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ABSTRACT
Public Infrastructure-as-a-Service (IaaS) clouds abstract var-
ious details regarding the implementation of resources pro-
vided to users. For example, users are not informed about
the exact physical location of their virtual machines (VMs),
the specific hardware used, the number of co-resident VMs
they reside with, or the workloads that co-resident VMs are
running. Detecting when VMs underperform can help iden-
tify resource contention from co-resident VMs to spur their
replacement. Resource utilizationmetrics can beused tohelp
classify performance of runs for use in VM performance
model datasets to sample the distribution of performance
outcomes in the cloud. VM performance models are key to
predicting the cost of bioinformatics analyses in the public
cloud. This paper investigates the performance variations
of running a RNA sequencing workflow in the public cloud.
We examine causes of performance variations including VM
provisioning, CPU heterogeneity, and resource contention.
We leverageAmazonElasticComputeCloud (EC2) placement
groups, a feature designed to help influence VM placement
to help examine how VM placement impacts performance
variations. As a use case, we investigate the performance of
amulti-stage bioinformatics RNA sequencing (RNA-seq) an-
alytical workflow consisting of four distinct phases, execut-
ing in 90 minutes on average using 8-core public cloud VMs.
In addition, we investigate whether Linux resource utiliza-
tion metrics collected by profiling workflow runs can help
identify performance implications.
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1 INTRODUCTION
In public clouds, provisioning variation refers to the random nature
of VM placement across physical servers that occurs when cloud
providers load balance VM launch requests. Where VMs are hosted
on public clouds is abstracted, and is considered a challenge to
infer in real-time [3, 7, 9, 13, 15, 17, 19]. Public clouds support
features including availability zones, virtual private networks, and
placement groups to help consolidate VMs. These features can help
influence VM placement relative to other user VMs for application
hosting to help improve performance. Though the placement of
user VMs can be influenced, shared physical hosts in the cloud can
still host many other co-resident VMs that consume an unusual
share of CPU, memory, disk, or network resources. In particular,
resource contention has been shown to degrade performance of
scientific applications hosted in public clouds [11, 14, 16].

CPU heterogeneity occurs when public cloud providers imple-
ment the same VM type using physical servers implemented with
more than one CPU type. Farley et al. initially noted CPU hetero-
geneity on Amazon Web Services (AWS) Elastic Compute Cloud
(EC2) VMs of the same instance type in [6]. Farley’s work focused
on the m1.small instance type. In particular, they demonstrated
cost savings by discarding VMs with lower performing CPUs of
the same instance type. Ou et al. identified heterogeneous VM im-
plementations on multiple public clouds and observed at least four
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different Intel Xeon CPUs used to implement the m1.large EC2 in-
stance type producing performance variation of 20% for operating
system benchmarks [12]. Lloyd et al. tested 12 different EC2 VM
types and found that 25% were implemented with more than one
CPU [11]. Lloyd et al. then developed a “trial-and-better” approach
where the CPU type of VMs is checked upon launch, and those with
lower performing CPUs are terminated and replaced. By leveraging
the trial-and-better approach, Lloyd demonstrated potential for
up to 14% performance improvement for RESTful environmental
modeling web service workloads.

In this paper, we investigate the implications of VM provisioning
variation and CPU heterogeneity on the performance of a multi-
stage RNA sequencing (RNA-seq) workflow. An RNA-seq workflow
consists of multiple computational tasks, each of these tasks could
potentially exhibit different performance characteristics.We investi-
gate the performance of running concurrent instances of tasks from
this workflow across c5.2xlarge (Intel Xeon) and new c5a.2xlarge
(AMD EPYC) EC2 instances equipped with 8 virtual CPUs. Running
the RNA-seq workflow concurrently on the cloud is a common
scenario for exploratory investigations over genomics data. We
leverage EC2 placement groups to control VM placement as much
as possible and study runtime implications. Our empirical exper-
iments show that Intel Xeon-based c5 instances, considered the
current generation of compute optimized VMs in us-east-2 (Ohio),
exhibit CPU heterogeneity. Nearly half of the instances were imple-
mented with the Intel Xeon Platinum 8124M CPU, while the other
half used the Intel Xeon Platinum 8275CL CPU. This CPU hetero-
geneity produced a difference between min/max performance of
20.9% for RNA-seq spanning from a minimum of 55m 33s (8275CL)
to a maximum of 67m 11s (8124M). As tasks are deployed thou-
sands of times, this performance variation translates to performance
losses and cost increases for big data analyses.

