
FaaSET: A Jupyter notebook to streamline every
facet of serverless development

Robert Cordingly
University of Washington
Tacoma, Washington, USA

rcording@uw.edu

Wes Lloyd
University of Washington
Tacoma, Washington, USA

wlloyd@uw.edu

Abstract
Function-as-a-Service platforms require developers to use
many different tools and services for function development,
packaging, deployment, debugging, testing, orchestration
of experiments, and analysis of results. Diverse toolchains
are necessary due to the differences in how each platform is
designed, the technologies they support, and the APIs they
provide, leading to usability challenges for developers.
To combine support for all of the tasks and tools into a

unified workspace, we created the FaaS Experiment Toolkit
(FaaSET). At the core of FaaSET is a Jupyter notebook de-
velopment environment that enables developers to write
functions, deploy them across multiple platforms, invoke
and test them, automate experiments, and perform data anal-
ysis all in a single environment.

CCS Concepts: • Computer systems organization →
Cloud computing.

Keywords: Jupyter, Function-as-a-Service, Serverless, De-
velopment, Profiling, Tools

ACM Reference Format:
Robert Cordingly andWes Lloyd. 2022. FaaSET: A Jupyter notebook
to streamline every facet of serverless development. In Proceedings
of 5th Workshop on Hot Topics in Cloud Computing Performance
(HotCloudPerf 2022). ACM, New York, NY, USA, 4 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction
To streamline the process of developing Function-as-a-Service
(FaaS) applications, invoking and testing functions, executing
experiments, training performance models, and processing
results, we created the Function-as-a-Service Experiment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotCloudPerf 2022, April 09, 2022, Beijing, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Toolkit (FaaSET) notebook [13]. The FaaSET notebook sup-
ports many FaaS platforms including AWS Lambda, Google
Cloud Functions, IBMCloud Functions, Azure Functions, and
OpenFaaS [1, 6, 7, 10]. Platform agnostic functions are writ-
ten inside a Jupyter notebook [8] as standard Python func-
tions and then are automatically packaged, deployed, and can
be invoked from inside the FaaSET notebook. FaaSET builds
upon a strong foundation of tools designed specifically for
FaaS development, deployment, and experimentation, such
as the Serverless Application Analytics Framework (SAAF),
FaaS Runner, and more, used in [3, 5, 11, 12].

Previously, function development required using various
tools or integrated development environments (IDEs) to
write and deploy functions. Deployment processes alone
could require vastly different workflows depending on the
platform. After deploying an application, custom tools and
scripts are commonly used to run experiments on FaaS plat-
forms. Data analysis requires another set of applications
such as R, Excel, or Python notebooks to train models or
aggregate results from experiments. This fragmentation of
tools creates workflows that are locked into specific plat-
forms or experiments, that are neither portable or extensible,
and that are potentially slower than optimized tools. FaaSET
addresses these challenges by providing a unified workspace
that supports the full lifecycle of FaaS function development
and analysis.

1.1 Paper Contributions
1. We present the Function as a Service Experiment Toolkit

(FaaSET), a Jupyter notebook and library of tools that
aid in developing, deploying, and experimenting with
serverless functions.

2. We provide an example FaaSET notebook hosted on
Google Colaboratory to quickly introduce users to the
features and tools in FaaSET [13].

3. We evaluate the performance implications of using
different client infrastructures to host the FaaSET note-
book and execute experiments on FaaS platforms.

2 Background
Many tools exist to streamline the development process of
serverless functions. For example, on AWS Lambda, simple
functions can be written and tested using the Cloud9 IDE di-
rectly from the AWS website [2]. The Serverless Framework

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

HotCloudPerf 2022, April 09, 2022, Beijing, China Cordingly and Lloyd

provides many tools to aid in FaaS application development,
deployment, and monitoring [14]. Plugins for existing devel-
opment environments, such as Visual Studio Code, support
integration with FaaS platforms such as Azure Cloud Func-
tions, AWS Lambda, and Google Cloud Functions [15].
While many of these tools focus on aiding development

for a specific platform, others, such as Lithops, support de-
veloping functions across many clouds to support big data
analytic workloads [9]. Although these tools offer features to
solve specific problems, FaaSET aims to be a platform-neutral
toolkit supporting the entire FaaS development lifecycle from
deployment, to experimentation, to data processing and anal-
ysis.

3 Tools and Methodology
3.1 FaaSET Notebook
The FaaSET notebook integrates into Jupyter notebooks and
utilizes many other tools to create a single workspace where
developers and researchers can easily develop, test, and run
experiments using FaaS platforms. Figure 1 illustrates this
workflow.

