
1

Performance Implications of Multi-Tier Application Deployments on
Infrastructure-as-a-Service Clouds:

Towards Performance Modeling

W. Lloyd a,*, S. Pallickara b, O. David a, J. Lyon c, M. Arabi c, K. Rojas d

a Dept. of Computer Science and Dept. of Civil and Environmental Engineering, Colorado State
University, Fort Collins, CO 80523 USA
b Dept. of Computer Science, Colorado State University, Fort Collins, CO 80523 USA
c Dept. of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO
80523 USA
d USDA-NRCS, 2150 Centre Ave., Bldg. A, Fort Collins, CO 80526 USA
* Corresponding author. Present address: USDA-ARS, ASRU, 2150 Centre Ave., Bldg. D, Suite
200, Fort Collins, CO 80526 USA. Tel.: + 1 970 492 7311; fax: +1 970 492 7310.
 E-mail address: wlloyd@acm.org (W. Lloyd).

ABSTRACT

Hosting a multi-tier application using an Infrastructure-as-a-Service (IaaS) cloud requires
deploying components of the application stack across virtual machines (VMs) to provide the
application’s infrastructure while considering factors such as scalability, fault tolerance,
performance and deployment costs (# of VMs). This paper presents results from an empirical
study which investigates implications for application performance and resource requirements
(CPU, disk and network) resulting from how multi-tier applications are deployed to IaaS clouds.
We investigate the implications of: (1) component placement across VMs, (2) VM memory size,
(3) VM hypervisor type (KVM vs. XEN), and (4) VM placement across physical hosts
(provisioning variation). All possible deployment configurations for two multi-tier application
variants are tested. One application variant was computationally bound by the application
middleware, the other bound by geospatial queries. The best performing deployments required
as few as 2 VMs, half the number required for VM-level service isolation, demonstrating
potential cost savings when components can be consolidated. Resource utilization (CPU time,
disk I/O, and network I/O) varied with component deployment location, VM memory allocation,
and the hypervisor used (XEN or KVM) demonstrating how application deployment decisions
impact required resources. Isolating application components using separate VMs produced
performance overhead of ~1-2%. Provisioning variation of VMs across physical hosts produced
overhead up to 3%. Relationships between resource utilization and performance were assessed
using multiple linear regression to develop a model to predict application deployment
performance. Our model explained over 84% of the variance and predicted application
performance with mean absolute error of only ~.3 seconds with CPU time, disk sector reads, and
disk sector writes serving as the most powerful predictors of application performance.

1. Introduction

Migration of multi-tier client/server applications to Infrastructure-as-a-Service (IaaS) clouds
involves deploying components of application infrastructure to one or more virtual machine

2

(VM) images. Images are used to instantiate VMs to provide the application’s cloud-based
infrastructure. Application components consist of infrastructure elements such as
web/application servers, proxy servers, NO SQL databases, distributed caches, relational
databases, file servers and others.

Service isolation refers to the total separation of application components for hosting using
separate VMs. Application VMs are hosted by one or more physical machines (PMs). Service
isolation provides application components with their own explicit sandboxes to operate in, each
having independent operating system instances. Hardware virtualization enables service
isolation using separate VMs to host each application component instance. Before virtualization,
service isolation using PMs required significant server capacity. Service isolation has been
suggested as a best practice for deploying multi-tier applications across VMs. A 2010 Amazon
Web Services white paper suggests applications be deployed using service isolation. The white
paper instructs the user to “bundle the logical construct of a component into an Amazon Machine
Image so that it can be deployed (instantiated) more often” [36]. Service isolation, a 1:1
mapping of application component(s) to VM images is implied. Service isolation enables
scalability and supports fault tolerance at the component level. Isolating components may reduce
inter-component interference allowing them to run more efficiently. Conversely service isolation
adds an abstraction layer above the physical hardware which introduces overhead potentially
degrading performance. Deploying all application components using separate VMs may increase
network traffic, particularly when VMs are hosted by separate physical machines. Consolidating
components together on a single VM guarantees they will not be physically separated when
deployed potentially improving performance by reducing network traffic.

Provisioning variation results from the non-determinism of where application VMs are
physically hosted in the cloud, often resulting in performance variability [1-3]. IaaS cloud
providers often do not allow users to control where VMs are physically hosted causing this
provisioning variation. Clouds consisting of PMs with heterogeneous hardware and hosting a
variable number of VMs complicates benchmarking application performance [37].

