
This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible

1

Improving Application Migration
to Serverless Computing Platforms:

Latency Mitigation with Keep-Alive Workloads
Minh Vu1#, Baojia Zhang2#, Olaf David4, George Leavesley5, Wes Lloyd3

School of Engineering and Technology
University of Washington
Tacoma, Washington USA

1minvu, 2bjzhang, 3wlloyd@uw.edu
#denotes equal contribution

Object Modeling System Laboratory
Colorado State University

Fort Collins, Colorado USA
4odavid, 5 ghleaves@colostate.edu

Abstract— Serverless computing platforms provide
Function(s)-as-a-Service (FaaS) to end users while promising
reduced hosting costs, high availability, fault tolerance, and
dynamic elasticity for hosting individual functions known as
microservices. Serverless Computing environments abstract
infrastructure management including creation of virtual machines
(VMs), containers, and load balancing from users. To conserve
cloud server capacity and energy, cloud providers allow serverless
computing infrastructure to go COLD, deprovisioning hosting
infrastructure when demand falls, freeing capacity to be
harnessed by others. In this paper, we present on a case study
migration of the Precipitation Runoff Modeling System (PRMS),
a Java-based environmental modeling application to the AWS
Lambda serverless platform. We investigate performance and
cost implications of memory reservation size, and evaluate scaling
performance for increasing concurrent workloads. We investigate
the use of Keep-Alive client workloads to preserve serverless
infrastructure to minimize infrastructure initialization latency to
ensure fast performance after idle periods for parallel concurrent
workloads. We show how Keep-Alive workloads can be generated
using cloud-based scheduled event triggers, enabling minimization
of costs, to provide VM-like performance for applications hosted
on serverless platforms for a fraction of the cost.

Keywords Resource Management and Performance; Serverless
Computing; Function-as-a-Service; Application Migration;

I. INTRODUCTION

Serverless computing recently has emerged as a compelling
new approach for hosting applications in the cloud [1] [2] [3].
Serverless computing platforms provide Function(s)-as-a-
Service (FaaS) by automatically managing compute
infrastructure to host individual callable functions on-demand.
Functions are deployed as independent code modules to provide
“microservice” building blocks for new cloud-native
applications. Serverless platforms offer reduced hosting costs,
high availability, fault tolerance, and dynamic elasticity with
automatic management of compute infrastructure by integrating
support for these features directly into the platforms [4].

In FaaS, application containers hosting code plus dependent
libraries are created and managed by cloud providers to provide
granular compute infrastructure for each microservice [5].
Cloud providers are responsible for creating, destroying, and
load balancing requests across container instances. Users are
billed based on the total number of service calls and their
associated runtime vs. memory utilization to the nearest tenth of
a second. Serverless platforms have arisen to support highly
scalable, event-driven applications consisting of short-running,
stateless functions triggered by events generated from

middleware, sensors, microservices, or users [6]. Early use
cases have included multimedia processing, IoT data
aggregation, stream processing, chatbots, short batch
jobs/scheduled tasks, REST APIs, mobile backends, and
continuous integration pipelines [7]. Given the many advantages
of serverless computing platforms, there is considerable
motivation to adopt their use for a broader range of use cases.
A. Application Migration to Serverless Computing Platforms

Application migration to serverless computing platforms
involves transfer of legacy application code to run as one or
more FaaS functions. Depending on application size, it is
possible to migrate entire applications with minimal refactoring
and recomposition. This can be of interest when resource
limitations, complexity, or required developer effort make it
infeasible to refactor applications [8]. Monolithic deployments
provide a starting point to explore tradeoffs of serverless
application hosting before committing substantial effort into
refactoring. Monolithic deployments are viable when legacy
applications fit within platform code size constraints set by
cloud providers inclusive of source code and libraries.
Serverless platforms also cap the maximum execution time for
individual function calls to approximately five minutes, though
worm functions provide a potential workaround [9].
B. Serverless Infrastructure Freeze/Thaw Cycle