To optimize the performance of genomics workflows on the
public cloud, we are interested in developing techniques to auto-
matically identify under-performing VMs in real-time so they can
be replaced. Additionally, when profiling resource utilization of
tasks to train VM performance models, there is a desire to ade-
quately sample the entire input space that represents the range of
possible performance outcomes for a task in the public cloud (e.g.
19.5% for c5.2xlarge). To capture the full spread of possible runtimes,
we aim to develop techniques that suggest where a profiling sample
lies across the distribution before knowing the distribution. We
investigate Linux profiling metric relationships with runtimes of
individual tasks to identify relationships to spur this effort.

1.1 Research Questions
This paper investigates the following research questions:

RQ-1:What is the performance variation of running genomics
data analytical tasks on the public cloud? How much do factors
such as provisioning variation, CPU heterogeneity, and resource
contention contribute to performance variation? How does perfor-
mance compare to analyses on isolated hosts?

RQ-2: Over a 24-hour period, how does performance of individ-
ual cloud VMs vary for repeated runs of analytical tasks? What
relationships exist between Linux resource utilization metrics (CPU,

memory, disk, and network) and task runtimes? Which metrics cor-
relate with runtimes? Can these relationships help infer where a
task’s runtime lies along the distribution of runtimes for a particular
VM?

2 BACKGROUND
2.1 CPU Heterogeneity
Public cloud providers largely have chosen to offer distinct types
of VMs to cloud users to simplify the task of resource allocation to
users. By fixing VM resources to have distinct quantities of virtual
CPUs (vCPUs), memory, storage capacity, and network bandwidth,
cloud providers can focus on optimizing hardware to deliver these
resources in a highly available and scalable manner. For example,
the Amazon, Microsoft, and Google public clouds presently offer
more than 265, 204, and 35 fixed VM types each with predefined
hardware specifications for the number of vCPUs, RAM size, stor-
age type and capacity, and network bandwidth. As cloud hardware
ages, however, cloud providers are forced to replace aging hard-
ware to implement existing VM types with new CPUs. This CPU
heterogeneity has been shown to produce performance variation
for a variety of application workloads [6, 11, 12].

In this paper we focus on performance analysis of the alignment
step for an RNA-seq workflow on c5.2xlarge and c5a.2xlarge AWS
EC2 instances. These VMs are equipped with 8 virtual CPUs (vC-
PUs), 16 GB RAM, EBS storage, and up to 10 Gigabit network
throughput. For c5.2xlarge testing, we created 30 VMs, where
16 were randomly implemented with the Intel Xeon Platinum
8124M CPU, and 14 with the Intel Xeon Platinum 8275CL CPU.
For c5a.2xlarge testing, we created 30 VMs where all were imple-
mented with the AMD EPYC 7R32 processor. This is to be expected
as the c5a instance type was brand new at the time of the study
having been released in June 2020 [1]. We provide an overview of
the CPUs backing c5.2xlarge and c5a.2xlarge instances, as well as
their prevalence statistics for different VM placement strategies in
Table 1.

2.2 VM Placement Groups
AWS EC2 offers VM placement groups to help influence the place-
ment of VMs across public cloud physical servers [2, 4]. Options
include spread, cluster, and partition placement groups.With spread
placement, AWS places instances on distinct servers located on dif-
ferent server racks, where each rack has its own network and power
source to maximize dispersion and improve fault tolerance on re-
source failure. Spread placement is limited to 7 VMs per availability
zone for standard user accounts forcing us to launch instances
across two availability zones to obtain 10 distinct VM placements
in the us-east-2 Ohio region for our experiments. Spread placement
guarantees that no two VMs will be co-located with each other.
Given that genomics workflows are both CPU and I/O intensive,
co-locating all concurrent runs on the same hardware will result
in resource contention. Spread placement guarantees user VM’s
won’t interfere with each other, but it does not guarantee resource
isolation from other user’s VMs. Partition placement is similar to
spread placement but allows for more than one VM to exist in
each partition allowing for distinct destinations for VMs. Users are
limited to 7 partitions per availability zone. We do not investigate



