
Towards Federated Serverless Computing:
An Investigation on Global Workload Distribution to

Mitigate Carbon Intensity, Network Latency, and Cost
Robert Cordingly, Jasleen Kaur, Divyansh Dwivedi, Wes Lloyd

School of Engineering and Technology
University of Washington

Tacoma, Washington USA
rcording, jaslkaur, ddwivedi, wlloyd@uw.edu

Abstract—The high demand for energy consumption and
the resulting carbon footprint of the cloud pose significant
sustainability challenges, as cloud data centers consume vast
amounts of energy. The emergence of serverless cloud computing
platforms has opened up new avenues for more sustainable
cloud computing. Serverless Function-as-a-Service (FaaS) cloud
computing platforms facilitate the deployment of applications as
decoupled microservices to leverage automatic rapid scaling, high
availability, fault tolerance, and on-demand pricing. The absence
of always-on hosting costs associated with virtual machines
enables serverless functions to be deployed with many different
function configurations and cloud regions to achieve high perfor-
mance, low network latency, and reduced costs. In this paper, we
investigate the utility of global federations of serverless platforms
aggregating resources from up to 19 distinct cloud regions. We
prototype a serverless load distribution system to distribute client
requests across serverless federations to minimize performance
objectives including: network latency, runtime, hosting costs,
and carbon footprint. To evaluate our serverless distribution
system’s ability to meet performance objectives, we executed large
experiments across 19 regions around the world continuously
from November 2022 thru March 2023. Our serverless load
distribution approach using federated resources was able to
reduce the carbon intensity of a global federation by up to 99.8%,
network latency by 65%, or hosting costs by 58%.

Index Terms—Cloud Federation, Serverless Computing,
Function-as-a-Service, Green Computing

I. INTRODUCTION

The cloud computing paradigm has enabled access to nearly
unlimited computational resources to anyone. While the cloud
has enabled many new technologies and services that are
broadly used across the world, the underlying infrastructure
has massive environmental impacts. The energy consumption
of a single cloud data center can be up to two gigawatt
hours, the equivalent electricity of over 50,000 homes [1]. The
energy consumption of cloud data centers around the world is
expected to rise from 200 terawatt hours (TWh) in 2016, to
close to 3,000 TWh by 2030 [2]. To put that into perspective,
3,000 TWh is over 10% of the global electricity consumption
in 2021 (25,343 TWh) [3].

The emergence of the serverless computing paradigm has
provided developers with a plethora of appealing features for
deploying applications to the cloud. Serverless platforms not
only abstract away the management of underlying infrastruc-
ture but also add desirable features such as high availability,
fault tolerance, and automatic application scaling. Despite the

fact that most aspects of the underlying infrastructure are
managed by the cloud provider, developers are still required to
define configuration parameters and deployment location(s) for
their application. Serverless platforms, such as Function-as-a-
Service (FaaS), favor the deployment of applications as many
decoupled microservices to leverage automatic scaling and on-
demand pricing. In contrast to traditional Infrastructure-as-
a-Service applications where hosting applications incurs the
always-on costs of virtual machine(s), FaaS platforms present
no upfront or always-on costs for deploying an application and
ensuring high availability because FaaS platforms only incur
costs when serverless functions are run.

Existing serverless platforms, however, limit deployment
and management of software to a single cloud region or cluster.
Harnessing resources from multiple regions, cloud providers,
or private clusters requires deployments to be managed sep-
arately by the user. Transparent aggregation of serverless
resources from multiple platforms or regions has potential
to deliver new serverless resource abstractions to users. We
refer to the combination of resources from multiple serverless
regions or platforms to transparently host serverless workloads
as ”Federated Serverless Computing”. Federated serverless
computing has potential to leverage the best resources at any
given time and place to satisfy a range of goals such as
minimizing carbon intensity, network latency, and runtime.

In this paper, we prototype the federation of serverless
computing resources to investigate their utility. We develop
and test a prototype serverless load distribution system, which
is capable of distributing requests across various serverless
federations. We investigate implications of serverless feder-
ations to enhance multiple performance level objectives in-
cluding runtime, network latency, and environmental goals. By
leveraging serverless federations, the overall carbon intensity
of hosting an application can be reduced by distributing
requests to locations with a higher proportion of low carbon
energy sources.

Our findings indicate that serverless load distribution across
a federation is capable of satisfying a diverse range of ob-
jectives depending on its configuration. For instance, in the
case of a globally deployed application with clients distributed
worldwide, we were able to reduce overall network latency
by 65%. With carbon-aware load distribution, we were able to
reduce the fossil fuel usage of an application by up to 99%.

Finally, by utilizing multiple configurations of a function and
employing a model to predict optimal memory settings, we
were able to reduce the overall cost of a deployment by 58%,
from $833 to $349.

A. Research Questions
To evaluate our federated serverless computing prototype

and new load distribution system, this paper investigates the
following research questions:

(RQ-1 Performance Variation): How does function net-
work latency and runtime of a serverless application vary over
time by region?

(RQ-2 Carbon Intensity): How is the carbon intensity of a
serverless application impacted by different cloud federations
(e.g. deployment to America/Europe/Asia/Global)? How does
the carbon intensity of cloud regions change over time?

(RQ-3 Sustainability Costs): What are the latency and per-
formance implications of minimizing the carbon footprint of a
serverless application through carbon-aware load distribution?

(RQ-4 Multi-configuration Federation): How can server-
less federations be leveraged to reduce application hosting
costs by utilizing function deployments with many different
configurations?

B. Paper Contributions
This paper makes the following research contributions:
1) We created prototype federation tools to enable server-

less cloud federations using the FaaSET framework [4].
2) We collect and present carbon intensity and network

latency data for serverless platforms spanning 19 regions
around the world from November 2022 to March 2023.

3) Using a suite of 12 functions, we investigated server-
less load distribution across regional and global cloud
federations. We evaluate five different load distribution
techniques and report trade-offs between reducing car-
bon intensity and increasing network latency.

4) We demonstrate the ability to leverage serverless cloud
federations to combine resources from different function
deployments with distinct configurations to improve the
performance and cost of serverless applications.