To save server capacity, cloud providers automatically
deprecate serverless infrastructure after periods of inactivity
[10]. The recycling of infrastructure on serverless platforms is
known as the freeze/thaw cycle [11]. For example, on AWS
Lambda, after approximately 45-minutes of inactivity,
subsequent calls to an endpoint reveal no trace of the original
function containers or their host VMs [12]. Consequently,
future calls require initialization of new server infrastructure
adding latency to service response times. The variable state of
infrastructure can result in considerable performance variation
for hosted services compared to traditional Infrastructure-as-a-
Service (IaaS) platforms.
C. Application Migration Case Study

This paper reports on the migration of the Precipitation
Runoff Modeling System (PRMS), an environmental modeling
application, to the AWS Lambda serverless computing platform.
We perform a monolithic deployment of PRMS to run as a single
function to investigate performance, scalability, and cost
implications for hosting on the AWS Lambda serverless
platform. The compressed code size of Java-based PRMS is

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible

2

18MB approximately 36% of Lambda’s platform constraint of
50MB making PRMS an ideal candidate to study for migration.
Unlike typical FaaS microservices which are likely to have small
code sizes (e.g. < 100 KB), PRMS, as a larger application,
experiences considerably more infrastructure initialization
overhead. Our goal was to quantify this overhead and seek ways
to amortize it.
D. Preserving Serverless Infrastructure

When hosting web services using VMs provided by IaaS
clouds, a key issue is scalability. Elastic load balancing schemes
are often devised to respond to current and/or future service
demand to adjust the provisioned number of VMs. Provisioning
VMs is notoriously slow particularly when VMs require
additional initialization beyond OS boot up. With serverless
computing platforms, infrastructure scaling and load balancing
are automatic, and developers have no ability to control the
creation and/or retention of infrastructure. The recommended
workaround is to configure one or more clients to automatically
trigger serverless functions at regular intervals to preserve
infrastructure to mitigate cold start latency [13]. We name these
clients, Keep-Alive clients, and their sole purpose is not to
execute the service, but to ping FaaS infrastructure to prevent
deprecation after periods of inactivity. In this paper we
investigate the use of Keep-Alive clients to mitigate cold start
latency for PRMS. We additionally compare the cost and ability
of alternative Keep-Alive client implementations.
E. Research Questions

RQ-1: (Performance) What are the performance implications
of leveraging serverless computing infrastructure for
application migration? How does memory reservation
size when coupled to CPU power impact performance?

Serverless Computing Platforms such as AWS Lambda and
Google Cloud Functions allow users to reserve memory for
individual function deployments. Memory reservation size of
function deployments for these platforms is coupled to CPU
processor power. Google provides specific CPU clock
frequencies based on the memory reservation size [14], while
Amazon reports that for every doubling of memory, CPU power,
network bandwidth, and disk I/O throughput is roughly doubled
in the same manner as EC2 VMs [15] [16]. We investigate how
memory reservation impacts average service turnaround time
with our PRMS case study.

RQ-2: (Scalability) For application migration what
performance implications result from scaling the
number of concurrent clients? How is scaling affected
when infrastructure is allowed to go cold?

Scalability on serverless computing platforms is impacted by the
state of serverless infrastructure. Cloud providers deploy
individual functions to containers hosted on VMs from ready-
to-use pools to alleviate launch latency. Serverless infrastructure
states include: VM-cold, Container-cold, and warm [12]. We
investigate scaling performance relative to infrastructure state
with our PRMS case study.

RQ-3: (Cost) For hosting large parallel service workloads,
how does memory reservation size, when coupled to
CPU power, impact hosting costs?

Serverless platforms embody the cost vs. performance tradeoff
by coupling memory reservation size to CPU power for function
deployments. Intuition may be insufficient to infer the best

configurations for optimal outcomes. We leverage PRMS to
investigate this tradeoff space.

RQ-4: (Persisting Infrastructure) How effective are
automatic triggers at retaining serverless infrastructure
to reduce performance latency from the serverless
freeze/thaw cycle?

