. For larger ranges of
memory, or higher precision, hundreds or even thousands of
function invocations may be required.

In this paper, we extend the CPU time accounting per-
formance modeling approach initially described in [32] and
[26] to predict MAX-VALUE FaaS memory configurations for
serverless functions. Compared to search techniques that re-
quire hundreds or thousands of function invocations to profile
performance, our CPU-TAMS approach only requires a single
function invocation. We investigate the accuracy of CPU-
TAMS for many different workloads across four commercial
FaaS platforms: AWS Lambda, Google Cloud Functions, IBM
Cloud Functions, and DigitalOcean Functions. All previous
work in the area of FaaS function memory configuration
focused only on AWS Lambda.

III. METHODOLOGY

This section details tools and methods used to investigate
our research questions (RQ-1, RQ-2).

A. CPU Time Accounting Memory Selection (CPU-TAMS)

Commercial FaaS platforms present developers with a va-
riety of different function configuration options. The most
common parameter developers must configure is the function’s
memory setting. Function memory settings must be configured
on AWS Lambda, Google Cloud Functions, DigitalOcean
Functions, and IBM Cloud Functions [1], [3], [4]. For each
of these platforms, function memory settings can impact the
performance and cost [26]. Without comprehensive knowledge
on how performance is impacted by memory configurations on
each platform, developers are left to make ad hoc decisions on
how to select memory settings. Over-provisioning and under
provisioning of function memory can lead to overspending.
The abstract nature and limited documentation of FaaS plat-
forms necessitates the need for developers to reverse engineer
or heavily profile platforms to understand performance impli-
cations of memory selection for their functions.

TABLE I
MEMORY SELECTION GOALS

Objective Description

CHEAPEST Lowest hosting cost with no regard to runtime.
FASTEST Lowest runtime with no regard to cost.

MAX-VALUE Maximizes the ratio between cost and performance. Offering
both high performance and reduced cost.

CPU-TAMS utilizes CPU metrics collected from the func-
tion instance’s operating system combined with regression
modeling to enable finding ideal FaaS function memory con-
figurations easily. The Linux /proc filesystem provides metrics
that detail CPU time spent executing in different modes. The
Severless Application Analytics Framework (SAAF) reports
CPU metrics for time spent in: user mode (CPU User), kernel
mode (CPU Kernel), idle mode (CPU Idle), waiting for I/O
(CPU I/O Wait), or servicing interrupts (CPU Int Srvc and
CPU Soft Int Srvc). Using these CPU metrics, we calculate
the wall clock execution time of a workload by summing all

the CPU metrics and dividing by the number of vCPUs of the
function’s virtual environment:

Runtime =

cpuUsr + cpuKrn + cpuIdle + cpuIOWait+
cpuIntSrvc + cpuSoftIntSrvc

of vCPUs
(1)

In addition to calculating workload runtime, we can leverage
CPU metrics to estimate the average number of utilized vCPUs
of a workload. By removing CPU idle time, summing the other
CPU metrics, and dividing by runtime, we can solve for the
number of utilized vCPUs of a workload:

Utilized vCPUspred =

cpuUsr + cpuKrn + cpuIOWait+
cpuIntSrvc + cpuSoftIntSrvc

Runtimeobs
(2)

After predicting the number of utilized vCPUs, for each
FaaS platform supported by CPU-TAMS, we have created
a specific vCPU-to-memory model to map function memory
settings to a distinct number of vCPUs. We then leverage
this model to map the required number of vCPUs to the
appropriate memory setting. Using this approach, functions
can be provisioned to have the highest performance at the
lowest cost (MAX-VALUE).

1) CPU-TAMS on AWS Lambda: To develop the AWS
Lambda vCPU-to-memory model used to recommend memory
settings with CPU-TAMS, we deployed a function with the
Stress(1) tool and ran tests at 40 different memory settings:
from 128MB to 10GB in steps of 256MB [33]. The Stress(1)
tool imposes a load on systems with a variety of options. We
used the Stress(1) tool to maximize CPU stress to measure
how many vCPUs are available to the execution environment
enabling observation of the maximum usable vCPU time
share allocated at each memory setting as shown in Figure 1.
CPU time share scaled linearly with function memory. Each
additional 1GB of memory added an additional 0.57 vCPUs
capacity. The lowest setting, 128MB allocates just 8% of one
vCPU to the function instance.

Using our vCPU-to-memory model shown in Figure 1, we
can profile any FaaS function at the maximum memory setting
to obtain CPU metrics. With these CPU metrics, we then
calculate the number of utilized vCPUs as shown in equation
(2) and then use our regression model to solve for the memory
setting where the number of utilized vCPUs is equal to the
allocated vCPUs:

Memorypred =
Utilized vCPUsobs � 0.012346

0.000556
(3)

(Applying vCPU-to-memory model to predict memory selection on AWS Lambda.)

CPU-TAMS has been designed to be workload agnostic
and prevent over-provisioning of resources. Over-provisioning
occurs when a function’s memory setting offers the function
more vCPUs than the workload is able to use. CPU-TAMS
also does not try to find the CHEAPEST option, but instead
favors selecting MAX-VALUE which is the memory setting
that maximizes the value metric defined in equation (5).
Algorithm 1 defines the process of using the CPU-TAMS
method alongside the model used to derive equation (3) in
Figure 1.

Algorithm 1 CPU Time Accounting Memory Selection
Require: Configure function to use max FaaS platform mem.

1. Profile workload to collect CPU metrics.
2. Calculate utilized vCPUs using equation (2)
3. Solve for memory using equation (3) derived from the
linear regression model in Figure 1.
4. Adjust function memory to recommendation or the re-
quired memory reported in logs (whichever is higher).

CPU-TAMS enables developers to quickly find MAX-
VALUE memory settings offering a number of benefits com-
pared to other memory selection techniques. Ideally, when
CPU performance scales linearly with memory, a function
with double the memory would require only half the runtime,
resulting in identical cost as shown by equation (4). If this were
the case, selecting the highest memory setting would always be
the best choice since all other memory settings result in slower
performance, with reduced cost per GB/s, but have identical
total cost. For the vast majority of functions, performance does
not scale linearly across all memory settings [8].

One flaw of selecting the CHEAPEST or FASTEST memory
setting is that they may produce undesirable consequences.
FASTEST can be orders of magnitude more expensive than a
more conservative memory setting. Conversely, CHEAPEST
may lead to prohibitively slow function runtimes making func-
tions unusable. In this paper, in contrast to the CHEAPEST or
FASTEST memory configurations, we are interested in finding
memory settings that offer the MAX-VALUE, that is high

performance at a reasonable cost. These three performance-
cost objectives for FaaS function memory configurations are
defined in Table I. We calculate value by multiplying the cost
of a function invocation by negative runtime. The value metric
in equation (5) is maximized by CPU-TAMS to achieve high
performance at a low cost. This value metric exploits a trend
in FaaS platforms where cost and runtime are not linearly
scaled together. Low memory settings have very high runtime
and lower costs. High memory settings have low runtime
but significant costs. Both scenarios result in low value. A
memory setting in the middle may have nearly the same
performance as the high memory setting but much closer cost
to the low memory setting, resulting in high value. Increasing
cost without obtaining a performance improvement results in
lower value. The value metric is always negative and values
closest to zero offer the best price to performance ratio.

cost = memoryGB ⇤ runtimeS ⇤ 0.00016667$ (4)
(AWS Lambda Pricing Policy [1])

value = �runtimeS ⇤ cost$ (5)
Due to the fundamental differences in how FaaS platforms

provision vCPUs with each memory setting, a one-size-fits-all
approach to function memory configuration is not feasible.
Instead, the vCPU-to-memory model must be adapted to
account for the unique characteristics of each FaaS platform.