II. BACKGROUND

A. Green Serverless Computing
Cloud providers such as Amazon Web Services (AWS) and

Google Cloud have stated renewable energy goals to achieve
net-zero carbon by 2040 and 2030 respective through various
renewable energy commitments [5], [6]. Bashir et al. discuss
the growing energy demand and carbon emissions of cloud
platforms and their impact on environmental sustainability.
Their work advocates for a “carbon first” approach to cloud
design that elevates carbon efficiency to a first-class metric by
virtualizing the energy system to expose visibility and control
directly to applications [7]. Farahani et al. discussed a high-
performance, scalable, and sustainable platform for processing
massive graphs. One of the tools described by the project,
Graph-Greenifier, collects, studies, and archives performance

and sustainability data from operational data centers and
national energy suppliers [8].

B. Serverless Federation

Smith et al. created FaDO (FaaS Functions and Data
Orchestrator), a tool designed to allow data-aware functions
scheduling across multiple serverless compute clusters present
at different locations, such as at the edge and in the cloud
[9]. FaDO further provides users with an abstraction of the
serverless compute cluster’s storage, allowing users to interact
with data across different storage services through a unified
interface. Chasins, Stoica, and Shenker present the concept
of Sky computing [10], [11]. Sky computing is the idea of
abstracting resources from multiple clouds through a common
interface so that resources can be leveraged as a federation.
The authors suggest that the barriers to achieving sky comput-
ing are more economic than technical, and propose reciprocal
peering, where cloud providers create agreements to exchange
services with each other, as a key enabling step. Mao expanded
on the Sky Computing concept and developed SkyBridge, a
storage system compatibility layer to manage data across many
cloud storage backends [12].

Baarzi et al. define the idea of Virtual Serverless Providers
(VSPs) that aggregate serverless offerings from multiple cloud
providers [13]. The VSP system architecture adds an additional
controller that invocations are passed through. The system
demonstrated up to 4.2x improved throughput, reduced SLO
violations by 98.8%, and reduced costs by 54%. Sampé et
al. discuss a novel toolkit to enable transparent execution
of Python code against disaggregated cloud resources called
Lithops [14]. Lithops provides the same API as Python’s
standard multiprocessing library to enable any program to
run on major serverless computing platforms. Jindal et al.
developed a scheduling system called Courier that utilizes
multiple round robin distribution techniques to route function
requests between on-premises OpenWhisk, AWS Lambda,
and Google Cloud Functions [15]. They show that Courier
can improve the overall performance of the invocation of
functions within a heterogeneous FaaS deployment compared
to traditional load balancing algorithms. As a limitation we
note that their FaaS deployments were relatively small with
functions only deployed to three regions.

While several tools have been developed to automate de-
ployment and federate serverless resources, there has been
limited research on the potential to improve performance,
reduce network latency, and minimize the environmental im-
pact of serverless workloads through serverless federation. Our
study expands the scope of previous work by investigating
regional and large scale federations aggregating up to 19
cloud regions, encompassing the majority of AWS regions.
Our investigation utilized twelve workload function resulting
in 228 deployments. We investigated the use of five load dis-
tribution techniques for our serverless load distribution system
and examined multi-configuration federation with functions
deployed with five memory setting options.

III. METHODOLOGY

This section details tools and methods used to investigate
our research questions defined in Section I-A. We discuss the
tools used to enable our research on serverless federations in
Section III-A, the architecture for our load distribution system
in Section III-B, and finally how we designed our experiments
in Section III-C.

A. Supporting Tools and Workloads

The Function-as-a-Service Experiment Toolkit (FaaSET)
provides a unified workspace for developing, testing, profiling,
and deploying serverless functions to AWS Lambda, Google
Cloud Functions, IBM Cloud Functions, Azure Cloud Func-
tions, and OpenFaaS deployments [4]. FaaSET abstracts plat-
form specific deployment APIs and packaging requirements
enabling developers to write functions once and then deploy
them with multiple configurations to each platform. With
FaaSET, you can define function configurations and group
them into federations. When function code or configuration
parameters are changed, FaaSET supports updating all func-
tions in the federation as a deployment tool. Within FaaSET,
the FaaS Runner tool supports automation of experiments and
processing results [16]. The Serverless Application Analytics
Framework (SAAF) performs server-side profiling to collect
runtime metrics of function instances on FaaS platforms [17].

In addition to these tools, we used 12 functions as exper-
imental workloads as shown in Table I. Each function was
deployed to every region on AWS Lambda with available
carbon data (19 regions). The Minimum Spanning Tree (MST),
Breadth First Search (BFS), Page Rank, Compress, Resize,
and DNA functions are from the Serverless Benchmarking
Suite (SeBS) [18]. Stress is a common Linux tool [19]. We
developed the remaining functions to support this research
[20]–[22].

To collect environmental data about the electricity grid for
each AWS region, we utilized the Electricity Maps API [23].
Electricity Maps is a leading resource for up-to-date electricity
and CO2 emissions data and is utilized by major corporations
such as Google, Microsoft, and Cisco. We can not know
the specific sources of energy for an AWS region because
a region may be supplemented with additional renewable
energy sources. Information about proprietary energy sources
are not disclosed by the cloud provider. The Electricity Maps
API provides a publicly available estimate for specific energy
sources and consumption at any given time. We utilized this
API for collecting current electricity carbon emission metrics
for our carbon-aware load distribution system.

B. Serverless Load Distribution System

Serverless FaaS platforms provide developers near instan-
taneous elasticity to match the changing demand of a work-
load. Serverless platforms however, limit the deployment of
individual functions to a single cloud region. The platform
itself handles load balancing of requests across the compute
resources provided within a single region. To expand beyond

TABLE I
FUNCTION NAMES AND DESCRIPTIONS - *SEBS

Function vCPUs Description
MST* 1 Generates a graph and calculates the min

spanning tree.
BFS* 1 Generates a graph and processes a breadth

first search.
Page 1.2 Generates a graph and processes page rank
Rank* of each node.
DNA* 0.9 Pulls DNA sequence from S3 and creates

visualization data.
Compress* 1 Generates files and compresses them into

a zip file.
Resize* 1 Pulls an image from S3, resizes it and

saves it back to S3.
Stress n Tool used to generate CPU stress.
Writer 1 Generates text and repeatedly writes it

to disk and deletes.
CSV 1 Generates a large CSV file and performs
Processor calculates on columns.
Calcs n Executes random math operations.
Matrix n Generates random large matrices and performs
Calcs matrix operations.
HTTP 1 Makes a HTTP request with a defined
Request payload to a URL.

resources in a single region, client applications are responsible
for load distribution to the appropriate function deployments.