We investigate the use of Keep-Alive clients to prevent idle
infrastructure from being deprecated to sustain warm
performance for extended periods. Leveraging PRMS, we
persist 100 containers and compare performance and cost of
using alternative clients to generate Keep-Alive workloads.
F. Contributions
The primary contributions of this paper include:

1. A case study application migration to a serverless
platform for the Java-based Precipitation Runoff
Modeling System (PRMS). We describe deployment
implications of memory reservation size on cost,
performance and scalability.

2. An investigation of Keep-Alive clients to persist
serverless infrastructure to reduce performance latency
resulting from the freeze/thaw cycle.

3. Our Keep-Alive analysis identifies trends on
infrastructure management and performance variance
on the AWS Lambda serverless computing platform.

II. BACKGROUND AND RELATED WORK

Commercially provided serverless computing platforms
provide dynamic scalable infrastructure on-demand to host
microservice applications [17][18][19][20]. Fundamentally
different than application hosting with IaaS or Platform-as-a-
Service (PaaS) clouds, serverless platforms enable native cloud
applications to be built by composing together separate
microservices. One new challenge involves tracking application
state and workflow, identified as the composition-as-function
problem by Baldini [6]. Eivy and Weinman identify that
serverless computing moves the cloud computing cost model
from pay-for-allocation to pay-for-use, as IaaS clouds focused
on billing for reserved resources that may often be idle [21].
Eivy noted that the best cloud infrastructure to host 1,000,000
service requests depends greatly on how requests are distributed.
If requests are distributed evenly then IaaS cloud may be less
expensive. If demand is bursty in nature, FaaS is likely the most
economical choice. In [22], Eyk et al. identified the need to
identify trade-off points of FaaS and IaaS platforms for
application deployment. They noted that complex pricing
models of serverless platforms make determining the most cost-
effective deployments more challenging, resulting in a need to
automate cost evaluation to support informed application
deployment decisions.

Jonas et al. evaluate the use of serverless computing with
four diverse HPC use cases including: calculating π, facial
recognition, password cracking, and precipitation forecasting
[54]. For password cracking, the authors devise a map-reduce
approach called function futures that operates similar to
PyWren. PyWren enables existing Python code to be run at
massive scale on AWS Lambda [23]. Jonas et al. identify
FaaSification as the process of converting legacy code to FaaS
functions. To enable their precipitation forecasting use case they
introduced worm functions to work around execution time limits
of individual function calls. Worm functions track function
execution time and call a new FaaS function to transfer the

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible

3

computation to a new instance shortly before timeout. They
offer a tool known as Snafu that abstracts deployment of
functions to multiple platforms: AWS Lambda, IBM
OpenWhisk, and Google Cloud Functions. Jonas et al.’s use
cases consisted entirely of applications written in Python. In this
paper, we report on the migration of the Java-based PRMS
scientific application.

Sill noted in his IEEE Cloud Computing magazine column
that serverless computing’s adoption of deploying services to
containers is more of a coincidence, than a consequence of
optimal design [24]. The use of containers generates
infrastructure management overhead as platforms must
constantly shuffle containers to and from host VMs to share
platform infrastructure for many users. Oakes et al. developed
an approach to reduce initialization overhead for larger FaaS
functions by introducing a package caching mechanism to speed
function deployment known as “Pipsqueak”. Their approach
reduces package sizes by deploying functions to containers with
predeployed Python libraries [5]. By leveraging predeployed
libraries, FaaS function package sizes can be smaller enabling
deployment to be more agile. Oakes built and verified their
approach within the OpenLambda open source serverless
framework developed to support research on serverless
management schemes [2]. Abad, Boza, and Eyk further
leveraged Pipsqueak by offering an improved scheduler with
higher package cache hit rates by consolidating function
deployments to infrastructure sharing the same packages [25].

Eyk et al. also identified performance challenges for
serverless computing including “Reducing FaaS overhead” in
[22]. Infrastructure provisioning overhead was identified as the
dominant overhead on serverless platforms. Eyk notes that
provisioning overhead, identified as the time spent to create
containers and VMs for first use by serverless platforms,
requires from seconds to minutes. Eyk suggested amortizing
this overhead by avoiding cold deployments for every request
by reusing infrastructure to achieve hot starts whenever possible.
Albuquerque et al. suggested that cold start initialization latency
could be avoided through the use of an external “heartbeat”
routine to keep serverless resources permanently active. They
did not report building such routines, or evaluate their
effectiveness for sustaining serverless infrastructure. In this
paper we evaluate Keep-Alive workloads for sustaining high
performance concurrent serverless workloads with our PRMS
use case.