2) CPU-TAMS on IBM Cloud Functions: To implement
CPU-TAMS on IBM Cloud Functions (IBM), the vCPU-

� �N �N �N �N ��N

�

�

�

�

�

�

�

$OORFDWHG�Y&38V 8VDEOH�Y&38�7LPHVKDUH)LWWHG

6WUHVV����0HPRU\�6HWWLQJ��0%V�

Y&
38

�&
RX

QW

�&38�7LPHVKDUH�0RGHO�
�5�VTXDUHG��������
�6ORSH����������
�ΖQWHUFHSW����������

Fig. 1. Allocated vCPUs available at each memory setting and available
timeshare observed using the Stress(1) function on AWS Lambda.

to-memory model was trained using the Stress(1) function
by measuring how the number of available vCPUs change
by profiling the function using a set of increasing memory
settings. Since IBM offers a small range of memory settings,
we tested every 128MB interval using brute force search.
Unlike on AWS Lambda where all function instances are
isolated, CPU metrics are reported using host-level (i.e. VM-
level) metrics on IBM. Multiple function instances can share
the same host so equation (2) must have all CPU metrics
divided by the observed number of tenants after testing.

By maximizing the tenancy of host VMs, we observed the
available CPU timeshare of every memory setting. Using a
combination of the IBM vCPU-to-memory model, and a rule
of thumb to minimize memory if concurrency is known to be

low (4), we can produce accurate memory recommendations.
Unlike AWS Lambda where only a single function invoca-

tion is needed, CPU recommendations can not be immediately
generated after a single run as the function tenancy must be
known. On IBM, for all function memory settings, function
instances share the host’s 4 available vCPUs and must compete
for CPU time on the VM. At the maximum memory setting
(2048MB), IBM limits the maximum tenancy to 4, essentially
allowing each function instance access to the timeshare of 1
vCPU. IBM limits host tenancy to a maximum of 4 function
instances at 1.5GB. This creates a ’sweet spot’ memory setting
that offers equivalent performance to the maximum memory
setting without the additional cost as higher settings do not
provide any additional vCPUs as show in Figure 2.

3) CPU-TAMS on Google Cloud Functions: Implementing
CPU-TAMS on Google Cloud Functions (GCF) provides a
unique challenge not present on AWS Lambda or IBM. CPU
metrics required to calculate the number of utilized vCPU, for
CPU-TAMS are not visible to function instances. While CPU
metrics may be hidden unlike other platforms we investigated,
GCF allows users to observe the exact number of vCPUs allo-
cated to their functions at any memory setting. This openness
allows us to create the vCPU-to-memory model without CPU
timeshare metrics. We simply run any function (even a basic
Hello World function), and observe the reported vCPUs at
each memory setting, where vCPUs are reported by Google
using the ’CPU’ read-only function attribute in the CLI. When
CPU metrics are hidden, functions can be profiled locally, or
on a different FaaS platform to obtain the number of utilized
vCPUs and then use the GCF vCPU-to-memory model to

� ��� ���� ���� ���� ����
�

���

�

���

�

���
$:6 ,%0 *RRJOH 'LJLWDO�2FHDQ

0HPRU\�6HWWLQJ��0%V�

Y&
3
8
�&
RX

QW

Fig. 2. Allocated vCPUs available at each memory setting on each platform.

predict the MAX-VALUE memory setting. While this process
is not as streamlined compared to AWS Lambda or IBM where
CPU metrics are directly observable, our workaround enables
CPU-TAMS to recommend function memory configurations
on GCF. GCF appears to use a tiered approach where doubling
memory settings doubles the number of allocated vCPUs as
shown in Figure 2. vCPU scaling for all platforms is depicted
in the figure with the exception of GCF at 4 vCPUs which is
omitted for readability.

4) CPU-TAMS on DigitalOcean Functions: CPU-TAMS
can be applied to recommend function memory configurations
for DigitalOcean Functions (DOF). Like IBM, DOF reports the
use of OpenWhisk. Consequently, both platforms exhibit the
same behavior where VM vCPUs are shared between multiple
function instances. Unfortunately, similar to GCF, DOF hides
all CPU metrics and information to support determining the
number of function instances that share the host. Since func-
tion tenancy on a shared host has a large impact on function
runtime, we estimated maximum tenancy by using our CPU-
bound Calcs function [26].

We gradually increased the number of concurrent function
invocations until identifying one invocation with equal runtime
to the initial sequential function call, indicating it ran on
a unique host and all of the other function calls shared
the same host. Across all function memory settings, DOF
share and compete for the available CPU time share from 8
vCPUs allocated by the host. In the same manner as IBM,
at the maximum memory setting (i.e. 1GB) DOF limits the
maximum tenancy to 8 allowing each function instance access
to the timeshare of 1 vCPU. DOF has the narrowest available
memory range from 128MB to 1024MB as shown in Figure 2.
Using these four vCPU-to-memory models we can recommend
memory settings on all four of these platforms based upon a
workload’s CPU Time Accounting profile.

B. Baseline Memory Selection Methods

Many developers resort to using basic rules of thumb to
choose a memory setting: selecting the maximum option,
choosing the minimum memory needed for their function to
run, picking a memory setting in the middle of the available
options, or leaving the function at the default setting [7]. While
these approaches are simple, they often result in function
memory configurations that are more expensive, significantly
slower, or both compared to a MAX-VALUE setting.

TABLE II
MEMORY SELECTION METHODS

Name Type Description

MIN RoT Select the minimum memory required for a function
MID RoT Select a mid-range setting between MIN and MAX
MAX RoT Select the maximum available memory setting

Utilize CPU Time Accounting metrics to calculate
CPU-TAMS M the average number of utilized vCPUs for a workload.

Use vCPU model to predict value setting.
The AWS Compute Optimizer. A tool by AWS that

AWS-CO M recommends memory settings. Requires >50 runs
below 1792MB to make a recommendation.

Linear Run a workload at many different memory settings,
Search S iterating linearly, and stopping when
(LS) the settings meets a target goal.

Binary Search through memory settings by iterating
Search S using a binary search algorithm. Test settings and
(BS) progressively cut the memory setting range in half.

Gradient Search through memory settings by iterating
Descent S using a gradient descent algorithm. Test settings and

(GD) progressively move toward a value memory setting.
Brute S Run a workload at every available memory setting
Force iterating with a desired step size.