We created a prototype serverless load distribution system to
distribute requests to federations of serverless FaaS functions.
This system is implemented using the same serverless plat-
forms (i.e. AWS Lambda regions) as the federated resources,
providing high scalability and elasticity to support proxying
user requests across our federations. Our system consists of
two primary serverless functions: the Analyzer Function and
the Proxy Function.

1) Analyzer Function: The Analyzer function collects met-
rics that are fed to each proxy function deployment. In this
study, the Analyzer collected carbon intensity data for each
AWS region around the world that our proxy functions were
deployed to. Carbon data was obtained using Electricity Maps.

The Electricity Maps API takes latitude and longitude
coordinates and returns information about the electricity grid
of that region, including the carbon intensity measurements in
grams carbon dioxide equivalent per kilowatt hour of energy
used (gCO2eq/kWh) [23]. This measure quantifies the green-
house gas emission intensity of electricity generation, calcu-
lated as the ratio of CO2 emissions from electricity production.
Alongside gCO2eq/kWh, the API also returns the percentage
of the energy in that region that was derived from fossil
fuel sources. We use this percentage to estimate the energy
impact of our serverless applications. Given that serverless
platforms obfuscate information regarding underlying server
infrastructure - including power consumption, we are unable
to accurately determine electricity consumption directly (e.g.
watt-hours for function invocations). If we could, the amount
of carbon released in grams could be estimated. Instead we
specify carbon intensity in fossil fuel gigabyte seconds (FF-
GBS). FF-GBS is calculated by multiplying the runtime of a
function invocation, the memory setting in GB, and the fossil

fuel percentage of the region running it:

FFGBS = Runtimesec ⇤MemoryGB ⇤ FossilFuel%

2) Proxy Function: To minimize the runtime of the server-
less proxy functions, the Analyzer pushes information to the
proxy functions by updating function environment variables.
Editing environment variables is very fast as it does not require
redeploying the entire function package and does not require
the function to make a request to an external service or storage,
but does add an additional cold-start. The Electricity Maps
API updates carbon information on an hourly basis enabling
the Analyzer function to be run periodically to check for new
carbon data and update function environments. We configured
a CloudWatch Events rule to trigger the Analyzer function to
run every 15 minutes. Environment variables provide the proxy
function immediate access to the carbon data of each region.
To enable accounting, the proxy functions report carbon data
in the response enabling FF-GBS of the workload to be
calculated.

Carbon
Data

λ
Analyzer
Function

1. Collect Data

2. Inform Smart Proxies

Proxy Proxy

Proxy Proxy
Proxy

Proxy

3. Route Requests

λ

Proxy

λ

Lowest
Carbon

Lowest
Latency

Earth

Proxy

Proxy

Fig. 1. Load Distribution Architecture for Analyzer and Proxy Functions

To minimize additional costs, the proxy functions used the
minimum memory setting of the serverless platform (e.g. 128
MB for AWS Lambda). The proxy function performs minimal
computations, and is designed to make forwarding the request
as fast as possible. When deploying computationally intense
serverless functions, a best practice is to choose a high memory
setting for an ideal price to performance ratio. This is not the
case for our proxy functions as the lowest memory setting
offers the lowest cost and equal performance to higher memory
settings. Using serverless proxy functions to federate resources
leverages the pay-as-you-go model of serverless computing to
mitigate always-on VM hosting costs while also offering high
elasticity and high availability.

For the initial version of our load distribution system,
our proxy functions used synchronous forwarding. With syn-
chronous forwarding the proxy provides load distribution but
features overhead known as ”double billing” because the proxy
function must wait for the called function to complete [24],
[25]. Our approach where proxy functions runs using the
lowest memory setting (e.g. 128MB), however, is far less
than ”double” billing. The cost overhead varies depending on
the function being called. For example, where the federated
function has a high memory configuration (e.g. 10 GB), the
proxy function overhead which waits for the called function

TABLE II
AWS REGIONS USED FOR SERVERLESS FEDERATIONS

AWS LAMBDA PRICING, AVERAGE CPU STEAL PER MINUTE, AND CPU
CLOCK SPEED DISTRIBUTION.

Region Price CPU CPUs
Location (1E-5) Steal/min % 2.5GHz % 2.9GHz % 3.0GHz

Hong Kong 2.29 6.0 100.0 0.0 0.0
Tokyo 1.67 24.0 98.33 0.0 1.67
Seoul 1.67 9.6 96.5 0.0 3.5
Osaka 1.67 6.6 98.9 0.0 1.1

Mumbai 1.67 15.0 99.38 0.0 0.62
Singapore 1.67 15.6 98.57 0.0 1.43

Sydney 1.67 9.6 94.2 0.0 5.8
Frankfurt 1.67 27.6 100.0 0.0 0.0

Stockholm 1.67 7.8 94.86 0.0 5.14
Milan 1.95 11.4 100.0 0.0 0.0
Ireland 1.67 35.4 93.51 0.0 6.49
London 1.67 16.8 98.62 0.0 1.38

Paris 1.67 7.8 99.67 0.0 0.33
Canada 1.67 7.2 96.19 0.0 3.81

Sao Paulo 1.67 15.6 98.48 0.0 1.52
N. Virginia 1.67 30.0 98.66 0.0 1.34

Ohio 1.67 20.4 80.69 2.16 17.15
N. California 1.67 18 99.95 0.0 0.05

Oregon 1.67 29.4 100.0 0.0 0.0

to complete provides only a 1.25% cost increase. With syn-
chronous load distribution additional costs are equivalent to
the target function having an additional 128 MB of allo-
cated memory. For computational workloads that require at
minimum one vCPU, the target function should always be
deployed with at minimum 2 GB of memory per vCPU (e.g.
a function that uses two vCPUs should have 4 GB) on AWS
Lambda. To federeate most serverless functions, utilizing the
minimum memory setting for the proxy function results in
much lower cost than what is implied by ”double billing”.
Figure 1 shows how the Analyzer function is used to inform
the Proxy functions and how the Proxy function is used to
route requests around the world.