III. EXPERIMENTAL RESOURCES
To investigate research questions described in section 1, we

harnessed the AWS Lambda serverless computing platform [17]
and two Lambda applications: a compute-bound experimental
service from [12], and the Precipitation Runoff Modeling
System (PRMS) [26] deployed as a monolithic service.

AWS Lambda, introduced in 2014, deploys and runs code in
container like environments on the AWS Linux operating
system based on Redhat Linux. Presently, Lambda officially
supports hosting microservices written in Node.js, Python, Java,
and C#. Lambda’s billing model provides 1 million function
invocations a month for free, while each subsequent 1 million
requests costs approximately 20 cents ($.20 USD). Functions
can use up to 400,000 GB-seconds a month for free, after which
additional memory utilization costs approximately 6 cents ($.06
USD) for each 1 GB of memory reserved per hour. Functions
can individually reserve from 128MB to 3008MB of memory.

Lambda automatically hosts and scales infrastructure for
microservices supporting by default up to 1,000 concurrent
requests. As of fall 2018, functions are provided access to 2
hyperthreads scaled relative to memory backed by the Intel(R)
Xeon(R) E5-2666 v3 @ 2.90GHz CPU. Amazon reports that
for every doubling of memory, CPU power, network bandwidth,
and disk I/O throughput is roughly doubled in the same manner
as EC2 VMs [15] [16]. Each container has 512 MB of disk
space and can support up to 250MB of deployed code provided
in compressed format up to 50MB. Microservices execution
time is limited to a maximum of 5 minutes.

Lambda Experimental Service To support experiments
and devise our Keep-Alive approach, we harnessed our Lambda
compute-bound experimental “calcs” service from [12]. The
service can be run to generate an artificial CPU load by
performing random math calculations (multiplication and
division). To vary the degree of memory stress, calculations are
performed using operands stored in separate large arrays of
configurable size on the heap. Array indexes are selected
randomly for each calculation to induce memory page faults in
contrast to sequential array traversal. The experimental service
can also be invoked to simply sleep for a fixed duration in
milliseconds without inducing a CPU load.

Precipitation Runoff Modeling System, (PRMS) was
deployed as a monolithic Lambda function to provide a proof-
of-concept case study to investigate legacy application
migration to a serverless computing platform. We leveraged a
Java based implementation of the 2008 version of the
Precipitation-Runoff Modelling System (PRMS) [26]. PRMS is
a deterministic, distributed-parameter model developed to
evaluate the impact of various combinations of precipitation,
climate, and land use on stream flow and general basin
hydrology. The Java based version of PRMS, implemented
using the Object Modelling System (OMS) 3.0 component-
based modelling framework [27], was deployed to the Amazon
AWS Lambda serverless computing platform. This version of
PRMS consists of approximately ~11,000 lines of code and
compiles to a compressed and uncompressed Jar file size of
18MB and 67 MB respectively.

IV. EXPERIMENTAL SETUP
To support our experiments, we deployed our experimental

“calcs” service and the PRMS application as AWS Lambda
functions. Our bash test scripts harnessed the AWS command
line interface (CLI) to invoke functions synchronously for the
maximum allowable duration of 5-minutes. Techniques from
[12] were used to characterize serverless infrastructure
provisioned by the cloud provider including containers and host
VMs. These techniques allowed us to identify the number of
unique containers and VMs used to host our workloads, and
also to observe load balancing of service requests.