(RoT: Rule of Thumb, M: Model, S: Search Method)

In this paper, we contrast our proposed CPU-TAMS ap-
proach with eight baseline memory selection approaches: three
rule of thumb methods (e.g. MIN, MAX, and MID), one model
based approach (e.g. AWS Compute Optimizer), and four
search methods (e.g. brute force search, linear search, binary
search, and gradient descent). Each of these methods targets a
specific memory selection goal: CHEAPEST, FASTEST, and
MAX-VALUE for MIN, MAX, and MID respectively. CPU-
TAMS and the AWS Compute Optimizer targets the MAX-
VALUE goal [34]. Search methods have the ability to target
any goal memory setting.

To compare our CPU-TAMS selection method we evalu-
ate the AWS Compute Optimizer (AWS-CO) service offered
alongside AWS Lambda. AWS-CO requires an initial 50
function invocations and then makes memory setting recom-
mendations to reduce cost. As this is a commercial product
offered by AWS that utilizes machine learning and historical
utilization data, the method of how the Compute Optimizer
makes recommendations is unknown [34]. Major limitations of
the AWS-CO include: it is not able to make recommendations
for functions requiring over 1792MB of RAM, it can take up
to 48 hours to generate a recommendation, and availability is
limited to AWS Lambda.

To compare the accuracy of memory selection methods,
we utilize brute force search as a baseline method. For
brute force search, we profiled all of our functions on each
platform using increasing memory settings from MIN to MAX
in 128MB steps on IBM/DOF, and 256MB steps on AWS
Lambda/GCF. Our resulting dataset includes both cold-start
and warm function invocations at a 1 to 9 cold to warm
ratio. With our complete brute force search dataset, we then
implemented linear search, binary search, and gradient descent
by iterating over the data to find the CHEAPEST, FASTEST,
and MAX-VALUE memory settings. Search methods require
executing functions across many different memory settings to
find their selection goals. The accuracy of search methods also
depends on step size (e.g. 128MB) used to search the range of

6OHHS 6WUHVV 067 6\VEHQFK :ULWHU 5HVL]H '1$ 6SHHGWHVW =LS
�

�N

��N

��N

��N

��N

��N

&38�ΖGOH &38�8VHU &38�.HUQHO

)XQFWLRQ�3URȴOH

&3
8
�7
LP

H�
�P

V�

Fig. 3. Distribution of CPU timeshare at 1920MB of memory on AWS.

memory configurations. GCF supports a fine-grained 1MB step
size, but profiling across all 16,256 options was impractical
due to significant time and cost. To reduce profiling costs,
other researches have employed similar step values to reduce
the search space for FaaS function memory optimization
[30]. Ultimately, applying any search method involves a large
amount of profiling overhead and may result in high costs
making search methods not viable for applications consisting
of many functions.

C. Supporting Tools

To enable a better understanding of the performance im-
plications for functions deployments to FaaS platforms, we
developed the Serverless Application Analytics Framework
(SAAF) [18], [35]. SAAF is a profiling framework supporting
multiple programming languages which is included as a library
in functions deployed to multiple FaaS platforms. SAAF sup-
ports analysis of functions deployed to AWS Lambda, GCF,
DOF, IBM, Azure Cloud Functions, and OpenFaaS platforms
[1], [2], [36], [37].

SAAF collects metrics from multiple sources inside the
Linux operating system, including the /proc file system and
environment variables created by the FaaS platform. SAAF’s
design allows all metrics to be collected by simply including
the framework in the deployment package and adding a few
lines of code to the beginning and end of the function’s
source code. Each FaaS platform exposes or hides different
metadata about the underlying Linux environments that run
functions. SAAF is specifically designed for FaaS platforms;
it adds minimal overhead to functions and works around the
different levels of infrastructure obfuscation of each platform.
SAAF collects CPU metrics used by CPU-TAMS from within
the function instance, so that profiling is unaffected by cold-
start latency. To automate complex experiments on FaaS plat-
forms, we created a supporting tool called the FaaS Runner.
FaaS Runner provides a client-side application that is used
in conjunction with SAAF. Both SAAF and FaaS Runner
are invaluable tools for scientists and practitioners to profile
functions and execute experiments on FaaS platforms.

D. Functions and Experimental Workloads

To compare CPU-TAMS to existing memory configuration
methods, we leveraged a test suite consisting of 12 functions.
Table III describes each function, the number of vCPUs they
utilize, and which FaaS platforms they support. Functions were

TABLE III
FUNCTION NAMES AND DESCRIPTIONS

Function Clouds vCPU Description
Sysbench AI n Linux Benchmark used to

generate prime numbers.
MST AGID 1 Generates a graph and calculates

the min spanning tree.
BFS AGID 1 Generates a graph and processes

a breadth first search.
Page AGID 1.2 Generates a graph and processes
Rank page rank of each node.
Writer AGID 1 Generates text and repeatedly

writes it to disk and deletes.
Compress AGID 1 Generates files and compresses

them into a zip file.
Resize A 1 Pulls an image from S3, resizes it

and saves it back to S3.
DNA A 0.9 Pulls DNA sequence from S3 and

creates visualization data.
TLQ A N/A 4 transform-load-query data pipelines

4 (Java/Python/Go/Node.js).
Speed Test A N/A Network speed test created by Ookla.
Random A 1 Container that includes large files
Reader which are randomly read.
Calcs AGID n Executes random math operations.
Stress(1) AI n Linux tool used to generate CPU stress.
Sleep AGID 0 Sleeps for a specified duration.

Clouds: AWS, GCF, IBM, DOF
Unshaded: CPU-TAMS Evaluation Functions, Shaded: Profiling Functions

chosen carefully so collectively our tests would feature a broad
range of resource utilization characteristics such as CPU-
bound, disk I/O bound, or network I/O bound as described
in Figure 3.

Six functions are primarily CPU bound. The minimum
spanning tree (MST), breadth-first search (BFS), and Page
Rank functions all generate graphs and process their respective
algorithms on each graph. The DNA processing function
downloads a DNA sequence file from Amazon S3 and gen-
erates visualization data for the DNA sequence. We created
a wrapper function to deploy the popular Linux benchmark
Sysbench to generate prime numbers, and the Linux Stress(1)
tool. In contrast to functions that utilize two or fewer threads,
Sysbench, Calcs, and Stress(1) utilize all available vCPUs.
Three functions stress the storage volume of execution en-
vironments: The Reader and Writer function generate I/O
stress by either reading large files included with the function
or repeatedly writing and deleting data in /tmp. The File
Compressor function generates files in the temporary volume
and repeatedly compresses them to Zip archives. The Image
Resizer function downloads images from S3, scales them to a
variety of different resolutions, and then uploads the images
back to S3 to stress both CPU and network I/O.