Execute Experiments

FaaS Runner

Serverless
Function

R
esponses

SAAF

Data

● Invoke Functions
● Reconfigures Functions
● Compiles Results
● Exports to Notebook

Profile

R
eq

ue
st

s

Develop, Deploy,
and Test Functions

λ

λ

λ

D
ep

lo
y

λ

λ

1 2

Compile and
Visualize Results

3

λ

Output

Te
st

λ

λ

FaaSET Notebook FaaSET Notebook

Input

G
en

er
at

e

FaaS Platform

Figure 1. The workflow enabled by the FaaSET notebook
supports development, deployment, testing, experimenta-
tion, and data analysis.

At the core of the FaaSET notebook is support for FaaS
function development and deployment. By writing standard
Python functions and applying a single-line decorator, func-
tions are automatically deployed and executed on FaaS plat-
forms. FaaSET supports deploying Python functions to AWS
Lambda, Google Cloud Functions, IBM Cloud Functions,
Azure Functions and code can be run locally in the note-
book. In addition, FaaSET can package functions using x86,
ARM64, and Docker containers on AWS Lambda.

Figure 2 shows what a function written inside the FaaSET
notebookwould look like. This HelloWorld function is imple-
mented with the SAAF Inspector to collect information about
the CPU. After executing this code block, FaaSET will first

@cloud_function(memory=256, platforms=[Platform.AWS])
def hello_world(request, context):

from Inspector import * # SAAF
inspector = Inspector()
inspector.inspectCPUInfo()
inspector.addAttribute("message",

"Hello " + request['name'] + " from AWS!")
return inspector.finish()

hello_world{{'name': 'Bob'}, None} # Invoke FaaS

Figure 2. A Hello World Python function with SAAF’s In-
spector class deployed to AWS Lambda using FaaSET.

check if the function is up to date with the current source
code. If the function does not exist, or the code has been
modified since the previous deployment, FaaSET will auto-
matically package and deploy the function to the selected
platform. The entire deployment process requires only a few
seconds on AWS Lambda and IBM Cloud Functions. After
deploying the function, executing the function in the note-
book will not run the code locally, but instead on the FaaS
platform. This provides a seamless experience that can be
combined with other Python features such as threading to
orchestrate FaaS applications. Finally, this behavior is con-
figurable if it is preferred for function code to execute locally
instead of on the FaaS platform.
While the FaaSET notebook only supports the develop-

ment of Python functions, other tools in FaaSET can apply to
functions written in any language. Since FaaSET can deploy
Docker containers, any dependencies, runtimes, or other ex-
ecutables can be included, and the Python function is used as
the container entry point. If functions are already deployed
to a FaaS platform, they can be "linked" to the notebook by
writing an empty FaaSET function with deployment disabled.
This way, existing functions can be invoked by the notebook,
used in experiments, and included in the data analysis.

3.2 Serverless Application Analytics Framework
To aid in performance profiling of serverless applications,
functions in FaaSET can be deployed with the Serverless
Application Analytics Framework (SAAF) [4]. SAAF collects
metrics frommultiple sources inside the Linux operating sys-
tem, including the /proc filesystem, local files under /tmp,
and environment variables created by the FaaS platform.
SAAF’s design allows all metrics to be collected by simply
including the framework in the deployment package and
adding a few lines of code to the beginning and end of the
function’s source code. Each commercial FaaS platform (e.g.,
AWS Lambda, IBM Cloud Functions) exposes or hides differ-
ent metadata about the underlying Linux environments that
run functions. SAAF is designed for FaaS platforms; it adds
minimal overhead to functions and works around different
levels of infrastructure obfuscation of each platform. FaaSET

FaaSET: A Jupyter notebook to streamline every
facet of serverless development HotCloudPerf 2022, April 09, 2022, Beijing, China

utilizes the publishing and deployment tools used by SAAF
to support multiple FaaS platforms.

3.3 FaaS Runner
To automate complex experiments on FaaS platforms, we
created the FaaS Runner tool. FaaS Runner provides a client-
side application used in conjunction with SAAF and the
FaaSET notebook. FaaS Runner automates FaaS experiments
by using functions and experiment files that define how
FaaS functions should be executed and how the results from
SAAF should be processed. Experiment files define an exper-
iment’s configuration, including how functions are invoked
(e.g. synchronously or asynchronously), the degree of con-
currency (e.g. parallel with multiple threads or sequentially),
how payloads should be distributed, and how multi-function
pipelines should be orchestrated. In addition, FaaS Runner
automatically applies changes to FaaS function configura-
tions as prescribed in the experiment file.
FaaS Runner can be executed using the FaaSET note-

book or run independently. Running experiments within
the FaaSET notebook will automatically generate the neces-
sary function and experiment files and import results into
the notebook after the experiment completes.