We executed our bash scripts using Ubuntu 16.04
c4.2xlarge 8-vCPU and c4.4xlarge 36-vCPU EC2 instances
with “High” (1 Gbps) and “10 Gigabit” networking
performance. We pinned our EC2 instances and Lambda
functions to run using a default VPC in the us-east-1e
availability zone. Availability zone assignments are relative to
individual user accounts on AWS. Users experience different
zone mappings to balance resource provisioning across all
cloud users. We deployed PRMS to a single availability zone
to eliminate performance variability from deployments that

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible

4

span multiple availability zones. We deployed client VMs to in
the same zone (e.g. datacenter) to minimize network latency
between EC2 and Lambda. We leveraged the GNU parallel
library to facilitate parallel concurrent workloads. We modeled
runoff for the East Fork of the Carson River near Gardnerville,
USGS station 10309000, a basin area of ~356 mi2. PRMS input
datafiles were 118KB in CSV format and preloaded to an S3
bucket. JSON model inputs sent to PRMS were minimal in size
and included only file pointers to data in S3.

For PRMS Keep-Alive workloads, c4.8xlarge 36 vCPU
clients were used to generate 100 concurrent Lambda requests.
The c4.8xlarge VM was fast enough to force AWS Lambda to
provision separate containers for each request even when
PRMS was allowed up to 3008MB of memory. For c4.2xlarge
8 vCPU clients, Lambda only provisioned separate containers
when the function memory reservation was 896 MB or less.
With higher Lambda memory allocations, service performance
increased and some requests completed before the c4.2xlarge
could submit 100 requests. We also leveraged AWS
CloudWatch events to generate PRMS Keep-Alive workloads
[28]. CloudWatch events provide a general-purpose event
stream where rules can be configured to respond to events by
performing actions such as calling an AWS Lambda function.
Scheduled events can be configured to automatically trigger
Lambda functions on a regular basis similar to Linux cron jobs.
Presently there is no cost to generate scheduled events on AWS,
eliminating the cost of renting a VM as a Keep-Alive client.
Default account limits enable up to 100 CloudWatch rules to be
configured with 5 targets each to generate up to 500 Lambda
calls at scheduled intervals.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. RQ-1: Performance vs. Memory

To investigate the impact of memory reservation size on
PRMS performance we scaled from 256MB to 3008MB.
256MB was the minimum memory required by PRMS. We
performed 100 concurrent PRMS model runs using a c4.2xlarge
and c4.8xlarge EC2 instance as a client. We warmed
infrastructure by submitting 3 batches of 100 concurrent
requests, and then captured performance data for the 4th batch.
Our scripts verified all infrastructure was warm. Figure 1
depicts performance speedups. We observed a 4.3x and a 10.1x
performance speed-up using our c4.2xlarge and c4.8xlarge
clients respectively when scaling from min to max memory.
Scaling memory on Lambda produced an order of
magnitude performance improvement for PRMS. For high
memory configurations, the c4.2xlarge client with only 8 vCPUs
became the bottleneck, not Lambda, for performing 100
concurrent requests. In this case, Lambda completed requests
faster than a c4.2xlarge could generate them. This bottleneck is
depicted in figure 2 by the number of containers used beyond
896 MB. Figure 2 also shows the number of VM hosts steadily
increasing with memory with an unusual jump at 1792MB.

Lambda claims that performance doubles for every
doubling of memory. Figure 3 compares performance gains for
PRMS when increasing memory reservation size in Lambda vs.
expected linear performance gains based on performance
measurements at 256 MB. Lambda provided better than linear
performance gains for memory reservations sizes less than
1024MB, but failed to keep pace beyond as linear performance
gains would be greater than measured Lambda performance.

B. RQ-2 Scalability Performance
We tested the scalability performance of PRMS deployed to

Lambda by scaling stepwise from 1 to 100 concurrent requests
at 512MB and 1664MB. By scaling slowly VMs could be
provisioned one at a time and filled with containers. At
512MB, new VMs were added for every 6 requests. Once
allocated, subsequent runs processed by the VM performed
better as a PRMS image was likely cached locally. At 1664MB,
new VMs were added for every 2 requests except after 80
requests when new VMs processed 6 requests reducing
performance. The resulting performance is shown in Figure 4.
We then tested COLD scaling performance by scaling from 1
to 100 in steps of 10, while waiting 45 minutes between
subsequent calls. We observed no scaling performance benefit
with long delays between batches of concurrent requests
shown in Figure 5 as the platform did not retain infrastructure.

