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Abstract— Serverless computing platforms provide 
Function(s)-as-a-Service (FaaS) to end users while promising 
reduced hosting costs, high availability, fault tolerance, and 
dynamic elasticity for hosting individual functions known as 
microservices.  Serverless Computing environments abstract 
infrastructure management including creation of virtual machines 
(VMs), containers, and load balancing from users.  To conserve 
cloud server capacity and energy, cloud providers allow serverless 
computing infrastructure to go COLD, deprovisioning hosting 
infrastructure when demand falls, freeing capacity to be 
harnessed by others.  In this paper, we present on a case study 
migration of the Precipitation Runoff Modeling System (PRMS), 
a Java-based environmental modeling application to the AWS 
Lambda serverless platform.  We investigate performance and 
cost implications of memory reservation size, and evaluate scaling 
performance for increasing concurrent workloads.  We investigate 
the use of Keep-Alive client workloads to preserve serverless 
infrastructure to minimize infrastructure initialization latency to 
ensure fast performance after idle periods for parallel concurrent 
workloads.  We show how Keep-Alive workloads can be generated 
using cloud-based scheduled event triggers, enabling minimization 
of costs, to provide VM-like performance for applications hosted 
on serverless platforms for a fraction of the cost.   

Keywords Resource Management and Performance; Serverless 
Computing; Function-as-a-Service; Application Migration;  

I. INTRODUCTION 

Serverless computing recently has emerged as a compelling 
new approach for hosting applications in the cloud [1] [2] [3].  
Serverless computing platforms provide Function(s)-as-a-
Service (FaaS) by automatically managing compute 
infrastructure to host individual callable functions on-demand.  
Functions are deployed as independent code modules to provide 
“microservice” building blocks for new cloud-native 
applications.  Serverless platforms offer reduced hosting costs, 
high availability, fault tolerance, and dynamic elasticity with 
automatic management of compute infrastructure by integrating 
support for these features directly into the platforms [4]. 

In FaaS, application containers hosting code plus dependent 
libraries are created and managed by cloud providers to provide 
granular compute infrastructure for each microservice [5].  
Cloud providers are responsible for creating, destroying, and 
load balancing requests across container instances.  Users are 
billed based on the total number of service calls and their 
associated runtime vs. memory utilization to the nearest tenth of 
a second.  Serverless platforms have arisen to support highly 
scalable, event-driven applications consisting of short-running, 
stateless functions triggered by events generated from 

middleware, sensors, microservices, or users [6].  Early use 
cases have included multimedia processing, IoT data 
aggregation, stream processing, chatbots, short batch 
jobs/scheduled tasks, REST APIs, mobile backends, and 
continuous integration pipelines [7]. Given the many advantages 
of serverless computing platforms, there is considerable 
motivation to adopt their use for a broader range of use cases.   
A. Application Migration to Serverless Computing Platforms 

Application migration to serverless computing platforms 
involves transfer of legacy application code to run as one or 
more FaaS functions.  Depending on application size, it is 
possible to migrate entire applications with minimal refactoring 
and recomposition.  This can be of interest when resource 
limitations, complexity, or required developer effort make it 
infeasible to refactor applications [8].  Monolithic deployments 
provide a starting point to explore tradeoffs of serverless 
application hosting before committing substantial effort into 
refactoring.  Monolithic deployments are viable when legacy 
applications fit within platform code size constraints set by 
cloud providers inclusive of source code and libraries.  
Serverless platforms also cap the maximum execution time for 
individual function calls to approximately five minutes, though 
worm functions provide a potential workaround [9].   
B. Serverless Infrastructure Freeze/Thaw Cycle 

To save server capacity, cloud providers automatically 
deprecate serverless infrastructure after periods of inactivity 
[10].  The recycling of infrastructure on serverless platforms is 
known as the freeze/thaw cycle [11].  For example, on AWS 
Lambda, after approximately 45-minutes of inactivity, 
subsequent calls to an endpoint reveal no trace of the original 
function containers or their host VMs [12].  Consequently, 
future calls require initialization of new server infrastructure 
adding latency to service response times.  The variable state of 
infrastructure can result in considerable performance variation 
for hosted services compared to traditional Infrastructure-as-a-
Service (IaaS) platforms.  
C. Application Migration Case Study 

