Addressing Serverless Computing Vendor Lock-In
through Cloud Service Abstraction

Di Mo, Robert Cordingly, Donald Chinn, Wes Lloyd
School of Engineering and Technology
University of Washington
Tacoma, Washington USA
dimo, rcording, dchinn, wlloyd @uw.edu

Abstract—Serverless Function-as-a-Service (FaaS) platforms
enable easy deployment and hosting of microservices and have
gained great traction among software developers. FaaS platforms,
however, only host core compute-based functionality resulting in
vendor lock-in as applications rely on supporting services known
as Backend-as-a-Service (BaaS) offered by the cloud provider for
key features such as data persistence. Migrating FaaS code to
different cloud providers is made more challenging as a result
of these dependencies on vendor-specific services. Cloud service
abstraction libraries have been developed to alleviate vendor
lock-in, but these libraries were largely developed prior to the
advent of serverless computing and have not been evaluated in
this context. This paper investigates the use of cloud service
abstraction libraries to interface with object storage, a key BaaS
used in FaaS code. We investigate the utility of these libraries
to improve the portability of code to enable easier migration
between cloud providers. We investigate performance of seven
FaaS functions on AWS and Google Cloud that use object storage
using the Apache jclouds abstraction library vs. platform-specific
APIs and assess code quality metrics. We then conduct an
empirical study leveraging computer science students enrolled in
cloud computing courses to assess the impact of cloud abstraction
libraries on FaaS function code portability.

Index Terms—Serverless Computing, FaaS, Vendor Lock-In,
Multi-Cloud, Cloud Portability, Cloud Interoperability

I. INTRODUCTION

Serverless computing is a cloud computing paradigm that
simplifies cloud application hosting by eliminating manage-
ment and maintenance of servers. Serverless applications de-
signed using Function-as-a-Service (FaaS) functions leverage
distinct cloud services to decouple computation from storage
and required backend services. This approach provides a
pay-as-you-go billing model that can be more cost-effective
than other forms of cloud hosting, especially for services
requiring high availability with low-to-moderate utilization.
Developers are drawn to the ease of provisioning, allowing
them to leverage distributed parallelism without the burden of
infrastructure management. However, interoperability, a key
design goal of distributed systems, is violated resulting in
”vendor lock-in” when developers transfer FaaS functions to
different cloud platforms [1].

Vendor lock-in occurs when cloud providers offer custom
Backend-as-a-Service (BaaS) offerings that require developers
to write code specifically for their platform. This creates
dependencies on vendor-specific interfaces to BaaS offerings,
hindering code migration to other clouds without significant

refactoring effort [2]. Developing FaaS applications that are
compatible with multiple clouds requires maintaining multiple
code versions, resulting in inconsistencies in supported fea-
tures and increased maintenance burden. FaaS platforms can
exacerbate vendor lock-in due to their limited resources and
runtime environments, as developers rely on vendor-specific
BaaS offerings for core application functionality.

To address challenges imposed by cloud vendor lock-in,
prior efforts produced cloud service abstraction libraries [3]—
[8]. These libraries provide abstract APIs to access common
cloud services enabling developers to create more portable
code to ease migration to different clouds. However, their
utility in the context of FaaS functions has not been assessed.

This paper investigates implications of adopting cloud ab-
straction libraries to interface with object storage services in
FaaS code. We investigate implications for (1) performance,
(2) code quality, and (3) portability. We compare performance
of seven FaaS functions using native vs. abstraction libraries
to access object storage services. We evaluate code quality
using a static analysis tool to assess code quality metrics.
To investigate portability, we conducted an empirical study
on FaaS code migration leveraging 42 undergraduate senior
and graduate computer science students from cloud computing
classes as software developers. Students were split into two
groups to migrate code from AWS to Google Cloud. One
group used an abstraction library to access object storage,
while the other used cloud native APIs enabling comparison
of developer effort and migration task outcomes.

A. Research Questions

This paper investigates the following research questions:
RQ-1: (Abstraction Overhead) What are the performance
implications of using cloud service abstraction libraries to
interface with object storage services in FaaS code?

RQ-2: (Code Quality) How does the adoption of cloud ser-
vice abstraction libraries impact FaaS code quality measured
using static code analysis metrics?

RQ-3: (Portability) How does the adoption of cloud service
abstraction libraries impact the portability of FaaS code when
migrating functions from one cloud provider to another? What
factors are related to successful code migration outcomes?

B. Contributions

This paper makes the following research contributions:

1. Object store performance analysis of FaaS functions
using native vs. cloud abstraction libraries.

2. Static code analysis of FaaS functions using native vs.
cloud abstraction libraries to assess code quality.

3. An empirical study to assess utility of cloud abstraction
libraries to support FaaS code migration between cloud
providers. Feature analysis is performed to identify im-
portant features for predicting migration task outcomes.