Intel(R) Xeon(R) Platinum
8124M CPU@ 3.00 GHZ

Intel(R) Xeon(R) Platinum
8275CL CPU@ 3.00 GHZ

AMD EPYC 7R32 CPU @
2.80 GHz GHZ

EC2 Instance Type c5.2xlarge c5.2xlarge c5a.2xlarge
Family/microns/yr Skylake/14nm/2017 Cascade Lake/14nm/2019 Rome/7& 14nm/2019
vCPUs/host 72 96 96
Physical CPU cores/host 36 48 48
Burst clock MHz (single/all) 3400/3500 3600/3900 3300/3300
L1 cache (per core) 1.125 MiB (1/2 data, 1/2 instruc-

tion)
1.75 MiB (1/2 data, 1/2 instruc-
tion)

64K (1/2 data, 1/2 instruction)

L2 cache (per core) 18 MiB 24 MiB 512K
L3 cache (per core) 24.75 MiB 35.75 MiB 16384K
Watts 205 240 280
Total Freq. 53% 47% 100%
Standard Freq. 13% 20% 100%
Cluster Freq. 13% 20% 100%
Spread Freq. 27% 7% 100%

Table 1: EC2 Fifth Generation Compute Optimized Processor Comparison: c5.2xlarge instances (Intel Xeon Platinum 8124M
and 8275CL), and c5a.2xlarge instances (AMD EYPC /7R32)

partition placement groups here because RNA-seq workflows run
standalone on individual VMs and we do not want to co-schedule
concurrent runs on VMs running on the same physical server in a
partition.

Cluster placement packs instances close together inside an Avail-
ability Zone, to ensure the lowest possible network latency and the
highest possible network throughput (up to 10 Gbps) for TCP/IP
traffic. Instances in a cluster placement group are placed on the
same rack, or on racks close to one another in the cloud data cen-
ter. Cluster placement for concurrent jobs of the same type may
increase resource contention and reduce performance when VMs
share the same physical server to run identical tasks. Cluster place-
ment, however, does not guarantee that VMs will share physical
servers. VM placement is still subject to provisioning variation and
the actual placement of VMs across servers is not disclosed.

3 METHODOLOGY
3.1 UMI RNA-seq Workflow
As a use case we study the performance of the multi-stage unique
molecular identifiers (UMI) RNA-seq workflow [18]. To reduce
computation time and cost we performed 330 (240 from RQ-1, 90
from RQ-2) workflow runs, we used a partial dataset generated by
excluding all but the first million reads from the original FASTQ
files. The workflow consisted of 4 distinct phases each requiring
different computational resources to execute. Figures 2 and 3 depict
the resource utilization of our RNA-seq workflow as measured on
the Intel Xeon 8124M and AMD EPYC 7R32 processors. The fig-
ures show Linux CPU time accounting metrics to describe the state
of the CPU while executing the workflow. These figures enable
a comparison of how two different x86-64 processors perform an
identical workflow from the perspective of Linux CPU time ac-
counting. In Figure 1 we see the first phase is a download phase
where the workflow downloads input data (8 GB of FASTQ files)
from the Amazon Simple Storage Service (S3). The second phase is
a split step where data demultiplexing is performed. Data is sorted

Figure 1: Flow diagram of the UMI RNA-seq workflow [18].

using a sequence barcode to identify the originating sample. The
third phase aligns the reads to a human reference sequence using
the Burrows Wheeler Aligner (BWA) [10]. The final stage is the
"merge" phase which counts all the aligned reads to compute the
number of transcripts produced by each gene. Please refer to our
previous work [8] for implementation details of these steps. In this
paper, we focus on the alignment step as this has been shown to
be CPU-intensive [8] and the most time-consuming phase in the
entire workflow. Since the alignment to a reference genome is the
rate-limiting step in many genomic workflows, we expect that an
analyses of factors affecting alignment performance will be of broad
interest.



These tasks were deployed on EC2 instances using a Docker
container with Ubuntu 16.04 LTS as the base operating system. A
VM image was created which included Docker and all required
software dependencies for the VMs.

Figure 2: Intel(R) Xeon(R) Platinum 8124M CPU utiliza-
tion graph for the four phases (download, split, align, and
merge) of the RNA-seq workflow (c5.2xlarge). The graph
depicts % CPU time in each CPU mode: cpuUsr (CPU user
mode), cpuKrn (CPU kernel mode), cpuIdle (CPU idle time),
cpuIOWait, and cpuSftIntSrvc (CPU soft interrupt service
mode)[5].

Figure 3: AMD EPYC 7R32 CPU utilization graph for the
four phases (download, split, align, and merge) of the RNA-
seq workflow (c5a.2xlarge). The graph depicts % CPU time
in each CPU mode: cpuUsr (CPU user mode), cpuKrn (CPU
kernelmode), cpuIdle (CPU idle time), cpuIOWait, and cpuS-
ftIntSrvc (CPU soft interrupt service mode)[5].