This paper reports on the migration of the Precipitation 
Runoff Modeling System (PRMS), an environmental modeling 
application, to the AWS Lambda serverless computing platform.  
We perform a monolithic deployment of PRMS to run as a single 
function to investigate performance, scalability, and cost 
implications for hosting on the AWS Lambda serverless 
platform. The compressed code size of Java-based PRMS is 
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18MB approximately 36% of Lambda’s platform constraint of 
50MB making PRMS an ideal candidate to study for migration.  
Unlike typical FaaS microservices which are likely to have small 
code sizes (e.g. < 100 KB), PRMS, as a larger application, 
experiences considerably more infrastructure initialization 
overhead.  Our goal was to quantify this overhead and seek ways 
to amortize it. 
D. Preserving Serverless Infrastructure 

When hosting web services using VMs provided by IaaS 
clouds, a key issue is scalability.  Elastic load balancing schemes 
are often devised to respond to current and/or future service 
demand to adjust the provisioned number of VMs.  Provisioning 
VMs is notoriously slow particularly when VMs require 
additional initialization beyond OS boot up.  With serverless 
computing platforms, infrastructure scaling and load balancing 
are automatic, and developers have no ability to control the 
creation and/or retention of infrastructure.  The recommended 
workaround is to configure one or more clients to automatically 
trigger serverless functions at regular intervals to preserve 
infrastructure to mitigate cold start latency [13].  We name these 
clients, Keep-Alive clients, and their sole purpose is not to 
execute the service, but to ping FaaS infrastructure to prevent 
deprecation after periods of inactivity.  In this paper we 
investigate the use of Keep-Alive clients to mitigate cold start 
latency for PRMS.  We additionally compare the cost and ability 
of alternative Keep-Alive client implementations.  
E. Research Questions 

RQ-1:  (Performance) What are the performance implications 
of leveraging serverless computing infrastructure for 
application migration?  How does memory reservation 
size when coupled to CPU power impact performance?  

Serverless Computing Platforms such as AWS Lambda and 
Google Cloud Functions allow users to reserve memory for 
individual function deployments.  Memory reservation size of 
function deployments for these platforms is coupled to CPU 
processor power. Google provides specific CPU clock 
frequencies based on the memory reservation size [14], while 
Amazon reports that for every doubling of memory, CPU power, 
network bandwidth, and disk I/O throughput is roughly doubled 
in the same manner as EC2 VMs [15] [16].  We investigate how 
memory reservation impacts average service turnaround time 
with our PRMS case study. 

RQ-2: (Scalability) For application migration what 
performance implications result from scaling the 
number of concurrent clients? How is scaling affected 
when infrastructure is allowed to go cold?   

Scalability on serverless computing platforms is impacted by the 
state of serverless infrastructure.  Cloud providers deploy 
individual functions to containers hosted on VMs from ready-
to-use pools to alleviate launch latency. Serverless infrastructure 
states include: VM-cold, Container-cold, and warm [12].  We 
investigate scaling performance relative to infrastructure state 
with our PRMS case study. 

RQ-3: (Cost) For hosting large parallel service workloads, 
how does memory reservation size, when coupled to 
CPU power, impact hosting costs?  

Serverless platforms embody the cost vs. performance tradeoff 
by coupling memory reservation size to CPU power for function 
deployments.  Intuition may be insufficient to infer the best 

configurations for optimal outcomes.  We leverage PRMS to 
investigate this tradeoff space. 

RQ-4: (Persisting Infrastructure) How effective are 
automatic triggers at retaining serverless infrastructure 
to reduce performance latency from the serverless 
freeze/thaw cycle?   

We investigate the use of Keep-Alive clients to prevent idle 
infrastructure from being deprecated to sustain warm 
performance for extended periods.  Leveraging PRMS, we 
persist 100 containers and compare performance and cost of 
using alternative clients to generate Keep-Alive workloads.   
F. Contributions 
The primary contributions of this paper include: 

1. A case study application migration to a serverless 
platform for the Java-based Precipitation Runoff 
Modeling System (PRMS). We describe deployment 
implications of memory reservation size on cost, 
performance and scalability. 