Service Isolation provides isolation at the guest operating system level as VMs share physical
hardware resources and compete for CPU, disk, and network bandwidth. Quantifying VM
interference and investigation of approaches to multiplex physical host resources are active areas
of research [8-10, 26, 33-35]. Current virtualization technology only guarantees VM memory
isolation. VMs reserve a fixed quantity of memory for exclusive use which is not released until
VM termination. Processor, network I/O, and disk I/O resources are shared through coordination
by the virtualization hypervisor. Popular virtualization hypervisors include kernel-based VMs
(KVM), Xen, and the VMware ESX hypervisor. Hypervisors vary with respect to methods used
to multiplex resources. Some allow pinning VMs to specific CPU cores to guarantee resource
availability though CPU caches are still shared [26]. Developing mechanisms which guarantee
fixed quantities of network and disk throughput for VM guests is an open area for research.

This research investigates performance of multi-tier application component deployments to IaaS
clouds to better understand implications of component distribution across VMs, VM placement
across physical hosts and VM configuration. We seek to better understand factors that impact
performance moving towards building performance models to support intelligent methodologies
that better load balance resources to improve application performance. We investigate hosting
two variants of a non-stochastic multi-tier application with stable resource utilization
characteristics. Resource utilization statistics that we capture from host VMs are then used to

3

investigate performance implications relative to resource use and contention. The following
research questions are investigated:

RQ-1) How does resource utilization and application performance vary relative to how
application components are deployed? How does provisioning variation, the
placement of VMs across physical hosts, impact performance?

RQ-2) Does increasing VM memory allocation change performance? Does the virtual
machine hypervisor (XEN vs. KVM) affect performance?

RQ-3) How much overhead results from VM service isolation?
RQ-4) Can VM resource utilization data be used to build models to predict application

performance of component deployments?

2. Related Work

Rouk identified the challenge of finding ideal service compositions for creating virtual machine
images to deploy applications in cloud environments in [4]. Schad et al. [2] demonstrated the
unpredictability of Amazon EC2 VM performance caused by contention for physical machine
resources and provisioning variation of VMs. Rehman et al. tested the effects of resource
contention on Hadoop-based MapReduce performance by using IaaS-based cloud VMs to host
worker nodes [1]. They tested provisioning variation of three different deployment schemes of
VM-hosted Hadoop worker nodes and observed performance degradation when too many worker
nodes were physically co-located. Their work investigated VM deployments not for multi-tier
application(s), but for MapReduce jobs where all VMs were homogeneous in nature. Multi-tier
applications with multiple unique components present a more complex challenge for resource
provisioning than studied by Rehman et al. Zaharia et al. observed that Hadoop's native
scheduler caused severe performance degradation by ignoring resource contention among
Hadoop nodes hosted by Amazon EC2 VMs [3]. They proposed the Longest Approximate Time
to End (LATE) scheduling algorithm which better addresses performance variations of
heterogeneous Amazon EC2 VMs. Their work did not consider hosting of heterogeneous
components.

Camargos et al. investigated virtualization hypervisor performance for virtualizing Linux servers
with several performance benchmarks for CPU, file and network I/O [5]. Xen, KVM,
VirtualBox, and two container based virtualization approaches OpenVZ and Linux V-Server
were tested. Different parts of the system were targeted using kernel compilation, file transfers,
and file compression benchmarks. Armstrong and Djemame investigated performance of VM
launch time using Nimbus and OpenNebula, two IaaS cloud infrastructure managers [6].
Additionally they benchmarked Xen and KVM paravirtual I/O performance. Jayasinghe et al.
investigated performance of the RUBBoS n-tier e-commerce system deployed to three different
IaaS clouds: Amazon EC2, Emulab, and Open Cirrus [7]. They tested horizontal scaling,
changing the number of VMs for each component, and vertical scaling, varying the resource
allocations of VMs. They did not investigate consolidating components on VMs but used
separate VMs for full service isolation. Matthews et al. developed a VM isolation benchmark to
quantify the isolation level of co-located VMs running several conflicting tasks [8]. They tested
VMWare, Xen, and OpenVZ hypervisors to quantify isolation. Somani and Chaudhary
benchmarked Xen VM performance with co-located VMs running CPU, disk, or network
intensive tasks on a single physical host [9]. They benchmarked the Simple Earliest Deadline
First (SEDF) I/O credit scheduler vs. the default Xen credit scheduler and investigated physical

4

resource contention for running different co-located tasks, similar to resource contention of co-
hosting different components of multi-tier applications. Raj et al. improved hardware level
cache management of the Hyper-V hypervisor introducing VM core assignment and cache
portioning to reduce inter-VM conflicts from sharing the same hardware caches. These
improvements were shown to improve VM isolation [10].