Five functions were derived from the publicly available
SeBS: Serverless Benchmarking Suite [20] with minimal
changes to integrate SAAF. These functions enable further
evaluation of different aspects of the platform while testing
memory selection methods with many different workloads.
Finally, we utilized four different versions of a transform-
load-query data processing pipeline each written in a different
language (e.g. Java, Python, Node.js, and Go) to evaluate
CPU-TAMS’s recommendations on functions with varying

� �N �N �N �N ��N
�

��0

��0

��0

��0

��0

�

��N

���N

���N

���N

���N

���N
6HTXHQWLDO�5HDGV 5DQGRP�5HDGV

5HDGHU�0HPRU\�6HWWLQJ��0%V�

6H
TX

HQ
WLD

O�5
HD

GV

5D
QG

RP
�5
HD

GV

Fig. 4. Sequential and random disk read performance over 10 seconds by
function memory setting on AWS Lambda.

workloads and functions of different languages. Combined the
suite of 12 FaaS functions and TLQ pipeline was used to
investigate the utility of CPU-TAMS to provide a workload
agnostic memory recommendation method.

All functions used are described in Table III, shaded rows
indicate profiling functions used to investigate RQ-1 and build
each platform’s vCPU-to-memory model, all other functions
were used to evaluate CPU-TAMS. To perform brute force
search used as a baseline to compare accuracy of the memory
selection methods described in Table II, we executed each of
the functions 10x at each memory step (128MB on IBM/DOF,
256MB on AWS/GCF) to cover the entire range of each
platform’s memory settings. In addition to the 400 base runs
on AWS, each function was executed an additional 60x at
1024MB to allow the AWS Compute Optimizer to make a
memory setting recommendation.

IV. EXPERIMENTAL RESULTS

To evaluate our research questions, we deployed the func-
tions described in Table III. First, we executed each FaaS
function over many different memory settings (brute force
search) to observe the performance implications of memory
configuration (RQ-1). Second, we analyzed the results to
determine target memory settings to meet configuration goals
described in Table I. Third, we investigated the memory
selection methods described in Table II to observe how closely
they were able to determine desirable memory settings (RQ-2).

A. FaaS Performance Scaling Evaluation

Of the twelve functions, Stress(1), Random Reader, and
Speed Test are profiling functions that enabled the evaluation
of CPU, disk, and network performance relative to function
memory. As expected on AWS Lambda, CPU performance
scaled linearly as memory settings increased. Parallel work-
loads that leverage multiple threads showed linear perfor-
mance improvements as memory was increasingly scaled.
Workloads that utilized only one thread did not demonstrate
performance improvements above 1792MB, the point where
function instances gain additional vCPUs. Figure 1 depicts
how vCPU timeshare scaled with function memory using the
Stress(1) function. On IBM and DOF, CPU performance was
constant across all memory settings in this initial test. To
inspect these platforms further, we executed an experiment
that progressively increased the number of concurrent function

� � �� �� �� ��

�N

�N

�N

�N

�N

��N

&RQFXUUHQW�)XQFWLRQ�&DOOV

&
DO
F�
6
HU
YL
FH

�5
XQ

WLP
H�
�P

V�

Fig. 5. Calcs function performance on DigitalOcean.

invocations. We observed performance degradation as the
number of concurrent calls increased as shown in Figure 5.
IBM and DOF do not directly couple vCPUs to the memory
setting and instead limit the number of tenants on the host that
compete for CPU time. On GCF performance scaled similarly
to AWS Lambda where sequential performance improved up
until functions where allocated 1280MB and then runtime
remained constant as shown in Figure 6.

Our Random Reader function demonstrated how file read
performance scaled with the function’s memory setting. To
measure file read performance, we deployed a container-based
function to AWS Lambda using a Docker container. Docker
containers on AWS Lambda allow much larger function pack-
age sizes, up to 10GB. The Reader function included six
large 1GB text files consisting of lines of random characters
was then executed for 10 seconds to measure random and
sequential read throughput. We observed a drastic perfor-
mance difference between sequential reads and random reads.
With a 2GB function memory configuration, sequential read
throughput was ⇠4.5m lines per second while random read
throughput was just ⇠15k lines per second as shown in Figure
4. Sequential read performance scaled with function memory,
but not linearly. Performance scaled from 1m reads per second
at 128MB of memory but rapidly hit a roof around 4.5m reads
per second at ⇠2GB. Increasing function memory had a larger
impact on random read performance scaling from 5k reads per
second at 128MB to 15k reads per second at 5GB. GCF and
DOF do not support deploying functions as containers so this
test was not performed on those platforms.

We measured the impact of scaling function memory on
network I/O throughput. Using the Speed Test function, we ob-
served how function network download throughput scaled on
AWS Lambda from a low of 400Mbps at 128MB memory to a

��� ���� ���� ���� ����

��N

��N

��N

��N
'LVN�:ULWHU %)6 067 3DJH�5DQN =LSSHU

*RRJOH�&ORXG�)XQFWLRQV�0HPRU\�6HWWLQJ

5
XQ
WLP

H�
�P

V�

Fig. 6. Google Cloud Functions runtime.

��� ���� ����

���

����

����

����

8SORDG�7KURXJKSXW 'RZQORDG�7KURXJKSXW

6SHHG�7HVW�0HPRU\�6HWWLQJ��0%V�

1
HW
Z
RU
N�
7K

UR
XJ

KS
XW
��P

ES
V�

Fig. 7. Speed Test network performance by memory setting on AWS.

peak of ⇠1Gbps at 768MB. Upload throughput was lower than
download at low memory settings scaling from ⇠200Mbps
at 128MB to a peak between 2 to 2.5Gbps above 1.5GB of
memory. Beyond 1.5GB of memory up to the maximum 10GB,
network throughput remained at 1Gbps download and ⇠2Gbps
upload as shown in Figure 7. On AWS, if a function requires
the highest possible network throughput, developers should
select a memory setting above 1.5GB. As this test depended
on containers and 3rd party libraries it could not be deployed
to GCF or DOF.

In summary for RQ-1, we observed that CPU, file read,
and network I/O performance scaled relative to a function’s
memory setting on each platform. CPU performance usually
scaled linearly across all memory settings with workloads
that utilize all available vCPUs. On AWS, disk and network
throughput scaled up peaking around 2GB of function mem-
ory. Network performance had a maximum throughput of
1Gbps download, and ⇠2Gbps upload. File read throughput
also scaled with function memory, and performance benefited
from successive function calls which appeared to warm file
caches. As a rule of thumb, if a workload requires maximum

network or disk performance, a memory setting of over 2GB is

recommended. On IBM and DOF, performance did not scale
as memory setting increased but instead limited the maximum
number of co-located function instances, indirectly improving
performance at higher memory settings. Performance on GCF
scaled similarly to AWS Lambda but the lack of containers did
not allow us to utilize all of the benchmark tools. Table IV
compares the infrastructure available on each of the FaaS plat-
forms we investigated, how performance scales with memory,
and whether CPU metrics are observable.