3.2 Container Profiler
To profile resource utilization of the tasks within the UMI RNA-seq
workflow in our experiments, the Container Profiler tool was used
[5]. The Container Profilermeasures and records resource utilization

of any containerized task capturing over 50 individual metrics to
characterize CPU, memory, disk, and network utilization at the VM,
container, and process levels. The Container Profiler can produce
resource utilization snapshots at multiple time points, allowing for
continuous monitoring of the resources consumed by a container
workflow. All experimental data were obtained using the Container
Profiler including the runtime of each task.

3.3 Cloud Infrastructure for Experiments
To investigate (RQ-1), we profiled the performance of tasks within
the UMI RNA-seqworkflowusing 30 x c5.2xlarge and 30 x c5a.2xlarge
instances using three different AWS EC2 placement groups to test
for performance variations. We launched 10 VMs using each place-
ment group: standard placement (i.e. no strategy, standard VM
launch), spread, and cluster. We leveraged 30 instances to run each
task in the UMI RNA-seq workflow 3 times each on c5.2xlarge for
a total of 90 runs, and 4 times each on c5a.2xlarge for a total of 120
runs. For c5.2xlarge instances we received 16 with the Intel Xeon
8124M processor, and 14 with the Intel Xeon 8275CL processor.
All c5a.2xlarge instances were backed with the AMD EPYC 7R32
processor. Processor breakdowns by placement group are shown
in Table 1.

To investigate (RQ-2), we test for relationships between Linux
resource utilization metrics and task runtimes, we launched 16
x c5.2xlarge instances. 9 instances were created using standard
placement, and 7 instances were created with cluster placement.
For standard placement we received 77.7% Xeon 8124M CPUs, and
22.3% 8275CL CPUs. For cluster placement we received 71.4% Xeon
8124MCPUs, and 28.6% Xeon 8275CL CPUs for a total of 12 x 8124M
CPUs and 4 x 8275CL CPUs. Each instance ran the tasks in the UMI
RNA-seq workflow 15 times over a 24-hour period for a total of
240 runs. By running 15 consecutive iterations of the tasks on
each VM, we sought to observe if task performance was constant
or variable over a 24-hour period. To ensure that experimental
costs were tractable we leveraged spot instances and restricted
the duration to approximately 1-day. This enabled us to monitor
performance of VMs that ran RNA-seq repeatedly for a total of 15
runs. During our experiment 4 spot instances were terminated due
to capacity demand. Persistently slow VMs, once identified, could
then be replaced to improve throughput and runtime to lower cloud
computing costs.

4 RESULTS AND DISCUSSION
4.1 RNA-seq Public Cloud Performance

Variations
To determine performance variations for each task in the UMI RNA-
seq workflow (RQ-1), we profiled 30 runs on c5.2xlarge, and 40 runs
on c5a.2xlarge using each VM placement strategy (e.g. standard,
spread, and cluster). To assess performance on a dedicated server
with no other users, we profiled the performance of 3 runs on a
c5.2xlarge EC2 dedicated host, a private isolated cloud server not
shared by other users to measure runtime performance when there
is no resource contention. At the time when we performed our
tests, AWS did not offer a dedicated host to support this test for c5a
(AMD EPYC) instances.



Figure 4: Runtime distribution graphs of the alignment step
for c5.2xlarge and c5a.2xlarge instances by VM placement
group and processor type. The graphs depict the runtime dis-
tribution for the alignment task of theworkflow. To normal-
ize the number of samples in the plot, data for c5a.2xlarge
AMD EPYC instances is scaled by 3

8 .

Processor Total Standard Cluster Spread
Intel Xeon 8124M 48 12 24 12
Intel Xeon 8275CL 42 18 6 18
AMD EPYC 7R32 119 40 40 39

Table 2: Number of RNA-seq workflow runs by processor
and VM placement strategy

Figure 4 depicts the runtime distributions of RNA-seq for each
placement group and processor for the alignment step. Most runs
on the 8275CL outperform the 8124M and EPYC 7R32 processors.
Figure 4 depicts the challenge of capturing training data for VM
performance models. CPU heterogeneity increases the sample space
of the distribution. Statistically, instance types with heterogeneous
CPUs are best handled by separating data for each CPU into sep-
arate distribution curves. Generalized cloud performance models
should consider the probability of obtaining a particular CPU. Fig-
ure 4 also illustrates the distribution of processors for each VM
placement strategy. For example, using spread placement we ob-
tained significantly more 8124M processors than 8275CL processors
when launching VMs.