Niehörster et al. developed an autonomic system using support vector machines (SVM) to meet
predetermined quality-of-service (QoS) goals. Service specific agents were used to provide
horizontal and vertical scaling of virtualization resources hosted by an IaaS Eucalyptus cloud
[11]. Their agents scaled # of VMs, memory, and virtual core allocations. Support vector
machines determined if resource requirements were adequate for the QoS requirement. They
tested their approach by dynamically scaling the number of modeling engines for GROMACS, a
molecular dynamics simulation and also for an Apache web application service to meet QoS
goals. Sharma et al. investigated implications of physical placement of non-parallel tasks and
their resource requirements to build performance model(s) to improve task scheduling and
distribution on compute clusters [32]. Similar to Sharma’s models to improve task placement,
RQ-4 investigates building performance models which could be used guide component
deployments for multi-tier applications.

Previous studies have investigated a variety of related issues but none have investigated the
relationship between application performance and resource utilization (CPU, disk, network)
resulting form how components of multi-tier applications are deployed across VMs (isolation vs.
consolidation).

3. Paper Contributions

This paper presents a thorough and detailed investigation on how the deployment of multi-tier
application components impacts application performance and resource consumption (CPU, disk,
network). This work extends prior research on provisioning variation and heterogeneity of
cloud-based resources. Relationships between component and VM placement, resource
utilization and application performance are investigated. Additionally we investigate
performance and resource utilization changes resulting from: (1) the use of different hypervisors
(XEN vs. KVM), and (2) increasing VM memory allocation. Overhead from using separate
VMs to host application components is also measured. Relationships between resource
utilization and performance are used to develop a multiple linear regression model to predict
application performance. Our approach for collecting application resource utilization data to
construct performance model(s) can be generalized for any multi-tier application.

4. Experimental Design

To support investigation of our research questions we studied the migration of a widely used
Windows desktop environmental modeling application deployed to operate as a multi-tier web
services application. Section 4.1 describes the application and our test harness. Section 4.2
describes components of the multi-tier application. Section 4.3 details the configuration of tested
component deployments. Section 4.4 concludes by describing our private IaaS cloud and
hardware configuration used for this investigation.

5

4.1 Test Application

For our investigation we utilized two variants of the RUSLE2 (Revised Universal Soil Loss
Equation – Version 2) soil erosion model [12]. RUSLE2 contains both empirical and process-
based science that predicts rill and interrill soil erosion by rainfall and runoff. RUSLE2 was
developed to guide conservation planning, inventory erosion rates, and estimate sediment
delivery. RUSLE2 is the US Department of Agriculture Natural Resources Conservation Service
(USDA-NRCS) agency standard model for sheet and rill erosion modeling used by over 3,000
field offices across the United States. RUSLE2 was originally developed as a Windows-based
Microsoft Visual C++ desktop application and has been extended to provide soil erosion
modeling as a REST-based webservice hosted by Apache Tomcat [16]. JSON was the transport
protocol for data objects. To facilitate functioning as a web service a command line console was
added. RUSLE2 consists of four tiers including an application server, a geospatial relational
database, a file server, and a logging server. RUSLE2 is a good multi-component application for
our investigation because with four components and 15 possible deployments it is both complex
enough to be interesting, yet simple enough that brute force testing is reasonable to accomplish.
RUSLE2’s architecture is a surrogate for traditional client/server architectures having both an
application and relational database. The Object Modeling System 3.0 (OMS3) framework [13-
14] using WINE [15] provided middleware to facilitate interacting with RUSLE2’s command
line console. OMS3, developed by the USDA–ARS in cooperation with Colorado State
University, supports component-oriented simulation model development in Java, C/C++ and
FORTRAN.