2. An investigation of Keep-Alive clients to persist 
serverless infrastructure to reduce performance latency 
resulting from the freeze/thaw cycle.   

3. Our Keep-Alive analysis identifies trends on 
infrastructure management and performance variance 
on the AWS Lambda serverless computing platform. 

II. BACKGROUND AND RELATED WORK 

Commercially provided serverless computing platforms 
provide dynamic scalable infrastructure on-demand to host 
microservice applications [17][18][19][20].  Fundamentally 
different than application hosting with IaaS or Platform-as-a-
Service (PaaS) clouds, serverless platforms enable native cloud 
applications to be built by composing together separate 
microservices.  One new challenge involves tracking application 
state and workflow, identified as the composition-as-function 
problem by Baldini [6]. Eivy and Weinman identify that 
serverless computing moves the cloud computing cost model 
from pay-for-allocation to pay-for-use, as IaaS clouds focused 
on billing for reserved resources that may often be idle [21].  
Eivy noted that the best cloud infrastructure to host 1,000,000 
service requests depends greatly on how requests are distributed.  
If requests are distributed evenly then IaaS cloud may be less 
expensive.  If demand is bursty in nature, FaaS is likely the most 
economical choice.  In [22], Eyk et al. identified the need to 
identify trade-off points of FaaS and IaaS platforms for 
application deployment.  They noted that complex pricing 
models of serverless platforms make determining the most cost-
effective deployments more challenging, resulting in a need to 
automate cost evaluation to support informed application 
deployment decisions.   

Jonas et al. evaluate the use of serverless computing with 
four diverse HPC use cases including: calculating π, facial 
recognition, password cracking, and precipitation forecasting 
[54].  For password cracking, the authors devise a map-reduce 
approach called function futures that operates similar to 
PyWren.  PyWren enables existing Python code to be run at 
massive scale on AWS Lambda  [23].  Jonas et al. identify 
FaaSification as the process of converting legacy code to FaaS 
functions.  To enable their precipitation forecasting use case they 
introduced worm functions to work around execution time limits 
of individual function calls.  Worm functions track function 
execution time and call a new FaaS function to transfer the 
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computation to a new instance shortly before timeout.  They 
offer a tool known as Snafu that abstracts deployment of 
functions to multiple platforms: AWS Lambda, IBM 
OpenWhisk, and Google Cloud Functions.  Jonas et al.’s use 
cases consisted entirely of applications written in Python.  In this 
paper, we report on the migration of the Java-based PRMS 
scientific application. 

Sill noted in his IEEE Cloud Computing magazine column 
that serverless computing’s adoption of deploying services to 
containers is more of a coincidence, than a consequence of 
optimal design [24]. The use of containers generates 
infrastructure management overhead as platforms must 
constantly shuffle containers to and from host VMs to share 
platform infrastructure for many users.  Oakes et al. developed 
an approach to reduce initialization overhead for larger FaaS 
functions by introducing a package caching mechanism to speed 
function deployment known as “Pipsqueak”.  Their approach 
reduces package sizes by deploying functions to containers with 
predeployed Python libraries [5].  By leveraging predeployed 
libraries, FaaS function package sizes can be smaller enabling 
deployment to be more agile.  Oakes built and verified their 
approach within the OpenLambda open source serverless 
framework developed to support research on serverless 
management schemes [2].  Abad, Boza, and Eyk further 
leveraged Pipsqueak by offering an improved scheduler with 
higher package cache hit rates by consolidating function 
deployments to infrastructure sharing the same packages [25]. 