4. Creation of tutorials to train developers on the use of
Apache jclouds and native cloud libraries to migrate
FaaS code using object storage between cloud providers.

II. BACKGROUND AND RELATED WORK
A. Serverless Computing Vendor Lock-in

Vendor lock-in problems arise broadly for cloud computing
code migration when developers are required to adapt software
to use equivalent supporting services that differ from provider
to provider. Migration is a key challenge in serverless comput-
ing as the simplicity of FaaS platforms can increase reliance on
supporting cloud services whose implementation varies across
providers [2], [9]. For example, AWS offers object storage
known as the Simple Storage Service (S3), while Microsoft
provides Azure Blob Storage [10], [11]. These storage services
have distinct APIs for interfacing with FaaS code. To migrate
FaaS code dependent on vendor specific cloud services from
AWS to Azure requires developers to familiarize themselves
with the divergent characteristics of service APIs.

In [12], four use cases (thumbnail generation, serverless
create-eead-update-delete API, event processing, and function
orchestration) were used to demonstrate difficulties migrat-
ing code between FaaS platforms. The authors identified
different categories of vendor lock-in: compatibility of an
application component, tooling compatibility, and architecture
compatibility. In this paper, we focus on the compatibility of
application components vendor lock-in problem. Yussupov et
al. noted that fulfillment of provider-specific implementation
requirements can introduce multiple types of dependencies
that may impact an application’s portability. Our investigation
intersects with the library and service interaction dependency
examples described by Yussupov et al.

B. Cloud abstraction libraries

To help mitigate negative effects of cloud vendor lock-in,
one solution is to leverage cloud service abstraction libraries
when accessing popular services. These libraries typically sup-
port interfacing with common services across multiple cloud
providers. Existing cloud abstraction libraries with program-
ming interfaces for object storage include: Apache jClouds,
Dasein Cloud, Apache Libcloud, and Cloudbridge [3]-[5],
[13]. Apache jclouds, Cloudbridge, and Apache libcloud are
examples of multi-cloud APIs. Apache jclouds is a Java-
based cloud abstraction library that supports widely used
commercial clouds that are open source with recent project
updates on GitHub. Conversely, Daseln, another Java-based
cloud abstraction library, has not been updated since 2014. For

Python, Apache Libcloud and Cloudbridge are cloud abstrac-
tion library projects with recent updates on GitHub. Apache
Libcloud supports many cloud platforms, whereas Cloudbridge
only supports Google Cloud and Microsoft Azure.

Agarwal first evaluated abstraction of IaaS cloud services
using Dasein Cloud and jclouds for AWS EC2 and Google
Compute Engine [14]. Agarwal highlighted the usability of
jclouds, noting jclouds had well-documented webpages and
better community support in contrast to Dasein. Several studies
compared the performance of abstraction libraries compared
to vendor-specific APIs for accessing various cloud services.
In [15], performance was evaluated for request latency and
throughput. Findings indicated that jclouds had inferior per-
formance compared to platform-specific APIs. In [16], the
performance of Apache jclouds and Apache Libcloud was
compared with vendor-specific APIs on AWS and Azure.
Results revealed that jclouds exhibited subpar performance
compared to platform-specific APIs, whereas Libcloud had
superior performance in most cases.

III. METHODOLOGY

In this research, we investigate the utility of abstraction
libraries to remove dependencies to common application build-
ing blocks commonly accessed using vendor specific libraries
with the goal of creating portable FaaS code. Our research
focused on conducting an empirical study with computer
science students as developers to investigate the utility of
abstraction libraries to support FaaS code migration. To ensure
statistical power with a limited pool of volunteer participants
who had finite time to dedicate to the study, it was necessary
to restrict scope in our experimental design. Therefore, we
focused our investigation on the following: (1) abstraction of
object storage services, (2) refactoring of FaaS code to replace
vendor object store APIs with an abstraction library, (3) use of
Apache jclouds because participants were most familiar with
Java, and (4) migration from AWS to Google Cloud.

In Fall 2022, students from two cloud computing courses
were surveyed about their programming experience. Students
self-reported having 2.62 years average experience with Java,
but only 1.15 years with Python. We designed our study
using Java because students reported more than double the
experience with Java. To select a cloud abstraction library,
we considered actively maintained libraries based on GitHub
repository commits that supported Java, AWS, and Google
Cloud and selected Apache jclouds [3].