TABLE IV
FAAS PLATFORM COMPARISON

FaaS Memory Scales vCPU CPU

Platform (MB) w/ Memory Cores Metrics

AWS Lambda 128-10240 CPU Timeshare 2-6 Available
IBM CF 128-2048 Max Tenancy 4 Available
DigitalOcean 128-1024 Max Tenancy 8 N/A
Google CF 128-16384 CPU Timeshare 1-5 N/A
Azure Functions 1536 N/A 2 Available
OpenFaaS Any N/A Any Available

B. Serverless Memory Configuration Predictions

1) CPU-TAMS on AWS Lambda: While the function mem-
ory configuration guidelines discussed in the previous section

� �N �N �N �N ��N
�

��N

���N

���N

���

���

���

���

����

3ULFH 5XQWLPH &38�ΖGOH &38�8VHU &38�.HUQHO

0HPRU\�6HWWLQJ��0%V�

5X
QW
LP

H�
�P

V�

3U
LF
H�
IR
U�
�P

�U
XQ

V�
��
�

0$;

0Ζ1 $:6

0Ζ'

7$06

&+($3(67
9$/8(

)$67(67

Fig. 8. Resize runtime, cost, CPU profile, and selected settings on AWS.

are helpful to ensure maximum CPU, file read, or network
performance, their derivation relies on brute force testing.
To derive these recommendations, we executed workloads
over many memory settings to observe the results. For some
functions, such as the Speed Test function, brute force memory
testing can incur a high cost as data egress (e.g. from the
network speed test) on AWS Lambda is billed the same
as EC2. This section discusses all of the memory selection
methods, their accuracy for different memory selection goals,
and the data required to make CHEAPEST, FASTEST, and
MAX-VALUE memory recommendations.

We initially executed all of the functions across 40 step-
wise memory settings from 128MB to 10GB using the brute
force method. We obtained results to identify the CHEAP-
EST, FASTEST, and MAX-VALUE memory configurations
using a search granularity of 256MB to compare with other
memory selection methods. Figure 8 shows the CPU pro-
file, runtime, cost, and memory settings selected by each
memory selection method for the Resize function. In Figure
8, annotations show the three memory selection goals (e.g.
CHEAPEST, VALUE, and FASTEST), which we found using
brute force search. Annotations for our three rules of thumb
(e.g. MIN, MID, and MAX memory) highlight the extreme
differences in cost selecting the highest memory setting can
have. The recommended memory settings generated by the
AWS Compute Optimizer (AWS-CO) and CPU-TAMS are
also shown in the figure. On average across all functions,
CPU-TAMS recommended memory settings with an average
error of 236MB from the MAX-VALUE memory setting while
the AWS Compute Optimizer recommended memory settings
with an average error of 1916MB. Rules of thumb have
significantly higher error (2570MB, 3669MB, and 6485MB for
MIN, MID, and MAX respectively) as they do not account for
workload characteristics. Single-threaded workloads heavily
punish over-provisioning memory settings. The same workload
that would cost $200 for a million invocations at around
2GB of memory would cost nearly $1,000 (400% increase)
at maximum memory while providing a 4% performance
increase as shown in Figure 8.

The Sysbench function which generated prime numbers
enabled assessment of performance implications for a multi-
threaded workload, and our results are shown in Figure 9.
In contrast to the Resize function, which had a vast cost

� �N �N �N �N ��N
�

���N

���N

���N

���N

���

���

���

���

���

���
3ULFH 5XQWLPH &38�ΖGOH &38�8VHU &38�.HUQHO

0HPRU\�6HWWLQJ��0%V�

5X
QW
LP

H�
�P

V�

3U
LF
H�
IR
U�
�P

�U
XQ

V�
��
�0$;

0Ζ1
$:6

0Ζ'

7$06

&+($3(67

9$/8(
)$67(67

Fig. 9. Sysbench runtime, cost, CPU profile, and selected settings on AWS.

range, multi-threaded workloads with good parallelism exhib-
ited more consistent costs across all memory settings. This
reduced cost range can be attributed to the multi-threaded
prime number generation’s high parallelism enabling the ideal
scenario where doubling memory reduces the runtime in half
(i.e. perfect scaling) to provide better cost equivalence across
the full range of memory settings. While the performance
gain from scaling was not perfect, the cost varied less than
$40 (⇠10% increase) across all memory settings. For Sys-
bench prime number generation, the FASTEST and MAX-
VALUE options were at the maximum memory (i.e. 10GB),
while CPU-TAMS found a slightly lower setting (9.5GB),
the AWS Compute Optimizer chose a much lower memory
setting (1.3GB), and CHEAPEST was slightly higher (2GB).
Since cost varies considerably in this example, selecting low
memory settings results in significantly higher runtime. The
CPU-TAMS and MAX memory approaches resulted in a
function runtime of about 2.7 seconds per function invocation.
CHEAPEST had a runtime of 13 seconds (383% slower), and
the AWS-CO recommendation had a runtime of 21 seconds
(711% slower). This runtime and cost disparity highlight why
targeting the CHEAPEST setting may be a poor choice if high
performance is needed.

The AWS Compute Optimizer (AWS-CO) attempts to min-
imize the cost while ignoring the implications of runtime. In
contrast, our CPU-TAMS method balances cost and runtime
goals. Specific optimization goals for functions can vary
widely where a developer may be willing to pay significantly
more for only small performance improvement if critical for
the use case. For other functions, a developer may desire
the absolute lowest cost. CPU-TAMS recommends memory
settings after a single function invocation, while AWS-CO re-
quires at least 50 function invocations, and brute force requires
hundreds. To generate memory recommendations using CPU-
TAMS, a function needs to be profiled at the MAX memory
setting only once. To test the AWS Compute Optimizer, we
deployed all of the functions at 1024MB, ran them 60 times,
and then waited one day for AWS to make a recommendation.
Even though our functions had vastly different runtime and
profiles, AWS-CO recommended a 1232MB memory reserva-
tion size for all functions, except the sleep function, where it
recommended 848MB.

Table V shows the impact of each memory selection method

for each function, comparing the relative cost and runtime
compared to MAX-VALUE. For runtime, as expected, using
the MIN memory rule of thumb always resulted in the longest
runtime ranging from 3 to 80x slower than MAX-VALUE
while resulting in 0.5 to 1.1x the cost. Selecting MIN re-
sulted in paying more than MAX-VALUE for only the MST
function. Selecting CHEAPEST resulted in 2.6 to 5x slower
performance than MAX-VALUE.

The FASTEST memory setting and MAX memory resulted
in faster runtime but more cost. We observed at least double
the cost for all single-threaded workloads using the MAX
memory setting compared to MAX-VALUE while only of-
fering a 3-5% performance improvement.

In summary, our model based approaches outperformed rule
of thumb methods for determining function memory settings
with MAX-VALUE. Like the CHEAPEST option and MIN,
the AWS Compute Optimizer (AWS-CO) memory recom-
mendations were below the MAX-VALUE setting. AWS-CO
recommendations resulted in 1.4 to 8x worse performance
than the MAX-VALUE option. AWS-CO recommendations
supported lower costs due to its more conservative recom-
mendations: 0.8 to 0.95x the cost compared to the MAX-
VALUE memory setting. CPU-TAMS most closely selected
memory settings to MAX-VALUE setting discovered using
brute force, and was most effective at offering a balance
between high performance and low cost. Across all functions,
CPU-TAMS selected memory settings that offered 0.95 to
1.19x the performance while only costing 0.9 to 1.1x the
MAX-VALUE memory setting found using brute force.