In the future, we plan to investigate alternate proxy function
architectures. One such option is asynchronous forwarding,
where the proxy is called asynchronously by the client and the
proxy calls the target function asynchronously. This approach
features very little cost overhead, where the proxy function
only adds on average 2 ms of runtime, and one additional
function invocation. After the request is made, the client is
responsible for retrieving the function’s response.

C. Experiment Design
To test our workloads across a global serverless federation

we deployed each of our benchmark functions defined in Table
I to 19 AWS regions as shown in Table II. Proxy functions
were also deployed to each region and the Analyzer function
was deployed in Ohio. Using these functions we conducted
five experiments:

EX-1 (Carbon Data Collection): The first experiment used
an AWS CloudTrail trigger to invoke the Analyzer function
every 15 minutes. The Analyzer collects carbon intensity data
for the 19 regions and saves the results for future use. This
experiment ran from November 2022 to March 2023 and was
used to observe how the carbon intensity of each region varied.

EX-2 (Network Latency): The second experiment focused
on measuring network latency between cloud regions and

observing variation in latency over time for (RQ-1). We
utilized the HTTP Request function as a client which called
the Hello World function deployed to the North and South
American regions (N. California, Oregon, Ohio, N. Virginia,
Canada, and Sao Paulo). For the experiment we invoked the
HTTP Request functions in every region to provide FaaS
clients in six different locations. These clients then called
every Hello World function in every region, including the
source region, to measure round-trip latency. The experiment
ran with a 15 minute interval from November 2022 to March
2023. The goal of this experiment was to quantify network
latency statistics between regions over a long period of time,
and to also measure how round trip network latency correlates
with the distances between regions. This experiment is vital
for understanding the latency impact of aggregating serverless
computing resources from multiple regions to form serverless
federations.

EX-3 (Dual-region Load Distribution): The third experiment
evaluated the best and worst-case trade-offs for reducing
carbon intensity to determine the ensuing impact on function
latency resulting from using the proxy function for (RQ-2 and
RQ-3). For this experiment, we examined the outcomes of
proxying function requests to small two-region federations. We
selected the Calcs function as a compute bound function and
then had the proxy function distribute requests dynamically
to one of the two target regions in the federation based
on conditions. We used Ohio and Oregon for the American
continents, London and Frankfurt for Europe, and Hong Kong
and Sydney for Asia/Oceania. The choice of these regions was
based upon the results of EX-1, where all of these regions have
similar, but constantly changing, carbon intensity.

EX-4 (Global Load Distribution): The fourth experiment
expands on EX-3. Instead of focusing on small two-region
federations, we expanded the scope to a global scale. For
this experiment we used all of the functions from Table I
and deployed them to every region in Table II to create a
global 19 region serverless federation. The proxy function was
also deployed to every region. We executed the experiment by
using every region as a client where each client made requests
to our serverless load distribution proxy function in the next
nearest region. This design simulates users being distributed
throughout the world instead of being located at the source
region. The proxy function distributed requests to other regions
based on five different load distribution techniques:

1) Ohio: Simulates a FaaS application that is only deployed
to a single region, in this case, Ohio (us-east-2).

2) Minimize Carbon: Routes functions to the nearest region
with the lowest possible carbon intensity.

3) Minimize Distance: Routes requests to the nearest region
(other than its own region) to minimize network latency.

4) Balanced Weight: Weights the competing objectives of
low carbon and low network latency equally. To simplify
routing, distance is used as a proxy for network latency.
For (RQ-1) we verify that the physical distance between
client and server cloud regions correlates strongly with
network latency and can serve as a reasonable facsimile.

The percent increase in carbon intensity and the percent
increase in distance between two regions are weighted
50-50. If a region has slightly worse carbon intensity
than another but is significantly closer this method will
choose the closer region.

5) Weighted on Distance: Same as Balanced Weight but
applies three times more weight for distance. This way
low network latency will be favored more than low
carbon intensity.

This experiment then ran every function on every region
with each load distribution technique every 30 minutes for
10 days. The goal of this experiment was to evaluate the
carbon, latency, cost, and performance implications of each
load distribution technique.

EX-5 (Performance based load distribution): The fifth ex-
periment does not optimize for carbon or network latency
but instead focuses on improving function performance (RQ-
4). We deployed six instances of the Stress function to the
Ohio region having different memory settings: 1.7 GB, 3.4
GB, 5.1 GB, 6.8 GB, 8.5 GB and 10 GB. These memory
settings represent the points where AWS Lambda provisions
an additional vCPU core for the serverless function up to
six total vCPUs. We then invoked the function by specifying
the number of threads in the request payload and our proxy
function routed our requests to a function deployment with a
memory setting that provided the required number of vCPU
cores for the specified number of threads. The Stress function
sustains vCPUs at 100% utilization for five seconds. We then
compared function invocations using the proxy versus function
invocations running at 10 GB to determine the reduction
in CPU idle time. Function calls reporting significant idle
time indicate that the function instance had over provisioned
memory. By leveraging our proxy function to dynamically
adapt memory and CPU resources relative to the function
call’s requirements we study the potential to reduce function
execution costs.

IV. EXPERIMENTAL RESULTS

The following sections present the results of experiments
defined in Section III-C.

A. Carbon Data Analysis
The Analyzer function collected carbon data for 19 cloud

regions around the world. We attempted to collect carbon data
for every AWS region but some regions did not have available
data, so that is why we chose the 19 regions described in
Table II. Carbon data was collected from November 2022 to
March 2023. Over this time we make a number of useful
observations and describe our analysis for three serverless
federations: Americas, Europe, and Asia/Oceania (RQ-2).

1) American Carbon Intensity: From our observations of
the American regions, our serverless load distribution proxy
function can take advantage of several factors. Regions with
large fluctuations in fossil fuel percentage can be exploited
to run workloads when carbon intensity is low. Oregon,
Sao Paulo, and North California had a high coefficient of

variation (CV) of 51%, 32%, and 25%, respectively. However,
Sao Paulo’s average fossil fuel percentage was only 6.5%,
compared to all other regions in the United States, which were
over 40%. In the United States, since all regions have similar
average fossil fuel usage (40% to 58%) with large CVs, the
serverless proxy function can distribute requests across all of
the regions at different times. However, Canada is a special
outlier: at nearly all times, Canada had 0% fossil fuel usage.
The overall average fossil fuel usage in Canada was only
0.02%, with a peak of 3%, making Canada better than all
other regions in North and South America at any time. These
observations are illustrated in Figure 2.