Fig. 1: PRMS Performance vs. Memory Reservation Size

Fig. 2: PRMS Infrastructure vs. Memory Reservation Size

Fig. 3: PRMS Performance Gain vs. Memory:
Linear Performance vs. Lambda

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible

5

C. RQ-3 Cost
Based on our performance results relative to memory

reservation size we estimated the cost to complete 1,000,000
PRMS model runs as shown in Figure 6. We assumed the use
of a client to generate 1,000 concurrent Lambda requests. The
least expensive memory size for 1,000,000 runs was 512MB
with execution requiring ~2.26 hours at a cost of $66.20. At
3008MB, runs could be completed in just ~.71 hours at a cost of
$124.92. Our result demonstrates the importance of profiling
performance for determining the best memory reservation size
for an application. Depending on application CPU
requirements, reducing CPU power too far via memory
reservation can increase hosting costs!

Fig. 4: Scaling Performance: 1 to 100 concurrent requests

Fig. 5: PRMS Cold Scaling Performance
D. RQ-4 Keep-Alive Infrastructure Preservation

We first leveraged the c4.8xlarge ec2 instance as a client to
generate a Keep-Alive workload for PRMS. Our objective was
to preserve 100 containers for a 24-hour period to negate the
serverless freeze/thaw cycle for a concurrent workload. We
analyzed how infrastructure was created, retained, and replaced
for 24-hour periods using our experimental “calcs” service at
192MB, 256MB, 384MB, and 512MB. In Figure 7 we depict
time from when initial infrastructure was created, until it was
replaced ranging from 4.75 to 7.75 hours. After this time
infrastructure was slowly replaced over a period of ~2 hours.
After this time no original infrastructure (VMs or containers)
could be detected. This infrastructure replacement changes the
performance of the service. We observed performance
variance from -14.7% to 19.4% of average for each
generation of serverless infrastructure provisioned by the
cloud provider for our “calcs” service. Every 6-8 hours when
infrastructure was replaced, performance changed up to 34%!
Addressing performance variance from infrastructure
provisioning variation represents an open problem in serverless
computing. Performance appeared to vary more with smaller

memory reservation sizes from an average of 9% at 192MB to
only 3.6% at 512MB. Figure 7 shows a negative correlation
between service demand and retention. When we generated
more service requests per hour, Lambed initiated replacement
of infrastructure sooner (p=.001).

Fig. 6: Cost and Runtime vs. Memory Reservation
1,000,000 PRMS Model Runs

Fig. 7: AWS Lambda- Time to Infrastructure Replacement
VM-client: To Keep-Alive 100 containers for PRMS we

first generated a periodic workload using a c4.8xlarge ec2
instance. We added an alternate parameterization to PRMS to
perform the “calcs” operations from the “calcs” service, not a
PRMS model run. Later, we refactored this to sleep only. We
configured the duration of the calculations to ensure 100
requests would run in parallel when sent from our VM. We
generated 100 service requests for 24-hours at 3, 4, and 5-
minute intervals. While running, we used a separate c4.8xlarge
client to invoke 100 PRMS model runs at 45-minute intervals.

CloudWatch client: We next configured 100 CloudWatch
rules with 5 targets each to submit 500 service requests. For
this test, each client would invoke a 5-second sleep routine
inside PRMS. Due to CloudWatch Event bus performance
limitations, generation of 100 requests in parallel required a
sleep duration of 49 seconds! To workaround slow
CloudWatch performance, we submitted 5x the number of
requests vs. containers we were trying to preserve. The
5x500x5sec Keep-Alive workload resulted in less total Lambda
execution time and lower costs than 1x100x49sec.