We hope our study catalyzes interest and future research
regarding abstraction libraries to help in creating portable
FaaS code for other languages, cloud platforms, and FaaS
application building blocks. We note that some cloud providers
support a subset of the AWS S3 API as a means to en-
courage migration to their cloud, creating a quasi standard
object storage interface. This support, however, only enables
migration from AWS S3. We conduct our study on object
storage interface abstraction as a proxy to explore potential for
abstraction libraries to improve code portability when there is
vendor lock-in to any application building block.

We divided our investigation into two experiments. Ex-
periment I investigated refactoring FaaS functions to create
platform agnostic FaaS code using Apache jclouds to access
object storage on AWS and Google Cloud. Experiment L.a
analyzed performance implications (RQ-1), and Experiment
Lb assessed code quality metrics (RQ-2). Experiment II in-
vestigated the utility of cloud service abstraction libraries to
support FaaS code migration between cloud providers (RQ-3).

A. Experiment l.a: Abstraction Library FaaS Performance

For Experiment I.a we refactored seven FaaS functions
coded in Java described in Table III to use jclouds to access
object storage. We compared performance to the original code
that used cloud native APIs. Functions were configured with
2GB of memory and a maximum runtime of 9 minutes on
AWS and GCP. 2GB memory across both clouds ensured
the execution environments had access to at least one virtual
CPU core with 100% timeshare [17]. We evaluated runtime
in seconds, and data read throughput between object storage
and the FaaS platform in megabytes per second.

B. Experiment Lb: Abstraction Library FaaS Code Quality

Experiment I.b investigated code quality implications of
adopting cloud abstraction libraries. We compared FaaS code
versions using Apache jclouds vs. vendor-specific APIs with
JArchitect, a static analysis tool, [18]. For the Read_File FaaS
function we evaluated the metrics: JAR file size in megabytes,
the total number of project source_files, third-party elements
the number of non-native Java elements (e.g. class references,
method usages, etc.), LOC lines of FaaS code, LOCR lines
of refactored FaaS code including lines added, removed, and
modified, and the average cyclomatic complexity (CC) com-
puted at the method-level equal to the number of decisions
that can be taken in a method.

C. Experiment IlI: Code Portability Empirical Study

To assess FaaS code portability, we conducted an empirical
study leveraging undergraduate senior and graduate students
from cloud computing courses as software developers. Stu-
dents were recruited from an undergraduate and a graduate
cloud computing class in Fall 2022. In the classes, stu-
dents were introduced to cloud services and APIs commonly
used in FaaS applications including object storage, relational
databases, logging, workflow orchestration, event processing,
and message queues. 42 of 58 students in the classes volun-
teered to participate in the study. The study was organized as
an in-class activity where all participants received full credit
regardless of the outcome of the FaaS code migration.

We divided the 42 participants into groups of 20 and 22
students respectively for Group-GCP and Group-Jclouds. In
Group-GCP, participants were asked to migrate a FaaS func-
tion from AWS which used Amazon S3 APIs to Google using
Google Cloud Storage APIs. For Group-Jclouds, participants
migrated a FaaS function from AWS that used the Apache
jclouds abstraction library to access Amazon S3 to Google
Cloud. To address validation issues, we took steps to minimize

TABLE I: Participation Overview

Group | Online/Onsite Section Number of Participants
GCP Online undergraduate | 9
graduate 5| 14
Onsite undergraduate | 2
graduate 4 6 20
Jclouds Online undergraduate | 9
graduate 6 | 15
Onsite undergraduate | 3
graduate 41 7 22

threats to validity. In forming the groups, we balanced the
number of participants in Group-GCP vs. Group-Jclouds. We
also balanced the number of participants on-site versus online
to a ratio of ~1:2. In fall 2022, online participation was
popular potentially due to participant interest in isolating due
to COVID-19. Finally, we balanced the ratio of undergraduate
vs. graduate students between the groups. Table I describes the
participant distributions for Group-GCP and Group-Jclouds.
For factors such as Java programming experience or participant
age that were not balanced, we later analyzed the impact of
these factors on task success in the post-experiment analysis.

The empirical study was organized as an extended “mini-
Hackathon” class session where participants had up to four
hours to complete the code migration training and activity with
the investigators present for help. The additional time allowed
the training and migration activity to be completed in the
same session to maximize retention of concepts. To maximize
participation in the study, students were given the option to
participate in person or virtually. One investigator hosted an
active Zoom session with video and chat to provide real-time
support for remote participants, while the other investigator
focused on helping on-site participants.

Before the code migration task, participants completed an
interactive tutorial describing how to migrate AWS Lambda
functions to Google Cloud with the assigned object storage
service interface (i.e. native cloud APIs or Apache jclouds).
The tutorial guided participants to migrate a function that
reads and writes to object storage providing a code refactoring
experience and access to working example source code that
could be referenced later for the code migration activity.