CPU-TAMS accurately predicted memory configurations
that offered high performance while reducing cost. We ran
functions across many different memory settings using brute
force to find the MAX-VALUE memory setting, which offers
the best cost to performance ratio. CPU-TAMS recommen-
dations resulted in up to 80x faster runtime and 5x lower
cost compared to configurations using the MAX and MIN
memory settings, respectively. Across our workloads, CPU-

TAMS predicted a memory setting that was within 5%

of the MAX-VALUE memory setting’s cost and within

8% of the runtime. CPU-TAMS only requires a single
function invocation to make recommendations in contrast to
brute force search methods that require extensive function
profiling leading to high costs to optimize large applications
or applications that frequently change.

2) CPU-TAMS on IBM Cloud Functions: As discussed
earlier, IBM behaves fundamentally differently than AWS
Lambda. Memory settings have no impact on performance for
sequentially invoked functions. Instead, memory settings limit
the number of function instances that share the 4 vCPUs of
host VMs. At the maximum memory setting of 2GB, up to four
function instances can share the same host VM. This means
that unless more than four functions are invoked at a time,
changing memory settings will have no impact on performance
and only increase cost. In this case, users should always pick
the MIN memory setting to have the best performance and
cost. CPU-TAMS becomes a necessary tool when consider-

TABLE V
PERCENT CHANGE IN RUNTIME (LEFT) AND COST (RIGHT) FOR EACH FUNCTION USING EACH MEMORY SELECTION METHOD COMPARED TO THE

MAX-VALUE MEMORY SETTING DISCOVERED USING *BRUTE FORCE TESTING ON AWS LAMBDA.

������
���

��	�
�
��
��
���
���

��	�����
�������

��	
��	

��
��
���
��
��
 �
��
�!�
"�#��

���������
��	���� ��

���
���
��!�
�!
����
�� �
���
��"�

��!�#��

���
��	���� ��

��
��
��
��
��
 �
�!
���

�� #��

������
��	���� ��

��
!
!
�"
$�
�
��
�

�#��

��	���� ��

$�
$
$�
�

$��
$�
�
"�
!#�

���
��	���� ��

$
$
$
�

$��
$�
$�
�

$�#��

���
��	���� ��

$�
$�
$�
�

$��
$��
$
�
$�

��������
��	���� ��

��������

������
���

��	�
�
��
��
���
���

��	�����
�������

��	
��	

���
��
��
���
��
�
�!
��
��

���������
���
� ��

�!
�"
�!
��"
�
#
��
�!
�"$!"

���
���
� ��

��
�!
��
���
��
�
�"
��
��$"

������
���
� ��

��
��
�!
��
��
�
�"
��
��$"

���
� ��

���
�"�
�#�
��"
�##
��"
��!
�"

� �$"

���
���
� ��

#��
#��
#��
#��
 ��
#�!
#��
�

 ��$�"

���
���
� ��

���
� �
�#�
�

 �"
 #�
�"
�

���$��"

��������
���
� ��

��������

ing workloads with higher numbers of concurrent function
invocations on IBM. Compared to AWS Lambda, IBM offers
a much smaller range of available memory settings. With
maximum tenancy, no memory setting will provide timeshare
over one vCPU. Alongside this, IBM appears to have a ’sweet
spot’ memory setting at 1.5GB. In all of our tests, the 1.5GB
memory setting and above always had a maximum tenancy
of 4, breaking the linear scaling of lower memory settings.
This identifies a rule of thumb, as long as a function does not

need more than 1.5GB, the MAX memory setting ever selected

on IBM should be 1.5GB for FASTEST performance. This
can be seen clearly in Figure 10 where the 1.5GB memory
setting has an increase in value. This ’sweet spot’ behavior
and low number of available vCPUs results in CPU-TAMS
always recommending 1.5GB for workloads that utilize at least
1 vCPU; which was the case for all of our functions.

In a production environment, functions on IBM should be
first deployed at 1.5GB. If the function’s CPU profile indicates
the use of one or more vCPUs then the function should remain
at 1.5GB. If not, the function should be profiled to collect data
to determine the average number of concurrent invocations.
If the average concurrency is never above four, change the
memory setting to the lowest required memory setting. If the
function uses less than 1 vCPU and has more than 4 tenants,
use the model in Figure 11 to choose the lowest memory
setting that provides the number of needed vCPUs for the
average number of tenants.

3) CPU-TAMS on Google Cloud Functions and DigitalO-

cean Functions: Ideally, CPU-TAMS will have access to
Linux CPU time accounting metrics from the context of the
function instance. On GCF and DOF, however, these platforms
abstract CPU metrics restricting the ability to profile functions

��� ���� ���� ����

��0ࡃ

��0ࡃ

�0ࡃ

�0ࡃ

�0ࡃ

�0ࡃ

�

'LVN�:ULWHU %)6 067 3DJH�5DQN =LSSHU

,%0�&ORXG�)XQFWLRQV�0HPRU\�6HWWLQJ

9D
OX
H�
0
HW
ULF
���
P
LOO
LV
HF
RQ

G�
��

Fig. 10. IBM Cloud Functions value for different functions.

on these platforms. As a workaround, we executed CPU-bound
profiling functions to construct CPU models to estimate the
number of allocated CPUs across a range of memory settings.
DOF and IBM both implemented using OpenWhisk, exhibit
similar behavior which we are able to exploit to determine
how vCPUs were mapped to function memory settings. We
found that host VMs on DOF had 8 vCPUs which were shared
with multiple function instances for workloads with concurrent
function calls. The number of vCPUs on DOF scales linearly
from 0.125 vCPU at 128MB to 1 vCPU at 1024MB. While
DOF did not exhibit a ’sweet spot’ like IBM, having only one
vCPU available to function instances with maximum tenancy
resulted in 1024MB being the recommended memory setting
for all of our evaluation functions.

In contrast, GCF offers the largest range of memory settings
of any FaaS platform up to 16GB, and up to 4 vCPUs. Unlike
other platforms, GCF does not scale CPU time share linearly
across a range of memory settings. Instead, GCF has seven
tiers of CPU allocations: functions at 128MB receive 0.083
vCPU, 128 to 256MB 0.166 vCPU, 256 to 512MB 0.333
vCPU, 512 to 1GB 0.5833 vCPU, 1GB to 2GB 1 vCPU,
2GB to 8GB 2 vCPUs, and above 8GB 4 vCPUs. The vCPU
allocation doubles as the memory setting doubles with the
exception of 4 vCPUs being allocated at 8GB. This tiered
approach to vCPU allocation results in the vast majority of
memory settings not offering any performance improvement as
the number of allocated vCPUs only changes when elevating
to a new tier. For example, a function that requires two
vCPUs and little memory should adopt the memory setting
that first provides two vCPUs as any higher memory setting
will increase cost. The vCPU tiers greatly simplify memory
selection on GCF as 128MB, 192, 320, 576, 832, 1088, 2304,

�� �� �� ��
�

���

���

���

���

�
����0% ��� ��� ��� ���� ���� ����

7HQDQWV

Y&
3
8
�&
RX

QW

Fig. 11. IBM vCPUs at each tenancy with varying memory settings.