Table I provides an analysis of Keep-Alive performance.
Due to the non-deterministic nature of Keep-Alive request
scheduling relative to PRMS client activity, over 24-hour

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible

6

periods we observed a ~10% slowdown compared to Lambda
WARM performance. Our speedup, however, was ~400%
faster than Lambda COLD performance. Table II summarizes
annual costs for hosting infrastructure to support 100
concurrent PRMS requests without infrastructure COLD start
latency. About 70,000 PRMS runs can be completed each
month within the free tier and 100,000 runs are ~$9.50. Annual
hosting costs to support 100 concurrent PRMS model runs
with Lambda + CloudWatch Keep-Alive were 17.6x and
5.5x less expensive than hosting PRMS with on demand or
spot EC2 c4 instances respectively. Serverless infrastructure
(e.g. Lambda + CloudWatch Keep-Alive) can provide a less
expensive alternative for highly available and responsive
application hosting compared to IaaS cloud.

TABLE I. PRMS KEEP-ALIVE CLIENT ANALYSIS
Keep-Alive
client type:

c4 VM
5 min

c4 VM
4 min

c4 VM
3 min

CloudWatch
5 min

CloudWatch
4 min

PRMS
perf avg (ms)

11,305 10,971 10,052 11,136 13,465

Slowdown
vs. WARM

13.3% 10.0% 0.7% 11.6% 35.0%

Speedup
vs.COLD

403.0% 415.3% 453.2% 409.1% 338.4%

Average new
containers/test

2.4 2.8 0.4 5.4 14.7

Total
new containers

77 90 12 141 250

Test duration
(hours)

24 24 24 18 12

Keep-Alive
client cost/hour

$12.24 $12.24 $12.24 $0.00 $0.00

Keep-Alive
runtime avg (ms)

4,492 4,407 4,463 ~5,000 ~5,000

Keep-Alive
calls/batch

100 100 100 500 500

Memory
(GB-sec/hour)

2695.48 3305.15 4463.07 15,600.00 19,500.00

TABLE II. PRMS ANNUAL COST - 100 CONCURRENT USERS

PRMS Host Infrastructure Total Savings

Lambda + EC2 Keep-Alive 3min $4,494.76 891.64%

Lambda + EC2 Keep-Alive 4min $4,487.71 893.04%

Lambda + EC2 Keep-Alive 5min $4,484.00 893.78%

Lambda + CloudWatch Keep-Alive 5min $2,278.06 1759.26%

Lambda + CloudWatch Keep-Alive 4min $2,847.57 1407.41%

Spot c4 ec2 instances $12,579.84 318.58%

On Demand c4 ec2 instances $40,077.00 baseline

VI. CONCLUSIONS

In this paper, we detailed how memory reservation size
impacts performance of our PRMS application up to 10x on
AWS Lambda (RQ-1). We identified that stepwise scaling of
client load results in minimal performance loss as infrastructure
is gradually added (RQ-2). In settings where CPU power is
coupled to memory size, the most economical configuration is
likely not the platform minimum or maximum, and applications
will likely require profiling to establish the best configurations
(RQ-3). And finally, leveraging Keep-Alive workloads to retain
hosting infrastructure can reduce freeze/thaw infrastructure
latency improving performance while enabling nearly ~18x cost
savings versus hosting with dedicated VMs (RQ-4).

REFERENCES
[1] Yan M., Castro P., Cheng P., Ishakian V., Building a Chatbot with

Serverless Computing. In Proceedings of the 1st International ACM
Workshop on Mashups of Things and APIs, Trento, Italy, Dec 2016, 5 p.

[2] Hendrickson S., Sturdevant S., Harter T., Venkataramani V., Arpaci-
Dusseau A.C., Arpaci-Dusseau R.H., Serverless computation with
OpenLambda. In Procedings of the 8th USENIX Conference on Hot
Topics in Cloud Computing (Hot Cloud '16), Denver, CO, June 2016, 7p.

[3] Baldini I. et al., Serverless Computing: Current Trends and Open
Problems., arXiv preprint arXiv:1706.03178. June 2017, 20 p.

[4] Microservices, https://martinfowler.com/articles/microservices.html
[5] Oakes, E. et al., Pipsqueak: Lean Lambdas with large libraries. In Proc.

of the 2017 IEEE 37th Int. Conf. on Distributed Computing Systems
Workshops (ICDCSW 2017), Atlanta, GA, USA, June 2017, pp. 395-400.

