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Abstract
Serverless computing simplifies application deployment by

removing the need for infrastructure management, with

RESTful APIs being the common interface. However, REST

can lead to inefficiencies such as data over-fetching and

under-fetching, which impact performance and cost. This

paper investigates GraphQL as an alternative to REST for

serverless functions using a serverless image processing

pipeline. We evaluate roundtrip time (RTT), scalability, and

cost, while also examining managed (AWS AppSync) and

unmanaged (Apollo Server) GraphQL hosting solutions. Our

results show that GraphQL generally outperforms RESTwith

respect to pipeline RTT, especially when there is high net-

work latency, offering a potentially better fit for optimizing

data transfer in serverless applications.

CCS Concepts: • Computer systems organization →
Cloud computing; • General and reference → Perfor-
mance.
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1 Introduction
Serverless computing has changed how applications are de-

ployed and managed by abstracting the underlying infras-

tructure. With serverless computing, developers no longer

manage servers and scaling since Function-as-a-Service (FaaS)

platforms, such as AWS Lambda, automate these tasks. This

enables developers to focus primarily on application logic,

while the cloud provider adapts server resources on demand.

Serverless applications are typically event driven and billed

only for the resources consumed during execution, making

them cost efficient and highly scalable. Applications provide

interfaces to serverless functions using RESTful APIs consist-

ing of standard HTTP methods including GET, PUT, POST,

and DELETE to communicate between clients and servers.

Representational State Transfer (REST) is widely recognized

for its simplicity and ability to abstract web communications,

making it a go-to solution for web services. Cloud providers

like AWS and Google Cloud offer extensive support for REST

APIs with seamless integration to their serverless platforms.

While REST’s widespread adoption has made it the default

interface for serverless functions, it may not be ideal for all

serverless use cases. REST interfaces can lead to inefficient

data exchange, such as overfetching (i.e., retrieving unnec-

essary data) and underfetching (i.e., not retrieving enough

data) [12]. These inefficiencies can increase execution time

and resource consumption, important considerations in a

serverless environment where performance and resource

utilization translate to cost. This paper investigates implica-

tions of using GraphQL interfaces in contrast to traditional

REST interfaces for a serverless image processing pipeline,

as a serverless application use case. We investigate GraphQL

performance in contrast to REST, as a means to optimize

data transfer, latency, and round-trip-time (RTT).

GraphQL is a query language for creating APIs that lever-

ages an execution engine to evaluate queries. It was initially

developed by Facebook in 2012 and open-sourced in 2015

[13]. GraphQL offers a dynamic and efficient alternative to

REST, enabling clients to request exactly the data they need.

Unlike REST, where data is returned in predefined formats,
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GraphQL supports fine-grained control over data returned

from servers. This makes GraphQL particularly well suited

to serverless environments, where minimizing data trans-

fer and session overhead is critical to optimize performance

and reduce cost. By combining data from multiple sources

into a single request, GraphQL can reduce the number of

client-to-server round trips in serverless data processing

pipelines, leading to more efficient resource utilization and

faster response times [14].

Despite widespread adoption of serverless computing and

GraphQL by companies like GitHub [7], and Netflix, only

limited research has been conducted to investigate GraphQL

performance, scalability, and cost-efficiency for serverless

applications. Prior research includes case studies [23, 25],

testing frameworks [15, 21], and extensions to GraphQL’s

query language [19, 20], but the utility of GraphQL as an

interface for serverless functions in contrast to REST has not

been rigorously evaluated. This paper presents an in-depth

comparison of GraphQL and REST interfaces for serverless

functions by evaluating their performance and cost for a

serverless image processing pipeline. Insights from this re-

search can help practitioners and researchers better under-

stand the trade-offs of GraphQL vs. REST for providing an

API interface for serverless applications.