For the code migration task, participants migrated a Java-
based FaaS function that resized graphical images stored using
object storage from AWS Lambda to Google Cloud Functions.
Unlike the tutorial, participants were not provided step-by-
step instructions. The function read an original image and
produced and wrote a resized image back to object storage
- an image processing use case. Code migration required the
function package and base libraries be adapted for deployment
to the destination cloud. In addition, use of Amazon S3 object
storage had to be adapted to Google Cloud Storage, the
equivalent object storage service on Google Cloud. Migration
success was determined by verifying that resized images were
successfully written to Google Cloud Storage. To evaluate
complexity of the tutorial and migration task, we produced
solutions and evaluated the required number of parameter
changes, LOC changes, and method changes as shown in Table
II. These numbers represent the minimum number of required

TABLE II: Required Source Code Changes for Tasks

Group-GCP

2 parameters
6 LOC, 1 method
24 LOC, 2 methods

Group-Jclouds
1 parameters
7 LOC, 1 method
10 LOC, 1 method

Upload object task
Read object task
Code migration task

TABLE III: FaaS Function Use Cases

Function Description

Transform_CSV_File Reads and transforms CSV file: (formats date
columns, converts character field to string,
adds processing time and gross margin fields,

writes transformed file to obj storage.)

Read_File Reads any file from object storage.

Read_key-value_pairs Reads 1k key-value pairs from object storage.

Write_key-value_pairs | Writes 1k key-value pairs to object storage.

Delete_key-value_pairs | Deletes 1k key-value pairs from object storage.

Create_buckets Creates 10 buckets in object storage.

Delete_buckets Deletes 10 buckets from object storage.

changes for an expert developer, whereas student solutions
may be less efficient resulting in additional changes.

All participants completed surveys (pre-trial and Java as-
sessment) prior to the start of the experiment. After the code
migration activity, participants completed a post-trial survey.
Pre-trial survey and Java assessment survey: The pre-
trial survey collected the approximate age, years of self-
reported Java programming experience, and familiarity with
cloud services. The Java assessment survey consisted of 15
multiple-choice questions used to assess participant Java skills.
The questions were derived from a Java self-assessment test
bank maintained by the computer science department at the
University of Washington Tacoma [19]. At the school, the test
is optional and self-administered and is used to help students
decide which Java programming course to start with upon
entering the computer science program.

Post-trial Survey: This survey collected feedback and insights
from participants regarding their experiences in performing
the code migration task. Participants were asked to rate the
perceived difficulty of the training and migration tasks. Par-
ticipants also provided training and migration task completion
times from 15-minute blocks (e.g. 0-15, 15-30, 30-45 minutes,
etc.). Participants were asked how intensely they worked on
the activity using a 5-point scale and were encouraged to
provide additional feedback or comments.

Metrics: used to evaluate developer experiences of code
migration: developer time (minutes), underlineperceived effort
using a 5-point rating scale, difficulty using a S-point rating
scale, and refactoring outcome e.g. success vs. failure.

D. FaaS Function Use Cases

For experiment I the functions described in table III were
refactored to use Apache jclouds replacing Amazon S3 APIs
to interface with object storage. Functions were refactored to
cache connections to object storage on initialization to avoid
reestablishing a TCP connection each time the function was
called. We analyzed performance of refactored code with and
without connection caching on AWS and Google Cloud.

The Transform_CSV_file and Read_File functions were
tested with three different file sizes: 100 rows (13 KB), 10,000
rows (1.2 MB), and 1,000,000 rows (124.8 MB).

E. Platforms and Tools

FaaS functions were tested using the AWS Lambda and
Google Cloud Functions FaaS platforms [20] [21]. Each
platform provides similar features such as automatic scaling,
no server management, and pay-as-you-go payment models.

To investigate cloud service abstraction using Java we used
Apache jclouds [3], a multi-cloud toolkit. Jclouds supports
cloud providers such as AWS, Google Cloud Platform, Mi-
crosoft Azure, OpenStack, and others. It provides abstraction
interfaces for compute, blob storage, load balancing, DNS,
firewall, object storage, and other cloud services.

We leveraged the Serverless Application Analytics Frame-
work (SAAF) [22] [23] as a FaaS function profiling tool.
SAAF supports profiling functions deployed to multiple FaaS
platforms including AWS Lambda, Google Cloud Functions,
IBM Cloud Functions, Azure Functions, and OpenFaaS. SAAF
improves the observability of FaaS functions by enabling
server-side profiling to extract insights regarding performance,
resource utilization, and infrastructure. For our study, SAAF
quantified attributes such as function runtime, memory utiliza-
tion, and data read/write throughput.