The RUSLE2 web service supports ensemble runs which are groups of individual model requests
bundled together. To invoke the RUSLE2 web service a client sends a JSON object with
parameters describing land management practices, slope length, steepness, latitude, and
longitude. Model results are returned as JSON objects. Ensemble runs are processed by
dividing sets of modeling requests into individual requests which are resent to the web service,
similar to the “map” function of MapReduce. These requests are distributed to worker nodes
using a round robin proxy server. Results from individual runs of the ensemble are “reduced”
into a single JSON response object. A test generation program created randomized ensemble
tests. Latitude and longitude coordinates were randomly selected within a bounding box from
the state of Tennessee. Slope length, steepness, and land management practice parameters were
randomized. Random selection of latitude and longitude coordinates led to variable geospatial
query execution times because the polygons intersected with varied in complexity. To verify our
test generation technique produced test sets with variable complexity we completed 2 runs of 20
randomly generated 100-model run ensemble tests were run using the 15 RUSLE2 component
deployments and average execution times were calculated. Execution speed (slow/medium/fast)
of ensemble tests was preserved across subsequent runs indicating that individual ensembles
exhibited a complexity-like characteristic (R²=.914, df=18, p=5•10-11).

Our investigation utilized two variants of RUSLE2 referred to as “d-bound” for the database
bound variant and “m-bound” for the model bound variant, names based on the component
dominating execution time. These application variants represent surrogates for two potentially
common scenarios in practice: an application bound by the database tier, and an application
bound by the middleware (model) tier. For the “d-bound” RUSLE2 two primary geospatial
queries were modified to perform a join on a nested query. The “m-bound” variant was
unmodified. The “d-bound” application had a different resource utilization profile than the “m-

6

bound” RUSLE2. On average the “d-bound” application required ~2.45x more CPU time than
the “m-bound” model.

4.2 Application Services

Table 1

RUSLE2 Application Components
Component Description

M Model Apache Tomcat 6.0.20, Wine 1.0.1, RUSLE2, Object
Modeling System (OMS 3.0)

D Database

Postgresql-8.4, PostGIS 1.4.0-2
Geospatial database consists of soil data (1.7 million
shapes, 167 million points), management data (98
shapes, 489k points), and climate data (31k shapes, 3
million points), totaling 4.6 GB for the state of TN.

F File server
nginx 0.7.62
Serves XML files which parameterize the RUSLE2
model. 57,185 XML files consisting of 305MB.

L Logger

Codebeamer 5.5 w/ Derby DB, Tomcat (32-bit)
Custom RESTful JSON-based logging wrapper web
service. IA-32libs support operation in 64-bit
environment.

Table 1 describes the application components of RUSLE2's application stack. The M component
provides model computation and web services using Apache Tomcat. The D component
implements the geospatial database which resolves latitude and longitude coordinates to assist in
providing climate, soil, and management data for RUSLE2 model runs. Postgresql with PostGIS
extensions were used to support geospatial functionality [17-18]. The file server F component
provides static XML files to RUSLE2 to parameterize model runs. NGINX [19], a lightweight
high performance web server hosted over 57,000 static XML files on average ~5KB each. The
logging L component provided historical tracking of modeling activity. The Codebeamer
tracking facility which provides an extensive customizable GUI and reporting facility was used
to log model activity [20]. A simple JAX-RS RESTful JSON-based web service decoupled
logging functions from RUSLE2 by providing a logging queue to prevent delays from interfering
with model execution. Codebeamer was hosted by the Apache Tomcat web application server
and used the Derby file-based relational database. Codebeamer, a 32-bit web application,
required the Linux 32-bit compatibility libraries (ia32-libs) to run on 64-bit VMs. A physical
server running the HAProxy load balancer provided a proxy service to redirect modeling
requests to the VM hosting the modeling engine. HAProxy is a dynamically configurable fast
load balancer that supports proxying both TCP and HTTP socket-based network traffic [21].

4.3 Service Configurations

RUSLE2’s infrastructure components can be deployed 15 possible ways using 1-4 VMs. Table 2
shows the tested service configurations labeled as SC1-SC15. To create the deployments for
testing, a composite VM image with all (4) application components installed was used. An
automated test script enabled/disabled application components as needed to achieve the
configurations. This method allowed automatic configuration of all component deployments
using a single VM image. This approach required that the composite disk image was large
enough to host all components, and that VMs had installed but non-running components.

7

For testing SC1-SC15, VMs were deployed with physical isolation. Each VM was hosted by its
own exclusive physical host. This simplified the experimental setup and provided a controlled
environment using homogeneous physical host machines to support experimentation without
interference from external non-application VMs. For provisioning variation testing (RQ-1) and
service isolation testing (RQ-3) physical machines hosted multiple VMs as needed. For all the
tests VMs had 8 virtual CPUs, and 10GB of disk space regardless of the number of components
hosted. VMs were configured with either 4GB or 10GB memory.