3.4 Example FaaSET Notebook
The FaaSET notebook, SAAF, and FaaS Runner are all open
source available to download on GitHub [13]. To make it
easy to try out all of our tools, we have developed an exam-
ple notebook hosted using Google Colaboratory. Using the
notebook, it is only necessary to enter AWS credentials and a
Role ARN to test deploying functions, running experiments,
processing results, and other FaaSET features without con-
figuring the environment. Google Colaboratory is free and
provides a low barrier of entry for hosting Jupyter notebooks.
The link to our example FaaSET notebook can be found on
the front page of our GitHub [13].

3.5 Experimental Design
The FaaSET notebook can be hosted on many different plat-
forms, including Google Colaboratory, locally, or on an IaaS
cloud platform such as Amazon EC2. Two key considera-
tions when picking a host client to invoke functions for FaaS
experiments are the client’s capability to invoke functions
concurrently and the network latency between requests. We
evaluated the performance capabilities of three different note-
book hosts, including the infrastructure provided with the
free tier of Google Colaboratory (2 vCPUs) (California), a
local Ubuntu Server 20.04 virtual machine with an Intel i9-
9990k Processor and 32 GBs of RAM (10 vCPUs) (Seattle
WA), and a c5.metal EC2 instance (96 vCPUs) located in the
same region and subnet as our Lambda function (us-east-1f).
To rule out the performance variability of the function

itself and focus on the performance of the client invoking
the functions, we created the sleeper function shown in

Figure 3. This function sleeps for a given amount of time. We
created an experiment that will invoke the function a total
of 5,000 times using 1,000 threads (5 times per thread). The
maximum available concurrency of the function on AWS
Lambda was also 1,000. SAAF reports the epoch start and
end time of our function invocations, enabling the number of
functions executing simultaneously to be determined. FaaS
Runner reports the latency of individual function invocations
by calculating the difference between the round trip time
(time between when a request is made and a response is
received) and the total function runtime returned by SAAF.
This experiment utilized every facet of FaaSET enabling us
to observe different host clients’ maximum concurrency and
latency.

@cloud_function(memory=256, platforms=[Platform.AWS])
def sleeper(request, context):

from Inspector import *
import time
inspector = Inspector()
inspector.inspectAll()
time.sleep(request['time'])
inspector.inspectAllDeltas()
return inspector.finish()

Define and execute experiment
sleep_experiment = {
"payloads": [{"time": 10}],
"memorySettings": [128],
"runs": 5000,
"threads": 1000,
"iterations": 1,

}
sleeper_results = run_experiment(function=sleeper,

experiment=sleep_experiment)

Figure 3. Function and experiment used to evaluate latency
and maximum concurrency of different clients.

4 Results
Our experiment revealed that the infrastructure used to ex-
ecute experiments impacted the performance of running
experiments. Since our sleeper function was configured to
execute for only 10 seconds, no client could achieve the max-
imum 1,000 concurrent function invocations. The c5.metal
instance achieved the highest concurrency peaking near 450
function instances while averaging 250. The local Ubuntu
Server achieved concurrency between 150 to 230 instances.
Finally, Google Colaboratory only achieved concurrency of
at most 31 function instances. Figure 4 shows the number of
function instances we were able to execute over 500 seconds.

One challenge to running large experiments using multi-
ple threads is the memory required to maintain open con-
nections and store data exchanged with the FaaS platform.
We found that using 1,000 threads could use up to 11 GBs of

HotCloudPerf 2022, April 09, 2022, Beijing, China Cordingly and Lloyd

RAM on the c5.metal, enough to saturate all of the available
memory on Google Colaboratory and crash the instance. To
avoid this, we limited the maximum number of threads to
200. Unfortunately, Google Colaboratory’s limited memory
and CPU power with the free tier does not make it a viable
option for running experiments that require a large number
of concurrent function invocations.

0 100 200 300 400 500
0

100

200

300

400

EC2 c5.metal Local (i9-9900k, 32 GBs RAM) Google Colab (Free)

Time after First Invocation (s)

Co
nc

ur
re

nt
 F

un
ct

io
n

In
vo

ca
tio

ns

Figure 4. Number of concurrently running function in-
stances using various clients. 5000 total invocations of 10
second sleep function using 1000 threads.

Finally, we evaluated the round-trip latency of each client
to our AWS Lambda function deployed in us-east-1f. Like the
concurrency test, Google Colaboratory exhibited the worst
performance with latency between 1.2 to 1.6 seconds. The
local virtual machine showed 650 to 850 ms of latency, and
the c5.metal instance had 340 to 350 ms. Figure 5 shows the
latency observed throughout our experiment. If running an
experiment where latency is an important metric, it is critical
to have the host client as physically close to the function
instances as possible. For AWS, the only way to do that is to
use EC2 instances located in the same region and subnet as
the function.