To assess code quality metrics we leveraged JArchitect [18],
a static code analysis tool for Java. JArchitect provides exten-
sive code analysis capabilities tailored for Java development.
Supported profiling metrics include cyclomatic complexity,
class coupling, lines of code, code duplication, and more.

1V. EXPERIMENTAL RESULTS
A. Experiment La: Abstraction Library FaaS Performance

To investigate (RQ-1 Abstraction Overhead), we tested
FaaS function performance by executing each function 11
times from table III discarding the first run as it was a cold run
[24]. We report runtime averages of the subsequent ten warm
runs for our functions that used jclouds vs. native libraries.
Connection Caching Performance Implications: Tables
IV and Figure 1 describe performance of the Trans-
form_CSV_File function with and without caching connec-
tions to the object storage service for different file sizes on
AWS and Google. Function runtime using jclouds to access
object storage was greater than runtime using native libraries
with the largest differences seen when processing small CSV
files. When processing larger files, function runtime using
jclouds approached that of vendor-specific libraries for AWS
(1.06x), and was notably faster on Google (.73x).

Connection caching helped lower function runtime us-
ing jclouds on AWS and Google, especially for processing
small files. On AWS with jclouds, the runtime was 1.5x
of native without connection caching and 1.08x with con-
nection caching. Google was similar with runtime of 1.07x
with caching, and 1.26x without. Runtime improvement from
caching was less notable when processing large files as the
overhead for establishing connections was amortized across
longer function runtime. Performance differences for the
Transform_CSV_File function tests are shown in Figure 2.
Read_File Function Performance: Table V describes the
average runtime and throughput for the Read_File function

TABLE IV: Transform_CSV_File Performance Data

File Size Average Runtime (ms)
Provider (rows) With Caching Without Caching
Jclouds Native Jclouds Native
100 623 508 1249 580
AWS 10000 892 912 3711 2870
1000000 8123 7749 9991 9398
100 646 606 937 590
GCP 10000 976 687 1075 729
1000000 11863 16154 12445 17194

= Without Caching ® Caching
100 Rows

10,000 Rows

1,000,000 Rows

Runtime (s)

Fig. 1: Transform_CSV_File Function Average Runtime
implementations using Jclouds and native libraries on AWS
and Google for reading files of different sizes. On AWS,
the jclouds implementation was faster across all file sizes
(100, 10,000, and 1,000,000 rows) averaging .95x of the
runtime compared to native libraries. On Google, the jclouds
implementation was slower than the native for small files:
(1.66x 100 rows) and (1.3x 10k rows). For reading large files
the jclouds implementation runtime on Google was just (.51x
Im rows) of native. Normalized performance differences for
the Read_File function tests are shown in Figure 2. Data
read throughput measured in MB/sec with jclouds on AWS
provided slightly lower throughput (.87x 100 rows) for small
files, but equivalent throughput for larger files (1.02x 10k rows
and 1.0x 1m rows). On Google Cloud, jclouds throughput
was lower for reading small files (.58x 100 rows) and (.76x
10k rows), but much higher for reading large files (1.8x 1m
rows) suggesting that jclouds connection overhead may reduce
throughput for small read transactions to object storage.
Other Functions Performance: We compare performance of
reading, writing, and deleting batches of 1,000 key-value pairs
on object storage using jclouds vs. native libraries as shown
in Figure 2. On AWS, jclouds provided equivalent runtime for
reading and writing key-value pairs, but deletion runtime using
jclouds was slower than native (1.55x). On Google, jclouds
runtime was slower for all key-value pair operations: Read
(3.65x), Write (1.14x), and Delete (1.22x). Writing 1,000 key-
value pairs on Google using jclouds had the highest overhead
compared to native libraries of any use case tested.

TABLE V: Read_File Function Performance

Avg Runtime(ms) Avg Throughput(MB/s)

Provider File(rows)

Native Jclouds Native Jclouds
100 31 29 0.53 0.46
AWS 10,000 113 104 12.28 12.56
1,000,000 1358 1351 89.79 89.89
100 54 90 0.26 0.15
Google 10,000 105 136 12.8 9.7
1,000,000 5553 2845 22.37 42.18

= Google ® AWS

Jclouds Runtime Normalized vs. Native

Serverless Function Use Cases

Fig. 2: Normalized Function Runtime Comparison

We also tested performance of creating and deleting ten
buckets in succession using jclouds vs. native libraries with
the Create_buckets and Delete_buckets functions. Normalized
performance differences are shown in Figure 2. On AWS,
creating buckets using jclouds was faster than native libraries
(.88x). Deleting buckets was considerably slower with runtime
of (2.43x) vs. native libraries. On Google, bucket creation and
deletion had similar runtime overhead using jclouds (1.25x)
and (1.34x) for creation and deletion, respectively.