Table 3 describes component deployments used to benchmark service isolation overhead (RQ-3).
Separate VMs are delineated using brackets. These tests measured performance overhead
resulting from the use of separate VMs to isolate application components. Service isolation
overhead was measured for the three fastest component deployments: SC2, SC6, and SC11.

Table 2
Tested Component Deployments

 VM1 VM2 VM3 VM4
SC1 MDFL

SC2 MDF L

SC3 MD FL
SC4 MD F L

SC5 M DFL

SC6 M DF L

SC7 M D F L

SC8 M D FL

SC9 M DL F

SC10 MF DL

SC11 MF D L

SC12 ML DF

SC13 ML D F

SC14 MDL F

SC15 MLF D

Table 3

Service Isolation Tests

NC NODE 1 NODE 2 NODE 3
SC2-SI [M] [D] [F] [L]

SC2 [M D F] [L]
SC6-SI [M] [D F] [L]

SC6 [M] [D] [F] [L]
SC11-SI [M] [F] [D] [L]

SC11 [M F] [D] [L]

4.4 Testing Setup

A Eucalyptus 2.0 IaaS private cloud [22] was built and hosted by Colorado State University
consisting of 9 SUN X6270 blade servers sharing a private 1 Giga-bit VLAN. Servers had dual
Intel Xeon X5560-quad core 2.8 GHz CPUs, 24GB ram, and two 15000rpm HDDs of 145GB
and 465GB capacity respectively. The host operating system was CentOS 5.6 Linux (2.6.18-
274) 64-bit server for the Xen hypervisor [23] and Ubuntu Linux 10.10 64-bit server (2.6.35-22)

8

for the KVM hypervisor. VM guests ran Ubuntu Linux (2.6.31-22) 64-bit server 9.10. Eight
servers were configured as Eucalyptus node-controllers, and one server was configured as the
Eucalyptus cloud-controller, cluster-controller, walrus server, and storage-controller. Eucalyptus
managed mode networking using a managed Ethernet switch was used to isolate VMs onto their
own private VLANs.

Available versions of the Xen and KVM hypervisors were tested to establish which provided the
fastest performance using SC1 from Table 2. Ten trials of an identical 100-model run ensemble
test were executed using the “m-bound” variant of the RUSLE2 application and average
ensemble execution times are shown in Table 4. Xen 3.4.3 hvm represents the Xen hypervisor
running in full virtualization mode using CPU virtualization extensions similar to the KVM
hypervisor. Xen 3.4.3 using paravirtualization was shown to provide the best performance and
was used for the majority of experimental tests. Our application-based benchmarks of XEN and
KVM reflect similar results from previous investigations [5-6].

Table 4
Hypervisor Performance

Hypervisor

Avg. Time (sec) Performance
Physical server 15.65 100%

Xen 3.1 25.39 162.24%
Xen 3.4.3 23.35 149.20%
Xen 4.0.1 26.2 167.41%
Xen 4.1.1 27.04 172.78%

Xen 3.4.3 hvm 32.1 205.11%
KVM disk virtio 31.86 203.58%
KVM no virtio 32.39 206.96%
KVM net virtio 35.36 225.94%

The Linux virtual memory drop_caches function was used to clear all caches, dentries and inodes
before each ensemble test to negate training effects from repeating identical ensemble tests. This
cache-flushing technique was verified by observing CPU, file I/O, and network I/O utilization
for the automated tests with and without cache clearing. When caches were not cleared, total
disk sector reads decreased after the system was initially exposed to the same ensemble test.
When caches were force-cleared for each ensemble run, the system reread data. As the test
harness was exercised we observed that Codebeamer’s Derby database grew large resulting in
performance degradations. To eliminate decreased performance from log file and database
growth our test script deleted log files and removed and reinstalled Codebeamer after each
ensemble run. These steps prevented out of disk space errors and allowed uninterrupted testing
without intervention.

VM resource utilization statistics were captured using a profiling script to capture CPU time,
disk sector reads and writes (disk sector=512 bytes), and network bytes sent/received. To
determine resource utilization of component deployments from all VMs hosting the application
were totaled.