1.1 Research Questions
We will investigate the following research questions:

RQ-1: (GraphQL API performance) How well does GraphQL

perform in the serverless environment with respect to RTT

and cost? What are the performance implications in con-

trast to providing the same functionality using REST APIs

to backend serverless functions?

RQ-2 : (GraphQL managed vs. unmanaged) What are the

performance and cost differences for hosting GraphQL APIs

using an unmanaged self-hosted GraphQL server vs. a man-

aged GraphQL service supported by a commercial cloud

provider?

1.2 Contributions
1. Comparison of GraphQL vs. REST for Serverless
Functions: We provide a detailed comparison of GraphQL

and REST APIs for serverless functions, investigating scala-

bility and performance metrics including RTT and cost.

2. Evaluation of Managed vs. Unmanaged GraphQL
Solutions: We investigate the performance and cost of man-

aged (e.g., AWSAppSync) vs. unmanaged self-hostedGraphQL

servers to guide developers in choosing between these solu-

tions for serverless applications.

2 Background and Related Work
2.1 GraphQL for APIs
GraphQL is a query language backed by an execution en-

gine to enable clients to request precisely the data they need

using a defined schema. A schema specifies data types, struc-

tures, and relationships between entities, allowing efficient

retrieval from multiple sources like databases, serverless

functions, and external APIs using a single query. This ap-

proach minimizes over-fetching, improving flexibility to op-

timize resource usage important in serverless environments.

Central to GraphQL’s operation are resolvers, which map

query fields to data sources to perform the necessary opera-

tions to fetch or compute the requested information. Each

field in a query is resolved independently, allowing GraphQL

to concurrently pull data from various sources in a single

request. This parallel execution is particularly beneficial in

applications with complex or nested queries, as it reduces

the number of API calls.

GraphQL supports mutations for data modification and

subscriptions for real-time updates, making it ideal for dy-

namic, interactive applications. These features offer flexibil-

ity in API design, allowing developers to build responsive

serverless applications capable of handling real-time data

flows, such as live dashboards or collaborative tools.

2.2 GraphQL Case Studies and Surveys
Prior research has performed qualitative comparisons of

GraphQL and REST in use cases and surveys, highlight-

ing advantages and the best adoption scenarios for each

approach ([16, 23–25]). While prior efforts offer insights into

the strengths and weaknesses of GraphQL and REST, these

investigations lack quantitative analysis.

Vadlamani et al. [24] interviewed GitHub employees ask-

ing them questions to compare REST vs. GraphQL. They

found GraphQL and REST each have their best adoption

scenarios. Mohammed et al. [23], Vázquez-Ingelmo et al.

[25], and Bryant and Mike [16] utilized GraphQL in indi-

vidual projects including an API to access medical records,

an Observatory of Employment and Employability (OEEU)

data API, and an archival metadata API for the European

Holocaust Research Infrastructure (EHRI). Mohammed et

al. [23] presented a new API developed from scratch with

GraphQL, while Vázquez-Ingelmo et al. [25] and Bryant and

Mike [16] described API conversions from REST to GraphQL,

demonstrating performance improvements.

2.3 GraphQL Performance Analysis
Several research efforts have analyzed the performance of

GraphQL APIs ([15, 18, 21, 22]). These efforts describe valu-

able methodologies and testing frameworks for quantita-

tive analysis. However, these efforts concentrated solely on

benchmarking GraphQL performance, and did not contrast

performance with equivalent REST APIs or investigate pro-

viding interfaces for serverless functions.

Cheng et al. [18] proposed a GraphQL server benchmark,

Linköping GraphQL Benchmark (LinGBM), to identify key

technical challenges (e.g. choke points) when building effi-

cient GraphQL servers. Their benchmark is more compre-

hensive than previous GraphQL benchmarks, and uses the

choke-point design method for more precise results. Belhadi

et al. [15] introduced a new testing framework based on
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the open-source EvoMaster tool which executes white and

black-box tests and automatically generate JUnit and Jest

test cases. Karlsson et al. [21] presented a new method to

automatically generate GraphQL queries to test GraphQL

APIs and evaluate test coverage. Mavroudeas et al. [22] uti-

lized machine learning to predict the price cost of GraphQL

queries, showing that their approach could outperform tra-

ditional static analysis.