�N �N �N �N ��N ��N ��N ��N

��0ࡃ

��0ࡃ

�0ࡃ

�0ࡃ

�0ࡃ

�0ࡃ

�

'LVN�:ULWHU %)6 067 3DJH�5DQN =LSSHU

*RRJOH�&ORXG�)XQFWLRQV�0HPRU\�6HWWLQJ

9D
OX
H�
0
HW
ULF
���
P
LOO
LV
HF
RQ

G�
��

Fig. 12. Google Cloud Functions value metric for different functions.

and 8704 should be the only settings ever selected, as these are
the lowest memory settings at each tier of vCPUs. Developers
should evaluate the number of vCPUs their functions utilize
and then choose the first memory setting that supplies that
quantity of vCPUs for MAX-VALUE. Figure 12 depicts the
MAX-VALUE of five functions across a range of memory
settings. Here the functions all utilize one vCPU and we see
at 1088MB, the memory setting that first offers one vCPU,
offers MAX-VALUE. As new vCPU tiers are crossed, drops
are observed in value caused by the cost of doubling vCPUs
at each tier as GCF bills by memory and vCPU allocation.

4) CPU-TAMS on Azure Functions, OpenFaaS, and More:

In addition to these platforms, we also investigated imple-
menting CPU-TAMS on Azure Functions and self-hosted
OpenFaaS clusters. The core design of both of these plat-
forms makes memory prediction methods unneeded. On Azure
Functions, all functions are allocated 1.5GB of RAM and are
billed based on the amount used. Consumers do not have the
option to change the amount of memory allocated to their
functions. OpenFaaS also does not have configurable memory
settings that scale performance in the same manner as other
FaaS platforms. OpenFaaS allocates shared containers that
host multiple function instances [38]. Memory limits apply
to all function calls that share a container, if multiple function
invocations sharing a container exceed the OpenFaaS memory
or CPU limit, then function invocations begin to fail.

When FaaS platforms change their vCPU to memory map-
ping, or to add CPU-TAMS support for a new platform, a new
vCPU-to-memory model should be trained for the platform.

C. Memory Selection Method Comparison

On AWS Lambda, CPU-TAMS was able to determine
MAX-VALUE memory settings within 8% runtime mean
absolute percent error (MAPE) and 5% cost MAPE of MAX-
VALUE memory settings found using brute force. On GCF,
IBM, and DOF, CPU-TAMS was able to always find MAX-
VALUE function memory settings discovered using brute force
testing. This was possible by leveraging distinct characteristics
of each platform’s vCPU-to-memory scaling policy, such as
the ’sweet spot’ on IBM, the tiered approach on GCF, and
the reduced range of memory settings on DOF to simplify the
challenge of function memory optimization on these platforms.

CPU-TAMS exhibits lower costs compared to other memory
selection techniques as the function is profiled only once at

TABLE VI
MEMORY SELECTION METHOD COMPARISON ON AWS LAMBDA

Name Invocations Cost Goal Accuracy

MIN 1 $0.002 CHEAPEST Approximate
MID 1 $0.075 MAX-VALUE Approximate
MAX 1 $0.15 FASTEST Approximate

CPU-TAMS 1 $0.15 MAX-VALUE Approximate
AWS-CO 50 $1.31 CHEAPEST Approximate

Brute Force n $3.22 N/A Optimal
Linear Search Up to n $0.58 MAX-VALUE Optimal
Binary Search nlog(n) $2.28 MAX-VALUE Optimal

Gradient Descent Up to n $1.50 MAX-VALUE Optimal

Cost is derived from execution of all evaluation functions in Table III
(n: Maximum number of memory settings to test.)

the maximum platform memory setting. Consider the worst-
case FaaS function on AWS Lambda with maximum runtime
(e.g. 15 minutes @ 10GB). The CPU-TAMS profiling cost is
just 15 cents. Most functions will not be worst-case and will
have shorter runtimes and lower profiling costs. If a developer
knows the maximum number of threads required they can
reduce cost by profiling their function at a lower memory set-
ting. The worst case scenario for the AWS Compute Optimizer
is nearly 10x more costly at $1.31 per function. This is the
cost of 50 function calls with 15 minutes runtime at 1792MB
(the maximum supported by AWS-CO). AWS-CO is more
expensive due to the larger number of function invocations
required. This cost disadvantage applies to search methods
which require hundreds or more function calls to generate
recommendations. The cost to find MAX-VALUE memory

settings for all 12 of our functions, was $3.22 for brute

force, $0.10 for the AWS-CO, and $0.008 for CPU-TAMS.

To evaluate the linear search, binary search, and gradient
descent algorithms we utilized the brute force search dataset
walking through the data to emulate each search algorithm
on AWS Lambda. Linear search had the lowest average cost
of $0.58, likely attributed to most functions having a low
MAX-VALUE memory setting, in contrast to functions such
as Sysbench that required linear search to traverse the entire
memory setting range. Binary search also performed poorly,
costing on average the most of any search technique at $2.28.
The Binary Search algorithm always required many steps to
repeatedly divide the memory range in half. Gradient descent
performed slightly better, costing $1.50. Compared to the

worst case cost example for CPU-TAMS, other techniques

exhibited between 3.8 to 15x higher cost. Figure VI shows
the number of required invocations, cost, goal memory setting,
and whether each memory selection method results in a
approximate recommendation or optimal selections.

V. CONCLUSIONS

This paper has introduced our novel CPU-TAMS memory
selection method and presented results of our evaluation to
find recommended memory configurations across multiple
serverless FaaS platforms. RQ-1: To evaluate CPU-TAMS
we leveraged workloads with diverse CPU, disk, and network
utilization to understand how resource performance scales with
function memory across platforms. On AWS Lambda, disk
read and network throughput scaled with function memory

up to 2GB, while CPU timeshare scaled linearly across all
memory settings. Google Cloud Functions allocated vCPUs in
a tiered approach doubling vCPU capacity for every doubling
of memory where vCPU capacity remained constant for each
tier. IBM Cloud Functions and DigitalOcean functions did
not couple resource shares to memory settings, but instead
allowed co-located functions to compete for resources. RQ-

2: CPU-TAMS was shown to accurately predict memory
settings to provide MAX-VALUE recommendations that offer
high performance and low cost. Using a single profiling
run, CPU-TAMS predicted MAX-VALUE function memory
configurations with only 5% cost, and 8% runtime error on
AWS Lambda. CPU-TAMS found MAX-VALUE memory
settings on Google Cloud Functions, IBM Cloud Functions,
and DigitalOcean functions with no error by leveraging distinct
characteristics of each platform’s vCPU-to-memory scaling
policy. Compared to other search techniques, CPU-TAMS
required significantly less profiling data, resulting in 3.8 to
15x lower cost to apply. Each FaaS platform provided unique
challenges from different platform scaling policies that CPU-
TAMS had to account for. Our efforts demonstrate that a one-
size-fits-all approach to find optimal FaaS function memory
configurations for every platform is not possible as accounting
for platform heterogeneity is required.

ACKNOWLEDGMENTS

This research is supported by the NSF Advanced Cyber-
infrastructure Research Program (OAC-1849970), NIH grant
R01GM126019, and AWS Cloud Credits for Research.

REFERENCES

[1] AWS, “AWS Lambda – Serverless Compute - Amazon Web Services,”
http://aws.amazon.com/lambda/, 2021.