[6] Baldini I. et al., The serverless trilemma: function composition for
serverless computing. In Proc. of the 2017 ACM SIGPLAN Int. Symp. on
New Ideas, New Paradigms, and Reflections on Programming and
Software, Oct. 2017, pp. 89-10.

[7] Openwhisk common use cases, https://console.bluemix.net/docs/
openwhisk/openwhisk_use_cases.html#openwhisk_common_use_cases

[8] Kumanov D., Hung L., Lloyd W., Yeung K., Serverless computing
provides on-demand high performance computing for biomedical
research. arXiv preprint, arXiv:1807.11659, July 2018.

[9] Spillner J., Mateos C., Monge D., Faaster, better, cheaper: The prospect
of serverless scientific computing and HPC. In Proc. of the Latin
American HPC Conference, Sept 2017, pp. 154-168. Springer, Cham.

[10] Adzic G., Chatley R., Serverless computing: economic and architectural
impact. In Proc. of the 11th Mtg on Foundations of Software Engr Aug
2017, pp. 884-889.

[11] Pérez A., Moltó G., Caballer M., Calatrava A., Serverless computing for
container-based architectures. Future Generation Computer Systems.
2018 June;83:50-9.

[12] Lloyd W., Ramesh S., Chinthalapati S., Ly L., Pallickara S., Serverless
computing: An investigation of factors influencing microservice
performance. In Proceedings of the 2018 IEEE International Conference
on Cloud Engineering (IC2E), April 2018, pp. 159-169.

[13] Performance- How to keep the desired amount of AWS Lambda function
containers warm, https:// stackoverflow.com/questions/ 51210445/how-
to-keep-desired-amount-of-aws-lambda-function-containers-warm

[14] Pricing – Cloud Functions Documentation – Google Cloud,
https://cloud.google.com/functions/pricing

[15] AWS Lambda – Product Features, https://aws.amazon.com/lambda/
features/

[16] Configuring Lambda Functions – AWS Lambda, https://
docs.aws.amazon.com/lambda/latest/dg/resource-model.html

[17] AWS Lambda – Serverless Compute, https://aws.amazon.com/ lambda/
[18] OpenWhisk, https://console.bluemix.net/openwhisk/
[19] Azure Functions – Serverless Architecture, https://

azure.microsoft.com/en-us/services/functions/
[20] Cloud Functions – Serverless Environments to Build and Connect Cloud

Services | Google Cloud Platform, https://cloud. google.com/functions/
[21] Eivy A., Weinman, J., Be Wary of the Economics of Serverless Cloud

Computing. IEEE Cloud Computing. 2017 Mar;4(2):6-12.
[22] Eyk E., Iosup A., Abad C., Grohmann J., Eismann S., A SPEC RG cloud

group's vision on the performance challenges of FaaS cloud architectures.
2018 ACM/SPEC Int. Conf. on Performance Engr. April 2018, pp. 21-24.

[23] Jonas E., Pu Q., Venkataraman S., Stoica I., Recht B., Occupy the cloud:
Distributed computing for the 99%. In Proceedings of the ACM
Symposium on Cloud Computing Sept 2017, pp. 445-451.

[24] Sill A. The design and architecture of microservices. IEEE Cloud
Computing. 2016 Sep;3(5):76-80.

[25] Abad C., Boza E., Eyk E., Package-Aware Scheduling of FaaS Functions.
In Proc. of the 2018 ACM/SPEC Int. Conf. on Performance Engineering,
April 2018, pp. 101-106.

[26] Leavesley G., Markstrom S., Viger R., USGS Modular Modeling System
(MMS) - Precipitation-Runoff Modeling System (PRMS). Watershed
Models. 2005 Sep 28:159.

[27] David O., Ascough II J., Lloyd W., Green T., Rojas K., Leavesley G.,
Ahuja L., A software engineering perspective on environmental modeling
framework design: The Object Modeling System. Environmental
Modelling & Software. 2013 Jan 1;39:201-13.

[28] Amazon CloudWatch FAQs – Amazon Web Services (AWS), https://
aws.amazon.com/cloudwatch/faqs/