2.4 GraphQL Platforms
AWS AppSync is a fully managed GraphQL service offered

by AWS (Amazon Web Services) [3]. AppSync facilitates the

development of scalable and flexible applications by enabling

data synchronization across multiple data sources. AppSync

is serverless and does not require users to provision or man-

age virtual machines with fixed vCPU or memory allocations.

Using GraphQL’s data query abilities, AppSync allows devel-

opers to create interactive applications with optimized data

retrieval. It also integrates well with other AWS services,

providing a secure and scalable environment for complex

data manipulation tasks.

Apollo Server is an open source GraphQL server de-

signed to simplify the process of building, deploying, and

maintaining GraphQL APIs [2]. It supports integration with

various data sources, including relational databases and REST

APIs, enabling developers to build efficient APIs. Apollo

server supports custom type definitions, resolvers, and direc-

tives, enabling tailored creation of GraphQL schemas to meet

specific application needs. It is compatible with any GraphQL

client, most notably the Apollo client. Apollo Server is re-

garded for its extensibility and customizability, offering fea-

tures enabling developers to adapt it to a variety of use cases.

In addition to Apollo Server, there are other open source

GraphQL server implementations, including GraphQL.js (the

reference implementation) [8], express-graphql (deprecated)

[6], and Hasura [9]. These servers emphasize different goals.

For example, Hasura [9] reduces developer time and effort

by automatically generating GraphQL APIs code, allowing

developers to skip writing boilerplate code required to create

an API. GraphQL.js is a basic implementation that requires

a deeper understanding of the GraphQL specification, mak-

ing it more challenging for beginners compared to other

higher-level frameworks. PostGraphile [11] is an extension

to the PostgreSQL database that supports only limited usage

Table 1. Test Client Configurations

Client Type Region Description

Local Desktop Local 32 GB RAM, Intel i5-13600K 20

cores, 350 Mbps Band

EC2 c7i.8xlarge us-west2 64 GB RAM, Intel Xeon 8488C

32vcpu, 12.5 Gbps Band

GCP c3.standard-8 us-west2 32 GB RAM, Intel Xeon 8481C

8vcpu, 32 Gbps Band

Lambda – us-e2 –

scenarios. In this paper, we focus on performance evalua-

tion of Apollo Server as an unmanaged server in contrast to

AppSync, a managed GraphQL service.

3 Methods
3.1 Image Processing Pipeline Use Case
To better understand performance differences between REST

and GraphQL interfaces for serverless functions, we imple-

mented an image processing pipeline. Our pipeline consists

of seven serverless functions, where each performs a specific

task: rotate, flip, crop, brighten, contrast, grayscale, and
resize. To exercise the pipeline, we sent a 4.8 MB JPG image

in the request payload which is just under AppSync’s 5MB

payload data limit. For our functions, intermediate data is

passed between stages, enabling the ordering of filters to

vary on demand. In our GraphQL implementation, for each

request, GraphQL resolves the requested image processing

filters and invokes them to eliminate multiple client-server

round-trips. For our REST implementation, the client orches-

trates the control flow by calling the corresponding server-

less functions to apply the requested filters using multiple

client-server round-trips.

This use case is well-suited for evaluating performance

of GraphQL and REST interfaces for serverless functions.

An image processing workflow involves computationally

intensive independent functions that require data exchange

between stages. Featuring intensive I/O and computation,

the pipeline is an ideal use case to compare the performance

of the GraphQL and REST interfaces. The pipeline’s exten-

sibility allows addition of new image processing functions,

as well as the reordering of processing stages, enabling com-

parison of multiple image processing workflow sequences

over image datasets.