5. Experimental Results

To investigate our research questions we completed nearly 10,000 ensemble tests totaling
~1,000,000 individual model runs. Tests were conducted using both the “m-bound” and “d-

9

bound” RUSLE2 model variants. VMs were hosted using either the XEN or KVM hypervisor
and were configured with either 4GB or 10GB memory, 8 virtual cores, and 10GB disk space.
15 component placements across VMs were tested, and these VMs were provisioned using
physical hosts 45 different ways. Test sets executed 20 ensembles of 100 model runs each to
benchmark performance and resource utilization of various configurations. All ensembles had
100 randomly generated model runs. Some test sets repeated the same ensemble test 20 times,
while others used a set of 20 different ensemble tests for a total of 2,000 randomly generated
model runs per test set. Results for our investigation of RQ-1 are described in sections 5.1, 5.2,
and 5.3. Resource utilization characteristics of the component deployments are described in
section 5.1 followed by performance results of the deployments in section 5.2. Section 5.3
reports on performance effects from provisioning variation, the variability resulting from where
application VMs are physically hosted. Section 5.4 describes how application performance
changed when VM memory was increased from 4GB to 10GB, and Section 5.5 reports on the
performance differences of the XEN and KVM hypervisors (RQ-2). Section 5.6 presents results
from our experiment measuring service isolation overhead (RQ-3). Section 5.7 concludes by
presenting our multiple linear regression based performance model which predicts performance
of component deployments based on resource utilization statistics (RQ-4).

5.1 Component Deployment Resource Utilization

Resource utilization statistics were captured for all component deployments to investigate how
they varied across all possible configurations. To validate that component deployments
exhibited consistent resource utilization behavior, linear regression was used to compare two
separate sets of runs consisting of 20 different 100-model run ensembles using the “m-bound”
model with 4GB XEN VMs. The coefficient of determination R2 was calculated to determine
the proportion of variance accounted for when regressing together the two datasets. Higher
values indicate similarity in the datasets. Comparing R2 resource utilization for CPU time
(R²=0.937904, df=298), disk sector reads (R²=0.96413, df=298), and network bytes
received/sent (R²=0.99999, df=298) for repeated tests appeared very similar. Only disk sector
writes (R²=0.273696, df=298) was inconsistent. Network utilization appeared similar for both
the “m-bound” and “d-bound” model variants as they communicated the same information. For
the “d-bound” model D performed many more queries but this additional computation was
independent of the other components M F L.

Table 5
“M-bound” Deployment Variation

Parameter M-bound Deployment
Difference

 Avg. ensemble (sec) 23.4 13.7% (3.2 sec)
Avg. CPU time (sec) 11.7 6.5%

Avg. disk sector reads 57,675 14.8%
Avg. disk sector writes 286,297 21.8%

Avg. network bytes rec'd 9,019,414 144.9%
Avg. network bytes sent 9,037,774 143.7%

Application performance and resource utilization varied based on the deployment configuration
of application components. Comparing resource utilization among deployments for the “m-
bound” model network bytes sent/received varied by ~144%, disk sector writes by ~22%, disk

10

sector reads by ~15% and CPU time by ~6.5% as shown in table 5. Comparing the fastest and
slowest deployments the performance variation was ~3.2 seconds nearly 14% of the average
ensemble execution time for all deployments. Resource utilization differences among
deployments of the “d-bound” model was greater than “m-bound” with ~820% for disk sector
reads, ~145% for network bytes sent/received, 111% for disk sector writes but only ~5.5% for
CPU time as shown in Table 6. “D-bound” model performance comparing the fastest versus
slowest deployments varied by 25.7% (>34 seconds).

Table 6
“D-bound” Deployment Variation

Parameter D-bound Deployment
Difference

 Avg. ensemble (sec) 133.4 25.7% (34.3 sec)
Avg. CPU time (sec) 27.8 5.5%

Avg. disk sector reads 2,836,144 819.6%
Avg. disk sector writes 246,364 111.1%

Avg. network bytes rec'd 9,269,763 145.0%
Avg. network bytes sent 9,280,216 143.9%

Comparing both applications hosted by 4GB XEN VMs a ~138% increase in CPU time was
observed for the “d-bound” model. Network utilization increased ~3% and disk sector reads for
the “d-bound” model where the M and D components were co-located increased 24,000% vs. the
“m-bound” model, but decreased 87% for deployments where M and D were not co-located. On
average the XEN “d-bound” model ensemble execution times were 5.7x “m-bound”, averaging
133.4 seconds versus 23.4. Network utilization likely increased for the “d-bound” model due to
the longer duration of ensemble runs.