Eyk et al. also identified performance challenges for  
serverless computing including “Reducing FaaS overhead” in 
[22]. Infrastructure provisioning overhead was identified as the 
dominant overhead on serverless platforms.  Eyk notes that 
provisioning overhead, identified as the time spent to create 
containers and VMs for first use by serverless platforms, 
requires from seconds to minutes.  Eyk suggested amortizing 
this overhead by avoiding cold deployments for every request 
by reusing infrastructure to achieve hot starts whenever possible.  
Albuquerque et al. suggested that cold start initialization latency 
could be avoided through the use of an external “heartbeat” 
routine to keep serverless resources permanently active.  They 
did not report building such routines, or evaluate their 
effectiveness for sustaining serverless infrastructure.  In this 
paper we evaluate Keep-Alive workloads for sustaining high 
performance concurrent serverless workloads with our PRMS 
use case. 

III. EXPERIMENTAL RESOURCES 
To investigate research questions described in section 1, we 

harnessed the AWS Lambda serverless computing platform [17] 
and two Lambda applications: a compute-bound experimental 
service from [12], and the Precipitation Runoff Modeling 
System (PRMS) [26] deployed as a monolithic service.  

AWS Lambda, introduced in 2014, deploys and runs code in 
container like environments on the AWS Linux operating 
system based on Redhat Linux.  Presently, Lambda officially 
supports hosting microservices written in Node.js, Python, Java, 
and C#.  Lambda’s billing model provides 1 million function 
invocations a month for free, while each subsequent 1 million 
requests costs approximately 20 cents ($.20 USD).  Functions 
can use up to 400,000 GB-seconds a month for free, after which 
additional memory utilization costs approximately 6 cents ($.06 
USD) for each 1 GB of memory reserved per hour.  Functions 
can individually reserve from 128MB to 3008MB of memory.  

Lambda automatically hosts and scales infrastructure for 
microservices supporting by default up to 1,000 concurrent 
requests.  As of fall 2018, functions are provided access to 2 
hyperthreads scaled relative to memory backed by the Intel(R) 
Xeon(R) E5-2666 v3 @ 2.90GHz CPU.  Amazon reports that 
for every doubling of memory, CPU power, network bandwidth, 
and disk I/O throughput is roughly doubled in the same manner 
as EC2 VMs [15] [16].  Each container has 512 MB of disk 
space and can support up to 250MB of deployed code provided 
in compressed format up to 50MB. Microservices execution 
time is limited to a maximum of 5 minutes. 

Lambda Experimental Service  To support experiments 
and devise our Keep-Alive approach, we harnessed our Lambda 
compute-bound experimental “calcs” service from [12].  The 
service can be run to generate an artificial CPU load by 
performing random math calculations (multiplication and 
division). To vary the degree of memory stress, calculations are 
performed using operands stored in separate large arrays of 
configurable size on the heap.  Array indexes are selected 
randomly for each calculation to induce memory page faults in 
contrast to sequential array traversal.  The experimental service 
can also be invoked to simply sleep for a fixed duration in 
milliseconds without inducing a CPU load.   

Precipitation Runoff Modeling System, (PRMS) was 
deployed as a monolithic Lambda function to provide a proof-
of-concept case study to investigate legacy application 
migration to a serverless computing platform.  We leveraged a 
Java based implementation of the 2008 version of the 
Precipitation-Runoff Modelling System (PRMS) [26]. PRMS is 
a deterministic, distributed-parameter model developed to 
evaluate the impact of various combinations of precipitation, 
climate, and land use on stream flow and general basin 
hydrology.  The Java based version of PRMS, implemented 
using the Object Modelling System (OMS) 3.0 component-
based modelling framework [27], was deployed to the Amazon 
AWS Lambda serverless computing platform.  This version of 
PRMS consists of approximately ~11,000 lines of code and 
compiles to a compressed and uncompressed Jar file size of 
18MB and 67 MB respectively. 

IV. EXPERIMENTAL SETUP 
To support our experiments, we deployed our experimental 

“calcs” service and the PRMS application as AWS Lambda 
functions.  Our bash test scripts harnessed the AWS command 
line interface (CLI) to invoke functions synchronously for the 
maximum allowable duration of 5-minutes. Techniques from 
[12] were used to characterize serverless infrastructure 
provisioned by the cloud provider including containers and host 
VMs.  These techniques allowed us to identify the number of 
unique containers and VMs used to host our workloads, and 
also to observe load balancing of service requests. 