In summary, we tested object storage operations including
reading and writing large files, operations on batches of key
pairs, and creation and deletion of buckets with seven FaaS
functions and 14 different configurations. Across all tests,
functions with jclouds on AWS had slower average runtime
(1.25x) vs. native libraries. On Google, jclouds function
runtime was (1.36x) vs. native. Six functions/configurations
on AWS had faster runtime using jclouds, where only three
were faster on Google. Jclouds was faster at reading and
writing a large file vs. transactional operations involving
multiple key pairs or buckets.

B. Experiment Lb: Abstraction Library FaaS Code Quality

To investigate (RQ-2 Code Quality), we used the JAr-
chitect static analysis tool to assess code quality metrics.
Table VI presents a comparison of metrics for Read_File for
our three implementations: AWS-native, Google-native, and
jclouds. The AWS-native and Google-native versions only run
on a specific cloud, whereas the jclouds version is versatile
and can be deployed and run on either cloud platform.

The jclouds version had a larger JAR file size (17.7 MB), in
contrast to the AWS and Google versions (~10 MB). Though
each version had seven source files, the jclouds version had
more third-party elements (133) compared to AWS (117) and
Google (120). The jclouds version had more LOC (308), while
the AWS and Google versions had slightly fewer. The AWS
version was the initial version and was refactored to produce
the Google and jclouds versions. Producing the jclouds
version involved changes to nearly twice as many lines of
code (63 LOCR) vs. the native Google version (34 LOCR).
Finally, the jclouds version exhibited a slightly reduced
average method complexity (cyclomatic complexity of 2.56)
in comparison to AWS (2.66) and Google (2.65) suggesting a

possible improvement in code complexity and maintainability.
TABLE VI: Refactored Code - Quality Metrics

AWS native Google native Jclouds
Jar file size (MB) 10 10.1 17.7
Source Files 7 7 7
Third-Party Elements 117 120 133
LOC 283 294 308
LOC refactored (baseline) 34 63
Average CC 2.66 2.65 2.56

C. Experiment II: Code Portability Empirical Study

To investigate (RQ-3 Code Portability), we conducted an
empirical study on FaaS function migration leveraging two
student groups from cloud computing classes to examine the
utility of the jclouds cloud abstraction library to support code
migration from AWS to Google Cloud. Table II describes
the source code modifications required for Group-GCP and
Group-Jclouds for the Upload object and Read object function
migration training tasks and also the code migration activity.
For the code migration activity, participants migrated a func-
tion from AWS Lambda to Google Cloud Functions that reads,
resizes, and uploads a new image to and from object storage.

For the training tasks, 16 students in Group-GCP success-
fully migrated the upload object function to Google, while
four students encountered difficulties and failed to migrate the
function. For Group-Jclouds, 21 students successfully migrated
the upload object function, while only one student failed to
complete the function migration. We compared the outcomes
of the two groups using a two-proportion z-test where the
null hypothesis is that the success rate for the two groups
is identical. We are unable to reject the null hypothesis (z
= -1.5446, p =.12356) and conclude there was no statistical
difference in outcome between Group-GCP and Group-Jclouds
for the upload training task.

The success rates for Group-GCP and Group-Jclouds for
the code migration task are shown in Table VII. Table VIII
reports the average code migration task completion times
in minutes for successful efforts. Within Group-Jclouds, 11
participants successfully migrated the image resize function
to Google (50%), while 11 students encountered difficulties
and failed to complete the migration. In Group-GCP, only
four participants migrated the image resize function to Google
(20%), while many participants (16) failed to complete the
function migration. Using jclouds increased the success
of FaaS function migration by 30%. We compared code
migration task outcomes of the two groups using a two-
proportion z-test where the null hypothesis is that the success
rate for both groups is identical. For the code migration
activity, we reject the null hypothesis (z=-2.0265, p=.04236)
and conclude that Group-Jclouds had statistically significant
better outcomes migrating the image resize function to Google
Cloud than Group-GCP. With limited successful Group-GCP
migrations, we did not observe a significant difference in code
migration times between the groups.

We next treated prediction of code migration task outcomes
as a classification problem to facilitate feature analysis and
constructed random forest classifiers using scikit-learn [25].