2) European Carbon Intensity: The carbon intensity of
European regions on average had higher fossil fuel usage than
the American regions. Milan, Ireland, Frankfurt, London, and
Paris had average fossil fuel usage of 78.7%, 56.7%, 47.9%,
41%, and 12%, respectively. The CV ranged between 4% and
18.5%. However, many regions in Europe achieved 0% fossil
fuel usage at some point; including Frankfurt, Stockholm,
London, and Paris. Like Canada in the American regions,
Stockholm had 0% fossil fuel usage nearly all the time, with
an overall average of just 0.2% fossil fuel usage and only
occasional jumps to 1-5%.

3) Asia/Oceania Carbon Intensity: In contrast to Europe or
America, for all regions in Asia, the minimum usage of fossil
fuel was above 49%. There was at no point a region with 0%
fossil fuel usage. These regions also demonstrated a consistent
diurnal pattern in which the carbon intensity plateaus for
approximately 12 hours each day before decreasing for the
remaining 12 hours. Singapore, Tokyo, Mumbai, Osaka and
Seoul averaged 96.1%, 84.7%, 80.2%, 69.8% and 69.7%
respectively. All of these regions had comparatively low CV
compared to regions in Europe or America ranging from 1% to
9%. To illustrate this plateauing behavior, Figure 3 depicts the
fossil fuel percentage of each region in Asia/Oceania over the
course of January 2023. The only region that did not exhibit
this plateauing behavior was Sydney, which had a much higher
fossil fuel CV of 25%, an average of 65%, and a minimum
fossil fuel percentage of 8%. Sydney’s fossil fuel profile more
closely resembled those observed in Europe or the Americas.

B. Latency Impact of Serverless Federations
We measured the network latency between each of the 19

regions over the same time period as the carbon intensity data
for (RQ-1). We found that distance was a strong predictor

Nov 20
2022

Dec 4 Dec 18 Jan 1
2023

Jan 15 Jan 29 Feb 12 Feb 26 Mar 12
0

20

40

60

80

100

Canada Sao Paulo N. Virginia Ohio
N. California Oregon

Date

G
rid

 F
os

si
l F

ue
l %

Fig. 2. Grid fossil fuel usage percent for North and South America.

of network latency. Figure 4 shows the relationship between
the distance between regions and the measured request la-
tency. Using linear regression the variance explained when
using distance as the sole predictor for network latency was
(R2=0.992).

There are multiple types of latency in the context of
serverless platforms. One type is network latency, the time for
a request to travel from the client to the FaaS platform. This
latency increases with distance and can be easily predicted
(see Figure 4). Another type of latency is function cold-start
latency, the delay resulting from infrastructure initialization on
the FaaS platforms to create runtime environments to service
client requests for user applications. To mitigate cold-start
latency for this experiment, we utilized the same FaaS function
instance for both the client and host functions by deploying
multi-purpose functions to effectively warm the infrastructure,
make cold-start latency negligible, and allowing any region to
be a workload or proxy function. Out of over 203,000 client
requests, zero requests were serviced by cold infrastructure.
Alongside making requests across regions, we also measured
intra-region latency, where client calls were made to functions
in the same region, enabling us to measure the baseline warm
function latency, with as little network ”travel” latency as
possible. For all regions, the baseline latency was on average
between 45-48 ms, with on average 3.1 ms of latency added
for every 100 km of travel distance. If requests are made to a
nearby data center, resulting in 100 ms of total latency and our
application requires less than 200 ms of latency, based on our
observations we could make a request to a data center up to
an additional 1,612 km away and still meet the requirement.

For all regions we observed variation in network latency
between 2% and 29% throughout the day. For example, Figure
6 shows the latency between the Ohio and North Virginia
regions normalized over a 24-hour day. We aggregated 5
months of data across each hour of the day using local time
(e.g. hour 0 to hour 23) to calculate average network latency
and the coefficient of variation to observe trends relative to
the human wake, sleep, and work cycles. Even with high CV
between 12% and 20%, the average latency only varied +/-10
ms.

C. Runtime Impact of Serverless Federations
Working at a global scale with functions having the ability to

run on nearly any region in the world presented new challenges
not identified in our previous work. First, all regions had

Jan 1
2023

Jan 8 Jan 15 Jan 22 Jan 29 Feb 5

20

40

60

80

100

Hong Kong Tokyo Seoul Osaka Mumbai
Singapore Sydney

Date

G
rid

 F
os

si
l F

ue
l %

Fig. 3. Fossil fuel usage percent for Asia/Oceania Regions in January 2023.

0 5k 10k 15k 20k
0

200

400

600

800
Mean Latency Linear Regression (R^2=0.992)

Distance between Regions (km)

La
te

nc
y

(m
s)

Fig. 4. Request round trip latency (ms) versus distance (km) between any
two regions.

varying degrees of hardware heterogeneity. We found across
all regions there were three different reported vCPU clock
speeds: 2.5 GHz, 2.9 GHz, and 3.0 GHz. Each region then
had varying quantities of each CPU clock speed and varying
average CPU Steal per minute as shown in Table II. CPU
Steal has previously been shown to be useful for estimating
the number of tenants sharing host infrastructure [20]. We
found Ohio had the most diverse range of vCPUs with 80.69%,
2.16% and 17.15% with function requests serviced by 2.5
GHz, 2.9 GHz, or 3.0 GHz clock speed vCPUs respectively.
All other regions had over 90% of their function invocations
fulfilled by a 2.5 GHz vCPU with all remaining requests
fulfilled with the 3.0 GHz option. All function invocations
used equivalent payloads and seeds resulting in deterministic
work at 2 GB of memory (allowing function instances one full
vCPU). In Ohio, the most heterogeneous region, we saw on
average 3.2% CV for function runtime across all workloads
except Stress and HTTP Request. When expanded to a global
federation and using the Minimize Distance distribution
technique (to invoke requests on as many regions as
possible), we saw the CV of function server-side runtime
double to 6.5%.