cpu time disk sector reads disk sector writes network bytes rcvd network bytes sent
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

sc15
sc14
sc13
sc12
sc11
sc10
sc9
sc8
sc7
sc6
sc5
sc4
sc3
sc2
sc1

Resource Type

R
e

so
u

rc
e

 f
o

o
tp

ri
n

t

Figure 1. Resource Utilization Variation of Component Deployments

11

Figure 1 shows resource utilization variation for component deployments of the “m-bound”
model. Resource utilization statistics were totaled from all VMs comprising individual
component deployments. The graph shows the absolute value of the deviation from average
resource utilization for the component deployments (SC1 – SC15). The graph does not express
positive/negative deviation from average but the magnitude of deviation. Larger boxes indicate a
greater deviation from average resource utilization and smaller boxes indicate performance close
to the average. The graph visually depicts the variance of resource utilization for our 15
component deployments.

Figure 2. 4GB “m-bound” regression plot (XEN)

5.2 Component Deployment Performance

To verify that component deployments performed consistently over time and to verify that we
were not simply observing random behavior, two test sets consisting of 20 runs of the same 100-
model run ensemble test were performed using all component deployments. The regression plot
in Figure 2 compares the behavior of the two repeated test sets. Linear regression confirms the
consistency of component deployment performance across subsequent test sets (R²=0.949674,
df=13, p=8.09•10-10). The three ellipses in the graph identify three different performance groups
from left to right: fast, medium and slow. Performance consistency of "d-bound" tests was
verified using the same technique. The consistency was not as strong due to higher variance of
"d-bound" model execution time but was statistically significant (R²=0.81501, df=13,
p=4.08•10-6).

To simulate a production modeling web service 20 randomized 100-model run ensembles were
generated (2,000 unique requests) and used to benchmark each of the 15 component
deployments. Figure 3 shows the performance comparison of the “m-bound” vs. “d-bound”
model using the 20 different ensemble tests. Performance differences from average and overall
rankings are shown in table 7.

12

Figure 3. Performance Comparison – Randomized Ensembles (XEN)

Table 7
Performance Differences – Randomized Ensembles

composition m-bound rank d-bound rank

SC1 7.59% 14 4.46% 9
SC2 -6.06% 1 -13.35% 1
SC3 -0.80% 10 -12.64% 3
SC4 -3.74% 6 -12.81% 2
SC5 -1.13% 9 -2.64% 8
SC6 -5.50% 2 -5.40% 4
SC7 -4.38% 4 7.98% 12
SC8 -2.21% 8 10.44% 14
SC9 -2.92% 7 -3.16% 6

SC10 -4.21% 5 -2.84% 7
SC11 -5.20% 3 7.72% 11
SC12 6.74% 11 -4.98% 5
SC13 7.63% 15 8.57% 13
SC14 6.97% 12 6.28% 10
SC15 7.22% 13 12.36% 15

We observed performance variation of nearly ~14% for the “m-bound” model and ~26%
for the “d-bound” model comparing best-case vs. worse-case deployments. Service
compositions for the “m-bound” application with random ensembles can be grouped into three
categories of performance fast {SC2, SC4, SC6, SC7, SC9, SC10, SC11}, medium {SC3, SC5,
SC8}, and slow {SC1, SC12, SC13, SC14, SC15}. Compositions with M and L components co-
located performed slower in all cases averaging 7.25% slower, about 1.7 seconds. When

13

compositions had M and L co-located CPU time increased 14.6%, disk sector writes 18.4%, and
network data sent/received about 3% versus compositions where M and L were separate.

Service isolation (SC7) did not provide the best performance for either model. SC7 was ranked
4th fastest for the “m-bound” model and 12th for the “d-bound” model. The top three
performing deployments for both model variants required only two or three VMs. Prior to
testing the authors posited that isolating the application server (SC5), total service isolation
(SC7), and isolating the geospatial database isolation (SC15) could be the fastest deployments.
None of these deployments were top performers demonstrating our intuition was insufficient.
Testing was required to determine the fastest component placements. We observed up to ~26%
performance variation comparing component deployments while making no application changes
only deployment changes. This variation illustrates the possible consequences for ad hoc
component placement.