We executed our bash scripts using Ubuntu 16.04 
c4.2xlarge 8-vCPU and c4.4xlarge 36-vCPU EC2 instances 
with “High” (1 Gbps) and “10 Gigabit” networking 
performance.  We pinned our EC2 instances and Lambda 
functions to run using a default VPC in the us-east-1e 
availability zone.  Availability zone assignments are relative to 
individual user accounts on AWS.  Users experience different 
zone mappings to balance resource provisioning across all 
cloud users.  We deployed PRMS to a single availability zone 
to eliminate performance variability from deployments that 
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span multiple availability zones.  We deployed client VMs to in 
the same zone (e.g. datacenter) to minimize network latency 
between EC2 and Lambda.  We leveraged the GNU parallel 
library to facilitate parallel concurrent workloads.  We modeled 
runoff for the East Fork of the Carson River near Gardnerville, 
USGS station 10309000, a basin area of ~356 mi2.  PRMS input 
datafiles were 118KB in CSV format and preloaded to an S3 
bucket. JSON model inputs sent to PRMS were minimal in size 
and included only file pointers to data in S3. 

For PRMS Keep-Alive workloads, c4.8xlarge 36 vCPU 
clients were used to generate 100 concurrent Lambda requests.  
The c4.8xlarge VM was fast enough to force AWS Lambda to 
provision separate containers for each request even when 
PRMS was allowed up to 3008MB of memory.  For c4.2xlarge 
8 vCPU clients, Lambda only provisioned separate containers 
when the function memory reservation was 896 MB or less.  
With higher Lambda memory allocations, service performance 
increased and some requests completed before the c4.2xlarge 
could submit 100 requests. We also leveraged AWS 
CloudWatch events to generate PRMS Keep-Alive workloads 
[28].  CloudWatch events provide a general-purpose event 
stream where rules can be configured to respond to events by 
performing actions such as calling an AWS Lambda function.  
Scheduled events can be configured to automatically trigger 
Lambda functions on a regular basis similar to Linux cron jobs.  
Presently there is no cost to generate scheduled events on AWS, 
eliminating the cost of renting a VM as a Keep-Alive client. 
Default account limits enable up to 100 CloudWatch rules to be 
configured with 5 targets each to generate up to 500 Lambda 
calls at scheduled intervals. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 
A. RQ-1: Performance vs. Memory 

To investigate the impact of memory reservation size on 
PRMS performance we scaled from 256MB to 3008MB.  
256MB was the minimum memory required by PRMS. We 
performed 100 concurrent PRMS model runs using a c4.2xlarge 
and c4.8xlarge EC2 instance as a client.  We warmed 
infrastructure by submitting 3 batches of 100 concurrent 
requests, and then captured performance data for the 4th batch.  
Our scripts verified all infrastructure was warm.  Figure 1 
depicts performance speedups.  We observed a 4.3x and a 10.1x 
performance speed-up using our c4.2xlarge and c4.8xlarge 
clients respectively when scaling from min to max memory.  
Scaling memory on Lambda produced an order of 
magnitude performance improvement for PRMS.  For high 
memory configurations, the c4.2xlarge client with only 8 vCPUs 
became the bottleneck, not Lambda, for performing 100 
concurrent requests.  In this case, Lambda completed requests 
faster than a c4.2xlarge could generate them.  This bottleneck is 
depicted in figure 2 by the number of containers used beyond 
896 MB.  Figure 2 also shows the number of VM hosts steadily 
increasing with memory with an unusual jump at 1792MB. 

Lambda claims that performance doubles for every 
doubling of memory.  Figure 3 compares performance gains for 
PRMS when increasing memory reservation size in Lambda vs. 
expected linear performance gains based on performance 
measurements at 256 MB.  Lambda provided better than linear 
performance gains for memory reservations sizes less than 
1024MB, but failed to keep pace beyond as linear performance 
gains would be greater than measured Lambda performance. 