0 100 200 300 400 500

500

1000

1500

EC2 c5.metal Local (i9-9900k, 32 GBs RAM) Google Colab (Free)

Time after First Invocation (s)

La
te

nc
y

(m
s)

Figure 5. Request latency using a variety of clients when
functions are invoked sequentially using 1 thread.

5 Conclusions
The FaaSET notebook provides a unified workspace where
developers and practitioners can develop FaaS applications,
perform testing, run experiments, process results, and ana-
lyze data without needing to use any other tools or websites.

FaaSET is flexible in that it can be deployed to a variety of
Juypter servers and configured to use different FaaS plat-
forms to meet the demand of experiments. For developing,
deploying, and testing functions and running simple exper-
iments, FaaSET can be hosted using free Jupyter services
such as Google Colaboratory. If an experiment requires high
function concurrency or low latency, FaaSET can be hosted
on powerful cloud virtual machines. Our evaluation found
that Google Colaboratory as a free notebook host provided
only limited scalability, supporting only 1/10 the maximum
concurrency while exhibiting 5x the latency of a c5.metal
EC2 instance. FaaSET strives to be a powerful tool to aid
developers and practitioners to quickly and easily develop
serverless applications and run experiments to understand
how they perform on the cloud.

Acknowledgments
This research is supported by the NSF Office of Advanced Cy-
berinfrastructure (OAC-1849970), NIH grant R01GM126019,
and the AWS Cloud Credits for Research program.

References
[1] AWS. 2021. AWS Lambda – Serverless Compute - Amazon Web Ser-

vices. http://aws.amazon.com/lambda/.
[2] Cloud9. 2022. A cloud IDE for writing, running, and debugging code.

https://aws.amazon.com/cloud9/
[3] Robert Cordingly, Wen Shu, and Wes J Lloyd. 2020. Predicting Per-

formance and Cost of Serverless Computing Functions with SAAF. In
6th IEEE International Conference on Cloud and Big Data Computing
(CBDCOM 2020).

[4] Robert Cordingly, Hanfei Yu, Varik Hoang, Zohreh Sadeghi, David
Foster, David Perez, Rashad Hatchett, andWes Lloyd. 2020. The Server-
less Application Analytics Framework: Enabling Design Trade-off
Evaluation for Serverless Software. In Proceedings of the 2020 Sixth
International Workshop on Serverless Computing. 67–72.

[5] Robert Cordingly, Hanfei Yu, David Perez Varik Hoang, David Foster,
Zohreh Sadeghi, Rashad Hatchett, and Wes J Lloyd. 2020. Implications
of Programming Language Selection for Serverless Data Processing
Pipelines. In 2020 6th IEEE International Conference on Cloud and Big
Data Computing (CBDCOM 2020).

[6] Google Cloud. 2021. Google Cloud Function: Event-Driven Serverless
Compute Platform. http://cloud.google.com/functions.

[7] IBM. 2021. IBM Cloud Functions. http://ibm.com/cloud/functions.
[8] Jupyter. 2022. https://jupyter.org
[9] Lithops. 2022. https://lithops-cloud.github.io
[10] Microsoft Azure. 2021. Azure Functions. http://azure.microsoft.com/

en-us/services/functions/s.
[11] Sterling Quinn, Robert Cordingly, and Wes Lloyd. 2021. Implications

of Alternative Serverless Application Control Flow Methods. In Pro-
ceedings of the Seventh International Workshop on Serverless Computing
(WoSC7) 2021. 17–22.

[12] Sasko Ristov, Stefan Pedratscher, and Thomas Fahringer. 2021. xAFCL:
Run Scalable Function Choreographies Across Multiple FaaS Systems.
IEEE Transactions on Services Computing (2021).

[13] SAAF. 2022. Serverless Application Analytics Framework. http:
//github.com/wlloyduw/SAAF

[14] Serverless Framework. 2022. https://www.serverless.com
[15] VS Code Extensions - Azure Functions. 2022. https://marketplace.

visualstudio.com/items?itemName=ms-azuretools.vscode-
azurefunctions

http://aws.amazon.com/lambda/
https://aws.amazon.com/cloud9/
http://cloud.google.com/functions
http://ibm.com/cloud/functions
https://jupyter.org
https://lithops-cloud.github.io
http://azure.microsoft.com/en-us/services/functions/s
http://azure.microsoft.com/en-us/services/functions/s
http://github.com/wlloyduw/SAAF
http://github.com/wlloyduw/SAAF
https://www.serverless.com
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-azurefunctions
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-azurefunctions
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-azurefunctions

	Abstract
	1 Introduction
	1.1 Paper Contributions

	2 Background
	3 Tools and Methodology
	3.1 FaaSET Notebook
	3.2 Serverless Application Analytics Framework
	3.3 FaaS Runner
	3.4 Example FaaSET Notebook
	3.5 Experimental Design

	4 Results
	5 Conclusions
	References