[2] Microsoft Azure, “Azure Functions,” http://azure.microsoft.com/en-
us/services/functions/s, 2021.

[3] IBM, “IBM Cloud Functions,” http://ibm.com/cloud/functions, 2021.
[4] Google Cloud, “Google Cloud Function: Event-Driven Serverless Com-

pute Platform,” http://cloud.google.com/functions, 2021.
[5] DigitalOcean, “DigitalOcean —Run functions on demand.”

https://www.digitalocean.com/products/functions, 2022.
[6] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking Behind

the Curtains of Serverless Platforms,” 2018 USENIX Annual Technical

Conf. (USENIX ATC 18), 2018.
[7] Datadog, “The state of serverless,” Feb 2020. [Online]. Available:

http://datadoghq.com/state-of-serverless-2020/
[8] R. Cordingly, H. Yu, D. P. Varik Hoang, D. Foster, Z. Sadeghi,

R. Hatchett, and W. J. Lloyd, “Implications of Programming Language
Selection for Serverless Data Processing Pipelines,” in 2020 6th IEEE

Int. Conf. on Cloud and Big Data Computing (CBDCOM 2020), 2020.
[9] A. Eivy and J. Weinman, “Be wary of the economics of” serverless”

cloud computing,” IEEE Cloud Computing, vol. 4, no. 2, pp. 6–12, 2017.
[10] J. Spillner, C. Mateos, and D. A. Monge, “Faaster, better, cheaper:

the prospect of serverless scientific computing and HPC,” in Comm in

Computer and Information Science, 2018.
[11] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless

execution of scientific workflows: Experiments with HyperFlow, AWS
Lambda and Google Cloud Functions,” 2017.

[12] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “Serverless execution of
scientific workflows,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2017.
[13] M. Malawski, K. Figiela, A. Gajek, and A. Zima, “Benchmarking

heterogeneous cloud functions,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2018.

[14] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning
models in a serverless platform,” in Proc - 2018 IEEE Int. Conf. on

Cloud Engineering, IC2E 2018, 2018.
[15] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and

G. Karsai, “BARISTA: Efficient and Scalable Serverless Serving System
for Deep Learning Prediction Services,” in 2019 IEEE Int. Conf. on

Cloud Engineering (IC2E), jun 2019, pp. 23–33.
[16] M. Fotouhi, D. Chen, and W. J. Lloyd, “Function-as-a-Service Ap-

plication Service Composition: Implications for a Natural Language
Processing Application,” in Proc of the 5th Int. Workshop on Serverless

Computing, 2019, pp. 49–54.
[17] L. Feng, P. Kudva, D. Da Silva, and J. Hu, “Exploring Serverless

Computing for Neural Network Training,” in IEEE Int. Conf. on Cloud

Computing, CLOUD, 2018.
[18] R. Cordingly, N. Heydari, H. Yu, V. Hoang, Z. Sadeghi, and W. Lloyd,

“Enhancing observability of serverless computing with the serverless
application analytics framework,” in Companion of the 2021 ACM/SPEC

Int. Conf. on Performance Engineering, Tutorial, 2021.
[19] M. Zhang, Y. Zhu, C. Zhang, and J. Liu, “Video processing with

serverless computing: A measurement study,” in Proc of the 29th ACM

workshop on network and operating systems support for digital audio

and video, 2019, pp. 61–66.
[20] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and T. Hoefler,

“Sebs: A serverless benchmark suite for function-as-a-service comput-
ing,” arXiv preprint arXiv:2012.14132, 2020.

[21] J. Kim and K. Lee, “Functionbench: A suite of workloads for server-
less cloud function service,” in 2019 IEEE 12th Int. Conf. on Cloud

Computing (CLOUD). IEEE, 2019, pp. 502–504.
[22] T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin, and

H. Chen, “Characterizing serverless platforms with serverlessbench,” in
Proc of the 11th ACM Symp. on Cloud Computing, 2020, pp. 30–44.

[23] A. Casalboni, “Aws lambda power tuning,” 2020. [Online]. Available:
http://github.com/alexcasalboni/aws-lambda-power-tuning

[24] S. Eismann, L. Bui, J. Grohmann, C. L. Abad, N. Herbst, and S. Kounev,
“Sizeless: Predicting the optimal size of serverless functions,” arXiv

preprint arXiv:2010.15162, 2020.
[25] N. Akhtar, A. Raza, V. Ishakian, and I. Matta, “Cose: Configuring

serverless functions using statistical learning,” in IEEE INFOCOM 2020-

IEEE Conf. on Computer Comm. IEEE, 2020, pp. 129–138.
[26] R. Cordingly, W. Shu, and W. J. Lloyd, “Predicting Performance and

Cost of Serverless Computing Functions with SAAF,” in 6th IEEE Int.

Conf. on Cloud and Big Data Computing (CBDCOM 2020), 2020.
[27] R. Cordingly, “Serverless performance modeling with cpu time account-

ing and the serverless application analytics framework,” 2021.
[28] N. Mahmoudi and H. Khazaei, “Performance modeling of serverless

computing platforms,” IEEE Trans on Cloud Computing, 2020.
[29] S. Eismann, J. Grohmann, E. van Eyk, N. Herbst, and S. Kounev,

“Predicting the costs of serverless workflows,” in Proc of the ACM/SPEC

Int. Conf. on Performance Engineering, ser. ICPE ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 265–276.

[30] T. Zubko, A. Jindal, M. Chadha, and M. Gerndt, “Maff: Self-adaptive
memory optimization for serverless functions,” in European Conf on

Service-Oriented and Cloud Computing. Springer, 2022, pp. 137–154.
[31] G. Safaryan, A. Jindal, M. Chadha, and M. Gerndt, “Slam: Slo-

aware memory optimization for serverless applications,” arXiv preprint

arXiv:2207.06183, 2022.
[32] W. J. Lloyd, S. Pallickara, O. David, M. Arabi, T. Wible, J. Ditty, and

K. Rojas, “Demystifying the Clouds: Harnessing Resource Utilization
Models for Cost Effective Infrastructure Alternatives,” IEEE Trans on

Cloud Computing, 2015.
[33] “Stress(1),” 2012. [Online]. Available: http://linux.die.net/man/1/stress
[34] A. W. Services, “Aws compute optimizer,” 2021. [Online]. Available:

http://aws.amazon.com/compute-optimizer/
[35] R. Cordingly, H. Yu, V. Hoang, Z. Sadeghi, D. Foster, D. Perez,

R. Hatchett, and W. Lloyd, “The serverless application analytics frame-
work: Enabling design trade-off evaluation for serverless software,” in
Proc of the 2020 Sixth Int. Workshop on Serverless Computing, 2020,
pp. 67–72.

[36] “Apache OpenWhisk,” http://openwhisk.apache.org, 2021.
[37] Fn Project, “Fn Project – The Container Native Serverless Framework,”

http://fnproject.io/, 2021.
[38] N. Mahmoudi and H. Khazaei, “Performance modeling of metric-

based serverless computing platforms,” IEEE Transactions on Cloud

Computing, 2022.