Table 2 enumerates all profiling runs conducted to evaluate align-
ment step performance variation to investigate RQ-1. Table 3 and 4
detail runtime statistics of the alignment step on the Intel Xeon
8124M and 8275CL CPUs. Table 5 provides runtime statistics of the
alignment step on the AMD EPYC 7R32 CPU. All tables include the
percent runtime variation which capture the differences between
the minimum and maximum. The tables also include the coefficient
of variation (CV), which provides as a percentage, a standardized

Standard Cluster Spread Dedicated
Host

Max runtime (s) 4031 3890 3828 3463
Min runtime (s) 3668 3643 3590 3461
Average (s) 3788 3749 3628 3462
(%) variation 9.58% 6.59% 6.56% 0.06%
CV 3.70% 2.47% 2.78% 0.03%

Table 3: c5.2xlarge (Intel Xeon 8124M) Runtime perfor-
mance of the alignment step based on VM placement strat-
egy.

Standard Cluster Spread
Max runtime (sec) 3674 3611 3413
Min runtime (sec) 3358 3367 3333
Average (sec) 3470 3467 3383
(%) Runtime Variation 9.11% 7.04% 2.37%
Coefficient of Variation 2.62% 1.88% 1.12%

Table 4: c5.2xlarge (Intel Xeon 8275CL) Runtime perfor-
mance of the alignment step based on VM placement strat-
egy.

Standard Cluster Spread
Max runtime (sec) 3957 3912 3923
Min runtime (sec) 3752 3732 3713
Average (sec) 3829 3825 3771
(%) Runtime Variation 5.35% 4.71% 5.57%
Coefficient of Variation 1.57% 1.21% 1.88%

Table 5: C5a.2xlarge (AMD EPYC 7R32) Runtime perfor-
mance of the alignment step based on VM placement strat-
egy.

measure of dispersion describing the extent of variation of the run-
times equal to the standard deviation over the mean. The tables
also include the minimum, maximum, and average runtime of the
alignment step for each respective configuration. We also measured
the alignment performance in isolation using an EC2 dedicated host.
EC2 dedicated hosts can be rented to provide access to an entire pri-
vate isolated server in the public cloud. This allows benchmarking
performance of workloads where resource contention from other
cloud users is not present. We rented a C5 dedicated host based
by the Intel Xeon 8124M processor and detail our performance
measurements in Table 3. Using an isolated host reduced runtime
compared to standard VMs with an Intel Xeon 8124M processor by
8.6% on average, and by 14.1% in the extreme case.

For Intel Xeon processors, the runtime distribution was the great-
est when creating an instance with standard VM placement (9.58%
8124M) in the public cloud, and smallest with spread placement
(2.37% 8275CL). CV was also greatest for standard cloud placement
(3.7%). Spread placement provided the lowest average runtime for
both Intel Xeon CPUs. These results demonstrate up to a 20.9%
performance variation for RNA-seq on the c5.2xlarge EC2 instance
type with differences explained by CPU heterogeneity (8124M vs.



Figure 5: Resource utilization heatmaps (8124M CPU) for the full RNA-seq workflow (left) and only the alignment step (right)
with clustered (ordered) rows. Negative correlations between profiling metrics and runtime can be seen. Columns depict 180
individual workflow runs from left to right sorted by increasing runtime.

Figure 6: 24-hour RNA-seq runtime performance change
on c5.2xlarge instances created with no placement strategy
with the Intel Xeon 8124M and 8275CL processors. The X-
axis is of runs of the workflow, and the Y-axis is the com-
bined workflow runtime for all four tasks (download, split,
align, and merge) in minutes. Each VM executed the RNA-
seq workflow 14 times in secession over a 24 hour period.

8275CL), resource contention (standard vs. dedicated host), and VM
placement (standard vs. spread). For c5a.2xlarge instances backed
by the AMD EPYC 7R32 processor, we measured approximately half
of the performance variation as compared to Intel backed instances.
We suspect that at least a portion of the reduction in performance
variation can be attributed to fewer users creating resource con-
tention with c5a instances. The c5a instances debuted on June 4,
2020, and our experiments were run on June 23, 2020, a period
of less than 3 weeks. In general it may take several months for
users to evaluate new VM types and migrate existing workloads
once determining a potential for performance improvement or cost
savings.