For other distribution techniques, such as Minimizing Car-
bon, we observed runtime CV of 3.1%. This test leveraged
infrastructure from a smaller number of regions compared to
Minimize Distance load distribution technique. Overall, we
did not observe a large increase in performance variation
(increasing only by 3%) when expanding our federation to
19 regions globally. For specific workloads, such as Calcs and
CSV Processor, we did observe a reduction in runtime CV
by expanding from a single region to global. The runtime of
the Calcs function is shown in Figure 5, where the CV was

0 5 10 15 20
6500

7000

7500

8000

8500

9000

0

1

2

3

4

5
Ohio Runtime (ms) Global Runtime (ms) Ohio CV Global CV

Time of Day (Hour)

R
un

tim
e

(m
s)

%
 C

oe
ffi

ci
en

t o
f V

ar
ia

tio
n

(C
V

)

Fig. 5. Server-side runtime variation of running a workload in Ohio compared
to a global federation of functions.

0 5 10 15 20

100

150

200

0

5

10

15

20
Latency from Ohio to N. Virginia CV

Time of Day (Hour)

La
te

nc
y

(m
s)

%
 C

oe
ffi

ci
en

t o
f V

ar
ia

tio
n

(C
V

)

Fig. 6. Hourly average network latency and coefficient of variation between
North Virginia and Ohio from November 2022 to March 2023

between 0.5 and 1% lower using the global federation (RQ-1).

D. Serverless Load Distribution on Regional Federations

To analyze the efficacy of our serverless load distribution
techniques we first deployed the proxy function to a small
set of regions, to compare distributing requests to small two-
region federations before expanding the experiment to a global
scale (RQ-2 and RQ-3).

Initially, we focused on the Minimize Carbon load distri-
bution technique using Oregon and Ohio, as these two re-
gions presented a challenging distribution scenario. The region
with the lowest carbon footprint among these two regions
frequently changed. Over the 19 days of the experiment,
the load distribution system switched between regions 36
times. When using these two regions as a North American
federation, with client requests coming from all other North
American regions, the proxy function reduced the overall
carbon footprint of every workload by an average of 16%
compared to running the workload in Ohio and 3% compared
to running in Oregon (RQ-2). Conversely, it reduced overall
latency by 18% compared to running all requests through
Oregon but increased latency by 9% compared to running all
requests in Ohio. Network latency CV was 61%, 69%, and
65% for Oregon, Ohio, and the proxy function respectively
(RQ-3). Figure 7 shows the proxy making a choice to send
requests between the two regions and the total fossil fuel usage
of each distribution option.

We executed a similar dual-region experiment in Eu-
rope using the London and Frankfurt regions. Compared to
North America, this experiment resulted in 33% fewer region
switches (24 total). At the start, London had lower fossil
fuel usage than Frankfurt for about the first week. After

0 5 10 15 20

4

6

8

10

12

0

20k

40k

60k

80k

Oregon Ohio Proxy

Days after December 9, 2022

Fo
ss

il
Fu

el
 G

B
 S

ec
on

ds

To
ta

l F
FG

B
S

Fig. 7. Carbon intensity reduction using our Minimize Carbon load distribu-
tion approach to distribute requests between two regions in North America.

0 5 10 15 20
0

2

4

6

8

10

12

0

10k

20k

30k

40k

50k

60k

London Frankfurt Proxy

Days after December 9, 2022

Fo
ss

il
Fu

el
 G

B
 S

ec
on

ds

To
ta

l F
FG

B
S

Fig. 8. Reduction in carbon intensity using our Minimize Carbon load
distribution approach to distribute requests between two regions in Europe.

that, Frankfurt improved and the proxy began distributing
requests between the two regions. This difference in fossil
fuel usage resulted in the proxy reducing carbon intensity by
46% compared to running all requests in Frankfurt (RQ-2).
This federation resulted in requests to London having 35%
more latency than running all requests in Frankfurt. Since the
proxy function favored London in the beginning, we saw a
29% increase in latency using the proxy compared to running
all requests in Frankfurt. Latency CV was 61%, 69%, and 62%
for London, Frankfurt, and the proxy function respectively
(RQ-3). Figure 8 shows the proxy making a choice to send
requests between the two regions and the total fossil fuel usage
of each deployment.

The regions selected for the Asia/Oceania federation provide
a unique scenario that serverless federations can take advan-
tage of. For this experiment we selected the Sydney and Hong
Kong regions. Similar to all of the other tests, our serverless
proxy was able to reduce carbon intensity by 23% and 4%
respectively compared to running all of the requests on Hong
Kong or Sydney (RQ-2). Where this experiment was different
was in terms of the hosting costs, in the American regions the
runtime of our functions running on either Oregon or Ohio was
within 1% of each other. Since both these regions use the same
pricing model, the overall hosting costs of using either of these
regions was also within 1% of each other. Hong Kong is a
unique region that has a different AWS Lambda pricing model
than most other regions, in Hong Kong the price per GB/sec of
runtime is 37.5% higher. This price difference makes it so that
our proxy function is not only reducing the carbon intensity
of a workload running in Hong Kong but also reducing the
cost. Running the same workload in Sydney resulted in a
36% decrease in cost, which is expected, while running the
workload with the load distributor resulted in a 19% cost
decrease compared to running all requests in Hong Kong.
Of our 19 regions, only two featured different pricing models
compared to the rest as shown in Table II. In larger federations
where resources are federated across multiple cloud providers,
this demonstrates how we can exploit differences in pricing
models to reduce the overall hosting costs of an application.
Figure 9 shows the difference in pricing models and how the
proxy distributed requests.

E. Serverless Load Distribution on Global Federations
After evaluating load distribution across regional serverless

federations to verify that carbon footprint reductions were
possible without massive increases in network latency, we

6 8 10 12 14 16 18

250

300

350

400

0

20k

40k

60k

80k

Hong Kong Sydney Proxy

Days after December 15, 2022

C
os

ts
 p

er
 M

ill
io

n
R

un
s

($
)

To
ta

l F
FG

B
S

Fig. 9. Reduction in carbon intensity and hosting costs using our Minimize
Carbon load distribution approach to distribute requests between two regions
in Asia/Oceania with different pricing models.

investigated using a global federation (RQ-2). 19 AWS regions
were combined as a single serverless federation and local
proxy functions were deployed in every region. We also
used each of these regions as clients. We then deployed our
workloads in Table I. To evaluate each of our load distribution
techniques we made over 360,000 proxy function invocations
which made 360,000 more calls to workload functions.