3.2 REST and GraphQL Servers
Image processing functions were hosted using the serverless

AWS Lambda FaaS platform [4]. ARM64 Graviton Lambda

functions without simultaneous multi-threading (SMT) were

used to reduce function performance variance [17]. Func-

tion REST interfaces were implemented using the AWS API

Gateway, a managed service designed to implement scalable

REST APIs [1].

To provide GraphQL interfaces for serverless functions, we

investigated AWS AppSync and Apollo Server as described

in Section 2.4 to investigate (RQ-2). AppSync allowed us

to measure the performance of serverless, fully managed

GraphQL APIs, with built-in scaling and integration features.

We also implemented GraphQLAPIs on Apollo Server hosted

using Amazon EC2 instances as an unmanaged GraphQL

server that requires manual server setup and management.

To host Apollo, we leveraged a c7i.8xlarge EC2 instance

with 32 vCPUs and 64 GB memory @ 3.2 GHz with an Intel

Xeon(R) Platinum 8488C processor. For AppSync and Apollo
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Server, GraphQL resolvers written in Python invoked AWS

Lambda functions using the AWS SDK (Boto3) [5].

3.3 Clients
To evaluate the performance of REST and GraphQL inter-

faces for serverless functions, we tested a mix of local and

cloud-based VMs to investigate multiple scenarios. These

clients are described in Table 1.

1. Local: Testing was conducted using a local desktop com-

puter. This test case enables benchmarking REST andGraphQL

performance from offices or homes where the cloud is ac-

cessed using a shared internet connection with potentially

high network latency and low bandwidth.

2. EC2: A c7i.8xlarge instance in us-west-2 was used to test

REST and GraphQL performance when the client and back-

end shared a common cloud network.

3. GCP: We leveraged a Google Cloud Platform (GCP) VM

in us-west-2 to test REST and GraphQL cross-cloud interface

latency. In this configuration, the client and backend use

cloud networks from different cloud providers.

4. AWS Lambda: For scalability testing of Apollo and App-

Sync (RQ-2), we orchestrated concurrent calls to an AWS

Lambda client function which invoked GraphQL backends to

test performance under significant load. The Lambda client

function invoked an Apollo or AppSync backend deployed

in the same region, us-east-2.

4 Results
4.1 GraphQL vs. REST Performance Comparisons
To investigateRQ-1, we analyzed RTT for API calls executed

from three different clients: a local machine, a us-west-2

Google Cloud VM, and a us-west-2 AWS EC2 instance. These

clients represent three common scenarios: a local client, a

client on another cloud provider, and a client on the same

cloud as the serverless backend. We tested a GraphQL API

that accessed serverless functions using Boto3 on an unman-

aged Apollo server, the same API on Apollo which accessed

serverless functions via the Amazon API Gateway, and a

REST API hosted with the Amazon API Gateway. These

APIs enable a performance comparison between GraphQL

and REST, with and without the Amazon API Gateway.

Our findings revealed that Apollo Server leveraging the

Amazon API Gateway provided the best performance of the

interfaces tested; supporting the lowest RTTs. Although intu-

itively, one would assume that use of the API Gateway would

increase latency due to the additional layer between the

client and server, our results indicate that the API Gateway

provides an optimized endpoint with faster response time

versus invoking serverless functions directly in GraphQL re-

solvers using AWS SDK (Boto3). This performance improve-

ment can likely be attributed to API Gateway optimizations

in routing and caching, which reduce latency.