B. RQ-2 Scalability Performance 
We tested the scalability performance of PRMS deployed to  

Lambda by scaling stepwise from 1 to 100 concurrent requests 
at 512MB and 1664MB.  By scaling slowly VMs could be 
provisioned one at a time and filled with containers.  At 
512MB, new VMs were added for every 6 requests.  Once 
allocated, subsequent runs processed by the VM performed 
better as a PRMS image was likely cached locally. At 1664MB, 
new VMs were added for every 2 requests except after 80 
requests when new VMs processed 6 requests reducing 
performance.  The resulting performance is shown in Figure 4.  
We then tested COLD scaling performance by scaling from 1 
to 100 in steps of 10, while waiting 45 minutes between 
subsequent calls.  We observed no scaling performance benefit 
with long delays between batches of concurrent requests   
shown in Figure 5 as the platform did not retain infrastructure. 

Fig. 1: PRMS Performance vs. Memory Reservation Size 

Fig. 2: PRMS Infrastructure vs. Memory Reservation Size 

Fig. 3: PRMS Performance Gain vs. Memory:  
Linear Performance vs. Lambda 
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C. RQ-3 Cost 
Based on our performance results relative to memory 

reservation size we estimated the cost to complete 1,000,000 
PRMS model runs as shown in Figure 6.  We assumed the use 
of a client to generate 1,000 concurrent Lambda requests.  The 
least expensive memory size for 1,000,000 runs was 512MB 
with execution requiring ~2.26 hours at a cost of $66.20.  At 
3008MB, runs could be completed in just ~.71 hours at a cost of 
$124.92.  Our result demonstrates the importance of profiling 
performance for determining the best memory reservation size 
for an application.  Depending on application CPU 
requirements, reducing CPU power too far via memory 
reservation can increase hosting costs! 

 
Fig. 4: Scaling Performance: 1 to 100 concurrent requests 

Fig. 5: PRMS Cold Scaling Performance 
D. RQ-4 Keep-Alive Infrastructure Preservation 

We first leveraged the c4.8xlarge ec2 instance as a client to 
generate a Keep-Alive workload for PRMS.  Our objective was 
to preserve 100 containers for a 24-hour period to negate the 
serverless freeze/thaw cycle for a concurrent workload.  We 
analyzed how infrastructure was created, retained, and replaced 
for 24-hour periods using our experimental “calcs” service at 
192MB, 256MB, 384MB, and 512MB.  In Figure 7 we depict 
time from when initial infrastructure was created, until it was 
replaced ranging from 4.75 to 7.75 hours.  After this time 
infrastructure was slowly replaced over a period of ~2 hours.  
After this time no original infrastructure (VMs or containers) 
could be detected. This infrastructure replacement changes the 
performance of the service.  We observed performance 
variance from -14.7% to 19.4% of average for each 
generation of serverless infrastructure provisioned by the 
cloud provider for our “calcs” service.  Every 6-8 hours when 
infrastructure was replaced, performance changed up to 34%!  
Addressing performance variance from infrastructure 
provisioning variation represents an open problem in serverless 
computing.  Performance appeared to vary more with smaller 

memory reservation sizes from an average of 9% at 192MB to 
only 3.6% at 512MB. Figure 7 shows a negative correlation 
between service demand and retention.  When we generated 
more service requests per hour, Lambed initiated replacement 
of infrastructure sooner (p=.001). 

 

Fig. 6: Cost and Runtime vs. Memory Reservation 
1,000,000 PRMS Model Runs 

 
Fig. 7: AWS Lambda- Time to Infrastructure Replacement 
VM-client: To Keep-Alive 100 containers for PRMS we 

first generated a periodic workload using a c4.8xlarge ec2 
instance.  We added an alternate parameterization to PRMS to 
perform the “calcs” operations from the “calcs” service, not a 
PRMS model run.  Later, we refactored this to sleep only.  We 
configured the duration of the calculations to ensure 100 
requests would run in parallel when sent from our VM.  We 
generated 100 service requests for 24-hours at 3, 4, and 5-
minute intervals.  While running, we used a separate c4.8xlarge 
client to invoke 100 PRMS model runs at 45-minute intervals. 