TABLE III
COMPARISON OF SERVERLESS LOAD DISTRIBUTION TECHNIQUES

Regions Average Latency Average Cost
Name Used Latency CV FF-GBS Per 1m
Ohio 1 474 50 568,000 $65.25
Minimize Carbon 2 600 49 128 $64.64
Minimize Distance 12 166 72 560,000 $67.01
Weighted Evenly 2 516 70 134 $64.05
Weighted Distance 6 489 71 440 $64.64

At a global scale the proxy function has the potential to
move a serverless workload entirely off of using predominantly
fossil fuel based electricity grids as some regions have 0%
fossil fuel usage. As expected, we saw a massive decrease in
FF-GBS when comparing the Minimize Carbon distribution
technique to our other distribution schemes. For example, a
single region deployment to Ohio resulted in 776 thousand
FF-GBS to fulfil 6,000 function requests for each of our
workloads (72,000 requests total). When using the Minimize
Carbon technique we saw that the same 72,000 requests
became just 172 FF-GBS because functions were hosted in
either Canada or Stockholm depending on which is closer as
both of these regions would often have 0% fossil fuel usage
(99.8% reduction). Compared to Ohio, the Minimize Carbon
distribution technique only increased average latency by 20%,
but neither of these techniques are very good compared to
our Minimize Distance distribution technique. Using Ohio or
Minimize Carbon increased the overall network latency by
152% and 161% respectively compared to Minimize Distance.
For applications that require low latency, federating resources
across many regions and utilizing a load distribution technique
that minimizes request travel distance has immense potential
for performance improvements (RQ-3).

For applications that are not latency dependent, we can
obtain a similar fossil fuel reduction to the Minimize Carbon
technique with lower latency by using a weighted approach
that takes into account both parameters. We investigated two
schemes for weighting physical distance and carbon intensity:
equal weighting and weighting distance 3x more. The equal

0 20 40 60 80
0

5k

10k

15k

20k

25k

30k

0

2k

4k

6k

8k

10k

CPU Idle Time CPU User Time Memory Setting

Sequential Invocation

CP
U

 T
im

e
(m

s)

M
em

or
y

Se
tt

in
g

(M
Bs

)

 Total CPU Time:
 User: 1,332,310 ms
 Idle: 1,367,290 ms

Fig. 10. Stress function invocations with a random number of stressed vCPUs
at 10240 MBs. High idle time show runs with over provisioned memory
settings, resulting in equivalent runtime but significantly higher cost.

weighted distribution technique behaved very similar to Mini-
mize Carbon as it tended to run functions in either Canada or
Stockholm due to their incredibly low carbon footprint while
also lowering average network latency by an average of 17%.
By weighting physical distance more heavily (for low network
latency) this increased the number of regions that workloads
ran on up to six, reducing network latency 22% compared
to the Minimize Carbon technique. The evenly weighted load
distribution approach achieved nearly identical low total FF-
GBS compared to the Minimize Carbon Technique, with an
average of 134 and 128 FF-GBS for each approach respec-
tively. The low distance weighting option increased FF-GBS
by up to 440 (RQ-2). Table III shows the results of each load
distribution technique on average with our set of workloads.

F. Multi-configuration Federation

To evaluate a multi-configuration serverless proxy function
we deployed the Stress function to the Ohio region with six
different memory configurations (RQ-4). The idea is that the
multi-configuration proxy function directs client requests to
the function deployment with an ideal configuration for the
client payload. Here our Stress function takes a parameter to
specify the number of vCPUs to stress. For our client testing
we created a random set of request payloads that request from
one to six vCPUs. The proxy then read the input payload,
and used the CPU Time Accounting Memory Selection (CPU-
TAMS) model to predict a function memory setting, and
distribute client requests to the function deployments that
offered the appropriate number of vCPUs and memory to
achieve the best price to performance ratio [22].

Figure 10 and 11 show how the function performance
and costs can be optimized by eliminating over-provisioning
of function memory. Dynamic distribution of client requests
enabled the function invocations to achieve nearly the same
runtime with a lower memory allocation. In figure 11, we
utilize the proxy function to reduce over-provisioning of
function memory with minimal impact on function runtime.
Across the 90 function invocations depicted, we retained equal
CPU user time while reducing the idle time by 58% (which
resulted in a ⇠50% reduction in cost), while increasing the
overall runtime by just 7.8% versus running all functions
with maximum memory (i.e. 10 GB). When extrapolating this
savings for one million function invocations, our approach can

0 20 40 60 80
0

5k

10k

15k

20k

25k

30k

0

2k

4k

6k

8k

10k

CPU Idle Time CPU User Time Memory Setting

Sequential Invocation

CP
U

 T
im

e
(m

s)

M
em

or
y

Se
tt

in
g

(M
Bs

)

 Total CPU Time:
 User: 1,332,990 ms
 Idle: 570,670 ms (58% less)

Fig. 11. Proxy routing requests to function deployments with optimal con-
figurations. CPU User time remains nearly identical. Idle time is significantly
reduced which results in lower costs and equivalent performance.

reduce application hosting cost from $833 to $349, a savings
of ⇠58%, using multi-configuration load distribution (RQ-4).

V. CONCLUSIONS

This paper has introduced the concepts of ”Federating
Serverless Computing” by harnessing our prototype federated
load distribution system. To investigate the potential benefits
and implications for serverless federations, we first observed
how carbon intensity and network latency changed from
November 2022 to March 2023 across 19 cloud regions. (RQ-
1 Performance Variation): We found that latency had a
coefficient of variation between 2-29% during the day, varying
on average +/-10 ms. Function runtime varied much less,
with 3 to 6% CV across all workloads. We found that
distance was a strong predictor for latency, with an R

2

of 0.992. (RQ-2 Carbon Intensity): We evaluated 19 regions
across the world. Canada and Stockholm exhibited the lowest
fossil fuel percentage for electricity generation which was
0% for the majority of time. (RQ-3 Sustainability Costs):
Using our twelve workload functions and using each region in
the world to simulate a globally distributed application with
users around the world, we evaluated our load distribution
system with multiple federations and distribution techniques.
Compared to workloads being deployed in a single region,
by utilizing our serverless proxy deployed globally, we
were able to reduce latency by on average 65% while
reducing the carbon intensity by up to 99.8%. (RQ-4
Multi-configuration Federation): By deploying a function
with multiple different memory configurations we were able
to leverage the CPU-TAMS model [22] in our proxy function.
Using this model we were able to distribute function requests
to function deployments to avoid over-provisioning vCPUs or
memory to obtain the best price to performance ratio. Multi-
configuration federations were able to reduce function
hosting cost by 58% reducing the cost of one million
function invocations from $833 to $349.