When comparing the performance of GraphQL to REST,

GraphQL consistently outperformed REST in terms of RTT,
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Figure 1. RTTs (s) of different clients in GraphQL and REST

settings, clients: local desktop, AWS EC2, GCP VM (us-west)

especially in environments with lower bandwidth and higher

latency. The performance gap between GraphQL and REST

was most noticeable when requests were made from a local

machine, when requests were sent over a higher-latency,

lower-bandwidth network. In such cases, GraphQL’s abil-

ity to aggregate function calls and eliminate unnecessary

roundtrips reduces the volume of data transferred, to help

lower RTT. For cloud-based clients (i.e., Google Cloud VM

andAWSEC2), the performance difference betweenGraphQL

and REST interfaces is less. This is likely due to lower net-

work latency because the client traffic travels over a cloud

network vs. the internet.

Our results suggest that the decision to adopt GraphQL vs.

REST interfaces for serverless functions should take client

network conditions into consideration. In higher latency

scenarios, when clients access the cloud via the internet,

or for edge/IoT devices accessing the cloud from remote

networks, GraphQL appears to provide a distinct advantage

by combining function calls to eliminate extra roundtrips. In

contrast, as bandwidth and latency improves, particularly

in cloud-native setups, REST becomes more competitive,

and the advantages of GraphQL, though still present, are

less impactful. Selecting between these two architectures

requires careful consideration of the specific deployment

context and the expected network conditions.

4.2 GraphQL vs. REST Performance Scalability
To investigate scalability of API performance, we leveraged

an 8 vCPU Google Cloud VM as a client and tested using 3,

10, 50, and 70 worker threads that performed 10 sequential

calls each. Figure 2 illustrates the RTT distributions as the

number of threads increases. Each row of graphs depicts the

performance distribution with a given number of worker

threads. The first row is 3 threads with 30 total runs, the

second row is 10 threads with 100 total runs, the third row

is 50 threads with 500 total runs, and the fourth row is 70

threads with 700 total runs. Columns depict the server type:

Apollo, Apollo+API Gateway, and REST. The statistical data

are displayed in each graph, with 𝜇 representing the mean,

𝜎 for standard deviation, and CV for coefficient of variation.
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Figure 2. Distributions of RTTs with different number

of threads, client: Google Cloud VM in us-west-2

The total average RTT are 13,038ms for Apollo, 12,070ms for

Apollo and API Gateway, and 13,355ms for REST.

With low concurrency, the Apollo Boto3 configuration

exhibited 20% variance caused by cold-start latency observed

in a few runs. As concurrency increased, each distribution

became more normally distributed with variance of 5 to 8%,

a value likely caused by function runtime variance on AWS

Lambda. With higher concurrency (70 threads), Apollo using

the API Gateway exhibited a bimodal distribution. Inspection

of the data revealed that with 70 concurrent clients, about

15% of the requests were processed by Apollo at the end of

the batch of 700 requests when total server load dropped en-

abling faster RTT.With lower concurrency, the RESTAPI and

Apollo distributions appear more log normally distributed

with a long right tail, indicating the presence of performance

outliers. REST and Apollo performance trended towards nor-

mality as the thread and sample count increased.

4.3 Performance Comparisons for Unmanaged
Apollo vs. Managed AppSync

To investigate (RQ-2), an AWS Lambda function was used to

generate concurrent calls to prevent bottlenecks which occur

when using a single VM as multi-threaded client. Figure 3

compares mean RTT in seconds of Apollo and AppSync as

the number of concurrent requests was scaled from 1 to 75.

With lower concurrency, both Apollo and AppSync pro-

vide similar response times, though Apollo was approxi-

mately 6% faster. RTT on the left side of the graph is in-

fluenced by server cold starts which appear to dissipate as

concurrency is scaled up. As the thread count increases, a

clear difference emerges between the two different servers.