CloudWatch client: We next configured 100 CloudWatch 
rules with 5 targets each to submit 500 service requests.  For 
this test, each client would invoke a 5-second sleep routine 
inside PRMS.  Due to CloudWatch Event bus performance 
limitations, generation of 100 requests in parallel required a 
sleep duration of 49 seconds!  To workaround slow 
CloudWatch performance, we submitted 5x the number of 
requests vs. containers we were trying to preserve. The 
5x500x5sec Keep-Alive workload resulted in less total Lambda 
execution time and lower costs than 1x100x49sec. 

Table I provides an analysis of Keep-Alive performance.  
Due to the non-deterministic nature of Keep-Alive request 
scheduling relative to PRMS client activity, over 24-hour 
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periods we observed a ~10% slowdown compared to Lambda 
WARM performance.  Our speedup, however, was ~400% 
faster than Lambda COLD performance. Table II summarizes 
annual costs for hosting infrastructure to support 100 
concurrent PRMS requests without infrastructure COLD start 
latency. About 70,000 PRMS runs can be completed each 
month within the free tier and 100,000 runs are ~$9.50. Annual 
hosting costs to support 100 concurrent PRMS model runs 
with Lambda + CloudWatch Keep-Alive were 17.6x and 
5.5x less expensive than hosting PRMS with on demand or 
spot EC2 c4 instances respectively.  Serverless infrastructure 
(e.g. Lambda + CloudWatch Keep-Alive) can provide a less 
expensive alternative for highly available and responsive 
application hosting compared to IaaS cloud. 

TABLE I.  PRMS KEEP-ALIVE CLIENT ANALYSIS 
Keep-Alive 
client type: 

c4 VM 
5 min 

c4 VM 
4 min 

c4 VM 
3 min 

CloudWatch 
5 min 

CloudWatch
4 min 

PRMS  
perf avg (ms) 

11,305 10,971 10,052 11,136 13,465 

Slowdown 
vs. WARM 

13.3% 10.0% 0.7% 11.6% 35.0% 

Speedup 
vs.COLD 

403.0% 415.3% 453.2% 409.1% 338.4% 

Average new 
containers/test 

2.4 2.8 0.4 5.4 14.7 

Total  
new containers 

77 90 12 141 250 

Test duration 
(hours) 

24 24 24 18 12 

Keep-Alive  
client cost/hour 

$12.24 $12.24 $12.24 $0.00 $0.00 

Keep-Alive  
runtime avg (ms) 

4,492 4,407 4,463 ~5,000 ~5,000 

Keep-Alive 
calls/batch 

100 100 100 500 500 

Memory 
(GB-sec/hour) 

2695.48 3305.15 4463.07 15,600.00 19,500.00 

TABLE II.  PRMS ANNUAL COST - 100 CONCURRENT USERS 

PRMS Host Infrastructure Total Savings 

Lambda + EC2 Keep-Alive 3min $4,494.76 891.64% 

Lambda + EC2 Keep-Alive 4min $4,487.71 893.04% 

Lambda + EC2 Keep-Alive 5min $4,484.00 893.78% 

Lambda + CloudWatch Keep-Alive 5min $2,278.06 1759.26% 

Lambda + CloudWatch Keep-Alive 4min $2,847.57 1407.41% 

Spot c4 ec2 instances $12,579.84 318.58% 

On Demand c4 ec2 instances $40,077.00 baseline 

VI. CONCLUSIONS 

In this paper, we detailed how memory reservation size 
impacts performance of our PRMS application up to 10x on 
AWS Lambda (RQ-1).  We identified that stepwise scaling of 
client load results in minimal performance loss as infrastructure 
is gradually added (RQ-2).  In settings where CPU power is 
coupled to memory size, the most economical configuration is 
likely not the platform minimum or maximum, and applications 
will likely require profiling to establish the best configurations 
(RQ-3).  And finally, leveraging Keep-Alive workloads to retain 
hosting infrastructure can reduce freeze/thaw infrastructure 
latency improving performance while enabling nearly ~18x cost 
savings versus hosting with dedicated VMs (RQ-4). 
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