TABLE VII: Code Migration Task Outcomes

Group | Online/Onsite Section Number of success
GCP Online undergraduate | 2/9 2/14
graduate 0/5 | (14.3%)
Onsite undergraduate | 1/2 2/6 4/20
graduate 1/4 | (33.3%) | (20.0%)
Jclouds Online undergraduate | 3/9 6/15
graduate 3/6 | (40.0%)
Onsite undergraduate | 2/3 51 11722
graduate 3/47] (71.4%) | (50.0%)

TABLE VIII: Code Migration Task Completion Times

Group Online/Onsite Section Average time (min)
GCP Online undergraduate | 91.5 91.5
graduate DNF
Onsite undergraduate 81.0 95.0 93.3
graduate 109
Jclouds Online undergraduate | 110.7 107
graduate 103.3
Onsite undergraduate | 106.0 | 106.4 | 107.6
graduate 110.0

Pearson correlation, a technique for exploring linear relation-
ships between continuous variables, may be less helpful to
infer which variables are most influential in differentiating
code migration task outcomes, a binary categorical variable-
Feature importance in tree-based models such as random forest
support exploring relationships between available features and
a categorical outcome (success vs. failure). Random forest,
an ensemble learning algorithm, combines multiple decision
trees to make predictions. It handles complex relationships
between variables to effectively handle mixed feature types,
demonstrating robust and accurate performance.

We extracted and aggregated features from surveys (pre-
trial, java assessment, cloud computing course, and post-trial),
experimental observations, code artifact analysis, and course
grade data to form a master dataset for classification modeling.
This resulted in a feature set with over 100 numerical features.

We performed feature analysis and feature selection by
training random forest classifiers and report feature importance
for a strong random forest classification model we derived
in table IX. Our model had nine features with zero false
negatives, one false positive, a precision of 0.9375, recall of

TABLE IX: Random Forest Classifier Feature Analysis

Feature

Description

quiz-1-score
java-quiz-score
training-time
completed-course-surveys
years-living-in-WA
course-quiz-score
course-tutorial-score
course-surveys-score
term-paper-score

quiz 1 raw score (0-20)

correct answers on java assessment survey
time spent completing training

of daily lecture course surveys-completed
self reported years living in WA

avg score for quiz 1 and 2 * 20%

avg score on tutorials * 20%

avg score on course surveys * 2%

term paper raw score (0-100)

Info Info Duplicate

Feature Importance Gain Gain of
Rank higher

quiz-1-score 0.315 0.182 4 no
java-quiz-score 0.194 0.080 22 no
training-time 0.102 0.136 7 no
completed-course-surveys 0.080 0.116 16 no
years-living-in-WA 0.076 n/a n/a no
course-quiz-score 0.076 0.119 14 yes
course-tutorial-score 0.074 0.064 31 no
course-surveys-score 0.043 n/a n/a yes
term-paper-score 0.041 0.071 27 no

1, and an F1 score of 0.9677. Importance in the table is the
impurity-based feature importance, where higher values indi-
cate more important features. Feature importance is computed
as the normalized total reduction of the criterion by the feature,
also known as the Gini importance. The table also reports
information gain, which is the mutual information represented
as a non-negative value that measures the dependency between
the feature and code migration outcome. Mutual information
equals zero if the two variables are independent, and higher
values indicate higher dependency.

The most important feature was quiz-1-score, the raw score
of the first of two cloud computing class quizzes, similar to
a midterm. The second most important feature was java-quiz-
score which captured the number of correct answers on the
java assessment quiz. A high java-quiz-score may suggest a
student has a strong working knowledge of Java. Training-
time, the time spent completing the training task, was the
third most important feature. Completed-course-surveys was
the fourth most important feature. After lectures in the cloud
computing classes, students optionally completed feedback
surveys to earn a small amount of extra credit. Dedicated
students tend to complete more surveys. The feature likely
captured student class engagement, and this was helpful in
inferring function migration outcome.

Years-living-in-WA was the fifth most important feature.
Undergraduate students reported living in Washington state on
average 13.68 years compared to 2.41 years for graduate stu-
dents. This feature may relate to English language competency.
Undergraduate and graduate students had a similar success
rate at function migration (34.8% vs. 36.8%) even though
undergraduates reported having 3.3 years experience with Java
compared to just 1.7 years for graduates. Java familiarity
may have been offset by professional experience as graduate
students reported an average of 1.43 years experience working
in information technology jobs compared to just 0.27 years
for undergraduate students. The remaining features duplicated
information or were components of the cloud computing
course grade. Six of the nine selected features were course
grade components demonstrating a relationship between
course grade and successful function migration outcomes.

To enhance the accuracy of outcome predictions, it is helpful
to incorporate a variety of features to differentiate students.
Learning new concepts and engaging in the code migration
task within a restricted time frame proved challenging for
many students. Some students encountered difficulties in set-
ting up the necessary tools, which hindered their progress in
completing the migration task. This demonstrated a complex
obstacle a developer may face when adopting new cloud
services or platforms, highlighting the need for library/tool
support to ensure successful code migration outcomes.