When scaled beyond 53 concurrent requests, AppSync pro-

vided lower RTTs compared to Apollo Server, which reached
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Figure 3.Apollo vs. AppSyncwhen increasing thread counts,
client: AWS lambda functions

a scaling bottleneck on a c7i.8xlarge EC2 instance. For up to

70 concurrent requests, AppSync’s managed environment

provided better scalability for parallel processing, which is

crucial for applications requiring high concurrency. Apollo’s

mean RTT increases as the thread count rises, indicating

greater sensitivity to concurrency, highlighting the limita-

tion in Apollo’s ability to handle high concurrency. To ad-

dress scalability, Apollo Server can be deployed on a larger

VM with more vCPUs, but there are limits to vertical scaling,

with VMs with 192 vCPUs being the current upper limit on

AWS. Apollo Federation can be leveraged to scale unman-

aged Apollo servers beyond a single VM [10]. This requires

additional effort to configure than a managed serverless App-

Sync for hosting GraphQL APIs.

4.4 Cost Comparison for Unmanaged Apollo vs.
Managed AppSync

In this section, we compare hosting costs for GraphQL APIs

associated with using AWS AppSync versus Apollo Server.

The cost of data transfer and AWS Lambda execution are

excluded from this analysis because they are essentially the

same (i.e., AppSync charges the same price for data egress as

EC2 for Apollo). Differences emerge when considering the

cost models for hosting and request handling.

AppSync uses a pay-as-you-go pricing model, charging

$4 per million queries and data modification operations. This

linear and inexpensive price structure makes AppSync at-

tractive for workloads with high volumes of requests and

scenarios that involve rapid scaling. AppSync, as a managed

service, eliminates user management and maintenance of

infrastructure, which can further reduce operational costs.

We hostedApollo Server, on an AWS c7i.8xlarge instance,

which costs $1.428 per hour with on-demand pricing. To

estimate the cost of providing a GraphQL interface, we eval-

uated cost with a concurrency of 53 threads, the point where

Apollo RTT matches AppSync as shown in 3 at 8.5 seconds

per request. At this concurrency level, we estimated the

cost for Apollo to handle one million requests would be

$63.62. In contrast, the GraphQL interface cost using
AppSync is just $4. This comparison highlights the signifi-

cant cost differential of hosting a GraphQL API (unmanaged
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Figure 4. Apollo, AppSync and REST cost estimation com-

parison when increasing the request number under 53

threads, client: AWS lambda functions

vs. managed), and also the performance limitations when

using Apollo Server.

As a baseline comparison, the REST API cost includes

API Gateway’s pricing. In us-east-2 (Ohio) the price is $1 for

the first 300 million, and $0.9 later on. For our REST image

processing pipeline, the price to invoke all 7 function calls

in the pipeline is $7 per million.

Figure 4 illustrates the cost difference between AppSync

and Apollo for increasing numbers of requests. The graph

excludes AWS Lambda compute and data transfer charges

since they will be essentially the same. For a small number of

requests, both solutions are relatively inexpensive, but as the

number of requests grows, Apollo’s cost increases dramati-

cally due to the higher infrastructure costs and performance

degradation. In contrast, AppSync’s costs remain stable,
scaling linearly at $4 per million requests, which is
even less expensive than REST with the API Gateway.
This analysis shows that AppSync offers a more cost-

effective solution for handling large volumes of requests,

particularly when the workload requires high scalability and

low management overhead. In contrast, Apollo may be more

suitable for use cases where the user requires greater control

over the hosting environment, or where the request volume

is low enough that the infrastructure cost is manageable.

5 Conclusions
This paper presents our investigation of GraphQL as an

alternative interface to REST for serverless functions lever-

aging an image processing pipeline as a use case. (RQ-1):
For serverless function pipelines, GraphQL eliminates client-

to-server roundtrips to reduce RTT. RTT improvement is

greater when the client-to-server latency is higher, a com-

mon network characteristic in edge computing environments.

(RQ-2): AppSync, a managed GraphQL server, provided

better performance at scale with lower costs, while Apollo

Server (an unmanaged server), provided better RTTwhen not

over-provisioned, but with higher costs. Providing GraphQL

interfaces for our serverless functions was less expensive

than REST. This savings will occur whenever GraphQL elimi-

nates round-trips of client-to-server functions in the pipeline.
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