Figure 7: 24-hour RNA-seq runtime performance change
on c5.2xlarge instances created with the cluster placement
strategy with Intel Xeon 8124M and 8275CL processors. The
X-axis is the of runs of the workflow, and the Y-axis is the
workflow runtime in minutes. Each VM executed the RNA-
seq workflow 14 times in succession over a 24 hour period

4.2 RNA-seq Performance over 24 hours
To investigate RQ-2 we profiled how performance of the entire
workflow varied over a 24-hour period across 16 x c5.2xlarge EC2
instances. We launched 9 VMs with standard placement, and 7 VMs
with cluster placement, receiving 12 x Xeon 8124M processors and
4 x Xeon 8275CL processors. Each VM ran the entire workflow
15 times in succession. Our objective was to investigate whether
a VM that produced fast or slow runs initially would sustain the
same performance behavior for an entire day. Figure 6 and 7 illus-
trate our observations of performance variation over 24-hours on
c5.2xlarge EC2 instances created using no placement strategy and
with the cluster placement strategy respectively. Each line depicts
the performance of a specific VM. From the graphs we can see that
no VM had perfectly consistent runtime, but we observed that, in
general, fast VMs were remained generally fast, and that slow VMs



remained generally slow over 24 hour period. From the figures we
do see where a few VMs experienced positive or negative spikes
in runtime over the 24 hour period. For these spikes, it is notable
that runtimes across multiple VMs trended in the same direction
(+/-) at the same time indicating a potentially higher load on the
local hardware backing these instances during these times. Spikes
from fast to slow(er) were observed on approximately 6 of the 16
EC2 instances. VMs without performance spikes tended to exhibit
overall lower runtime performance over 24 hours.

4.3 Resource Utilization Relationships with
Workflow Runtime

We next investigated relationships between Linux resource utiliza-
tion metrics collected by the Container Profilerwith runtime (RQ-2)
on c5.2xlarge EC2 instances by analyzing data from 240 runs. 75%
of the runs ran on the 8124M CPU, while 25% ran using the 8275CL.
We normalized metrics using per minute averages to investigate
correlations with runtime. Several metrics had statistically signifi-
cant negative correlations with runtime (p<.01). These correlations
include: (VM metrics) disk sector reads, CPU context switches, disk
sector writes, of successful disk writes, and page faults; (container
metrics) disk read bytes, and max memory used.

Figure 5 provides two heatmaps to visualize relationships with
Linux resource utilization metrics for the entire workflow run-
time (left) and the alignment step runtime (right). A cluster of
inverse relationships with runtime is seen including (container met-
rics): cDiskWriteBytes, cDiskReadBytes, cMemoryMaxUsed, and
(VM metrics): vDiskSectorReads, vCpuMhz, vCpuContextSwitches,
vDiskSectorWrites, vDiskSuccessfulWrites, and vPgFaults. As fu-
ture work, we will investigate the use of machine learning ap-
proaches to characterize VM performance using resource utilization
metrics as features.

5 CONCLUSIONS
In this paper, we investigated two core research questions (RQ-1)
how much performance variation occurs when running genomics
data analytical tasks on the public cloud, and (RQ-2) what relation-
ships exist between Linux resource utilization metrics and runtime.
We leverage AWS placement groups to investigate how changes to
VM placement impact the performance of genomics analysis. We
also identified heterogeneous CPUs used to implement cloud VMs,
and detail the performance implications.

Our research findings include: (RQ-1) The performance vari-
ation of long running compute-bound tasks on the public cloud
were found to be as high as 20.9% using the same instance type
(c5.2xlarge) which occurred as a result of CPU heterogeneity, VM
placement, and resource contention. The minimum to maximum
performance variation for the alignment step spanned from a low
of 55 minutes 33 seconds using spread placement (8275CL) to 67
minutes 11 seconds using standard VM placement (8124M). Average
performance for the fastest VM placement type provided a 12% per-
formance improvement over average performance of the slowest
VM placement type for c5.xlarge, and a 13.1% improvement over the
average performance for c5a.2xlarge having standard placement.

For (RQ-2), our results demonstrate performance variation of
runs across VMs, while runs across individual VMs appear to have
more consistent performance over a 24 hour period. We have also

identified a subset of metrics gathered by the Container Profiler that
were shown to exhibit a strong inverse relationship with runtime.
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