V. CONCLUSIONS

This research has investigated the utility of cloud abstraction
libraries to support FaaS code migration. Ideally, FaaS code
would have no vendor specific dependencies, but standard
interfaces would exist for all software building blocks to

enable creation of portable code. We summarize our findings
as follows: (RQ-1: Abstraction Overhead) We found use of
jclouds on average increased runtime for functions interfacing
with object storage by 25% (AWS) and 36% (Google). Per-
formance degradation was highest for transactional functions
that interacted with many key-value pairs or buckets. We found
that overhead could be reduced via connection caching. (RQ-
2: Code Quality) Refactoring functions to use jclouds to
interface with object storage increased the overall code size
by 8% but reduced cyclomatic complexity by 4% suggest-
ing similar maintainability. (RQ-3: Portability) In a study
involving computer science students, use of jclouds improved
serverless FaaS function migration outcomes by 30%, while
Java competency and course grades helped predict success.

REFERENCES

[1] D. Petcu, “Portability and interoperability between clouds: Challenges
and case study,” in Towards a Service-Based Internet, 2011.

[2] E. Jonas et al., “Cloud programming simplified: A berkeley view on
serverless computing,” arXiv preprint arXiv:1902.03383, 2019.

[3] “Apache jclouds.” [Online]. Available: https://jclouds.apache.org/

[4] “Dasein cloud.” [Online]. Available: https://github.com/dasein-
cloud/dasein-cloud/

[5] “Apache libcloud.” [Online]. Available: https://libcloud.apache.org/

[6] “Welcome to mist documentation! — mist 1.8.0 documentation.”
[Online]. Available: https://mistclient.readthedocs.io/en/latest/

[7]1 “Public repository of scripts for the cloudcheckr api.” [Online].
Available: https://github.com/CloudCheckr/Developer-Community

[8] “Manageig/manageiq: Manageiq open-source management platform.”
[Online]. Available: https://github.com/ManagelQ/manageiq

[9] D. Taibi, J. Spillner, and K. Wawruch, “Serverless computing-where are
we now, and where are we heading?” IEEE software, vol. 38, no. 1, pp.

25-31, 2020.
[10] “Amazon s3.” [Online]. Available: https://aws.amazon.com/s3/
[11] “Azure blob storage - microsoft azure.” [Online]. Available:

https://azure.microsoft.com/en-us/products/storage/blobs

V. Yussupov et al., “Facing the unplanned migration of serverless
applications: A study on portability problems, solutions, and dead ends,”
in Proc of the 12th IEEE/ACM Int Conf on Utility and Cloud Computing,
2019, pp. 273-283.

N. Goonasekera et al., “Cloudbridge: A simple cross-cloud python
library,” in Proc. of the XSEDEI6 Conf on Diversity, Big Data, and
Science at Scale, 2016, pp. 1-8.

U. Agarwal, “Cloud abstraction libraries: Implementation and compari-
son,” 2016.

M. A. D. C. Ismael er al., “An empirical study for evaluating the
performance of jclouds,” in 2015 IEEE 7th Int Conf on Cloud Computing
Technology and Science (CloudCom). 1EEE, 2015, pp. 115-122.

R. Ré€ et al., “An empirical study for evaluating the performance of
multi-cloud apis,” Future Generation Computer Systems, vol. 79, pp.
726-738, 2018.

R. Cordingly, S. Xu, and W. Lloyd, “Function memory optimization for
heterogeneous serverless platforms with cpu time accounting,” in 2022
IEEE Int Conf on Cloud Engineering (IC2E). 1EEE, 2022, pp. 104-115.
“Jarchitect.” [Online]. Available: https://www.jarchitect.com/metrics
“Java programming self-assessment.” [Online]. Available:
https://www.tacoma.uw.edu/set/programs/undergrad/bscss/java-test
“Serverless computing - aws lambda features - amazon web services.”
[Online]. Available: https://aws.amazon.com/lambda/features/

“Gef.” [Online]. Available: https://cloud.google.com/functions

R. Cordingly et al., “The serverless application analytics framework:
Enabling design trade-off evaluation for serverless software,” in Proc
2020 Sixth Int Workshop on Serverless Computing, 2020, pp. 67-72.
“Saaf.” [Online]. Available: https://github.com/wlloyduw/SAAF

W. Lloyd et al., “Improving application migration to serverless com-
puting platforms: Latency mitigation with keep-alive workloads,” in
2018 IEEE/ACM Int Conf on Utility and Cloud Computing (UCC
Companion). 1EEE, 2018, pp. 195-200.

“scikit-learn 1.3.0 docs.” [Online]. Available: https://scikitlearn.org/

[12]

[13]

[14]
[15]
[16]
(17]
[18]
[19]
[20]
[21]

[22]

[23]
[24]

[25]