ACKNOWLEDGMENTS

This research has been supported by AWS Cloud Credits
for Research.

REFERENCES

[1] “Environmental impacts of data centers and the cloud,”
popsci.com/environment/data-centers-environmental-impacts/, 2022,
accessed: 2023-02-25.

[2] A. Katal, S. Dahiya, and T. Choudhury, “Energy efficiency in cloud
computing data centers: a survey on software technologies,” Cluster
Computing, vol. 25, no. 5, pp. 1–18, 2022. [Online]. Available:
link.springer.com/article/10.1007/s10586-022-03713-0

[3] S. R. Department. (2023) Global electricity consump-
tion 1980-2021. Accessed: 2023-02-25. [Online]. Available:
statista.com/statistics/280704/world-power-consumption/

[4] R. Cordingly and W. Lloyd, “Faaset: A jupyter notebook to streamline
every facet of serverless development,” in Companion of the 2022
ACM/SPEC International Conference on Performance Engineering,
2022, pp. 49–52.

[5] “Sustainability in the cloud,” aws.amazon.com/sustainability/, accessed:
2023-02-18.

[6] “Google cloud sustainability,” cloud.google.com/sustainability, accessed:
2023-02-18.

[7] N. Bashir, T. Guo, M. Hajiesmaili, D. Irwin, P. Shenoy, R. Sitaraman,
A. Souza, and A. Wierman, “Enabling sustainable clouds: The case
for virtualizing the energy system,” in ACM Symposium on Cloud
Computing (SoCC), 2021.

[8] R. Farahani, D. Kimovski, S. Ristov, A. Iosup, and R. Prodan, “Towards
sustainable serverless processing of massive graphs on the computing
continuum,” in Companion of the 2023 ACM/SPEC International Con-
ference on Performance Engineering. ACM, 2023, pp. 221–226.

[9] C. P. Smith, A. Jindal, M. Chadha, M. Gerndt, and S. Benedict, “Fado:
Faas functions and data orchestrator for multiple serverless edge-cloud
clusters,” in 2022 IEEE 6th International Conference on Fog and Edge
Computing (ICFEC). IEEE, 2022, pp. 17–25.

[10] S. Chasins, A. Cheung, N. Crooks, A. Ghodsi, K. Goldberg, J. E.
Gonzalez, J. M. Hellerstein, M. I. Jordan, A. D. Joseph, M. W. Mahoney
et al., “The sky above the clouds,” arXiv preprint arXiv:2205.07147,
2022.

[11] I. Stoica and S. Shenker, “From cloud computing to sky computing,”
in Proceedings of the Workshop on Hot Topics in Operating Systems,
2021, pp. 26–32.

[12] Y. Mao, “Skybridge: A cross-cloud storage system for sky computing,”
in 23rd International Middleware Conference Doctoral Symposium.
ACM, 2022, pp. 15–17.

[13] A. F. Baarzi, G. Kesidis, C. Joe-Wong, and M. Shahrad, “On merits
and viability of multi-cloud serverless,” in Proceedings of the ACM
Symposium on Cloud Computing, 2021, pp. 600–608.

[14] J. Sampé, P. Garcı́a-López, M. Sánchez-Artigas, G. Vernik, P. Roca-
Llaberia, and A. Arjona, “Toward multicloud access transparency in
serverless computing,” IEEE Software, vol. 38, no. 1, pp. 68–74, 2021.

[15] A. Jindal, J. Frielinghaus, M. Chadha, and M. Gerndt, “Courier: Deliv-
ering serverless functions within heterogeneous faas deployments,” in
Proceedings of the 14th IEEE/ACM International Conference on Utility
and Cloud Computing. ACM, 2021.

[16] R. Cordingly, H. Yu, V. Hoang, Z. Sadeghi, D. Foster, D. Perez,
R. Hatchett, and W. Lloyd, “The serverless application analytics frame-
work: Enabling design trade-off evaluation for serverless software,” in
Proc of the 2020 Sixth Int. Workshop on Serverless Computing, 2020,
pp. 67–72.

[17] R. Cordingly, N. Heydari, H. Yu, V. Hoang, Z. Sadeghi, and W. Lloyd,
“Enhancing observability of serverless computing with the serverless
application analytics framework,” in Companion of the 2021 ACM/SPEC
Int. Conf. on Performance Engineering, Tutorial, 2021.

[18] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and T. Hoefler,
“Sebs: A serverless benchmark suite for function-as-a-service comput-
ing,” arXiv preprint arXiv:2012.14132, 2020.

[19] “Stress(1),” 2012. [Online]. Available: linux.die.net/man/1/stress
[20] R. Cordingly, W. Shu, and W. J. Lloyd, “Predicting Performance and

Cost of Serverless Computing Functions with SAAF,” in 6th IEEE Int.
Conf. on Cloud and Big Data Computing (CBDCOM 2020), 2020.

[21] R. Cordingly, “Serverless performance modeling with cpu time account-
ing and the serverless application analytics framework,” 2021.

[22] R. Cordingly, S. Xu, and W. Lloyd, “Function memory optimization for
heterogeneous serverless platforms with cpu time accounting,” in 2022
IEEE International Conference on Cloud Engineering (IC2E). IEEE,
2022, pp. 104–115.

[23] “Electricity maps,” electricitymaps.com, accessed: 2022-12-01.
[24] S. Quinn, R. Cordingly, and W. Lloyd, “Implications of alternative

serverless application control flow methods,” in Proceedings of the
Seventh International Workshop on Serverless Computing (WoSC7)
2021, 2021, pp. 17–22.

[25] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy, R. Rabbah,
P. Suter, and O. Tardieu, “The serverless trilemma: Function composition
for serverless computing,” in Onward! 2017 - Proc of the 2017 ACM
SIGPLAN Int. Symp. on New Ideas, New Paradigms, and Reflections on
Programming and Software, co-located with SPLASH 2017, 2017.