Table 8
Provisioning Variation VM Tests

 PM 1 PM 2 PM 1 PM 2
SC2A [MDF] [L] SC9B [M] [DL] [F]
SC3A [MD] [FL] SC9C [M] [DL] [F]
SC4A [MD] [F] [L] SC9D [M] [F] [DL]
SC4B [MD] [F] [L] SC10A [MF] [DL]
SC4C [MD] [F] [L] SC11A [MF] [D] [L]
SC4D [MD] [L] [F] SC11B [MF] [D] [L]
SC5A [M] [DFL] SC11C [MF] [D] [L]
SC6A [M] [DF] [L] SC11D [MF] [L] [D]
SC6B [M] [DF] [L] SC12A [ML] [DF]
SC6C [M] [DF] [L] SC13A [ML] [D] [F]
SC6D [M] [L] [DF] SC13B [ML] [D] [F]
SC8A [M] [D] [FL] SC13C [ML] [D] [F]
SC8B [M] [D] [FL] SC13D [ML] [F] [D]
SC8C [M] [D] [FL] SC14A [MDL] [F]
SC8D [M] [FL] [D] SC15A [MLF] [D]
SC9A [M] [DL] [F]

5.3 Provisioning Variation Testing

IaaS cloud providers often do not allow user-level control of VM placement to physical hosts.
The non-determinism of where VMs are hosted results in provisioning variation [1-3]. In the
previous section we identified the best performing application component deployments. We had
two primary motivations for provision variation testing. First, to validate if deploying VMs using
isolated physical hosts was sufficient to identify the best performing component deployments.
For example does one of the deployments (SC11A, SC11B, SC11C) provide fundamentally
different performance than SC11? And second, to quantify the average performance change for
provisioning variation configurations. Intuition and previous research suggest that hosting
multiple VMs on a single PM will reduce performance, but by how much?

There are 45 provisioning variations of the 15 component deployments described in table 2 and
tested in previous sections. 31 of the configurations were tested using the 20 randomized 100-
model run ensembles and KVM-based VMs with 4GB memory allocation. Test configurations
are identified by their base service configuration id SC1-SC15 and the letters A-D to identify
provisioning variation configurations as described in table 8. There were 14 variations of SC7
which represent the VM-level service isolation variants of component configurations described

14

in table 2. These were not tested because service isolation only adds overhead relative to their
equivalents (SC1-SC6, SC8-SC15) as discussed in section 5.6 for RQ-3. To compare
performance the provision variation deployments from table 8 versus SC1-SC15, we calculated
averages for provisioning variation configurations having more than 1 provisioning variation
deployment (e.g. SC11A, SC11B, SC11C, SC11D). Linear regression showed that component
deployments performed the same regardless of provisioning variation (R²=0.956701, df=13,
p=3.03•10-10), though they generally performed slower

. Performance differences observed
appeared to result from hosting multiple VMs on physical hosts. On average performance for
provision variation configurations was 2.5% slower. Configurations with 2 VMs averaged
3.05% slower, with 3 VMs 2.33% slower. 6 of 31 configurations exhibited small performance
gains: SC4A, SC6A, SC8C, SC11A, SC11C, and SC12A. Provisioning variation configurations
which separated physical hosting of the M and L components provided an average improvement
of .39% (10 configurations) whereas those which combined hosting of M and L were on average
3.93% slower. Performance differences for provisioning variation configurations are shown in
figure 4.

Figure 4. Provisioning Variation Performance Differences vs. Physical Isolation (KVM)

5.4 Increasing VM memory

In [24] the RUSLE2 model was used to investigate multi-tier application scaling with
components deployed on isolated VMs. VMs hosting the M, F, and L components were
allocated 2GB memory, and the D component VM was allocated 4GB. To avoid performance
degradation due to memory contention VM memory was increased to 10GB the total amount
provided using individual VMs in [24]. Intuitively increasing VM memory should provide either
a performance improvement or no change of performance. 20 runs of an identical 100-model run
ensemble were repeated for the SC1-SC15 component deployments using 10GB VMs. Figure 5

15

shows performance changes resulting from increasing VM memory allocation from 4GB to
10GB for both the “m-bound” and “d-bound” applications.

For the “m-bound” application using 10GB VMs reduced average ensemble performance .727
seconds (-3.24%) versus using VMs with 4GB. SC11 provided had the best performance, 6.7%
faster than average component deployment performance for 10GB VM “m-bound” ensemble
tests. This was half a second faster than with 4GB VMs. SC1, total service combination,
performed the slowest, 8.9% slower than average, 3.1 seconds longer than with 4GB VMs. For
the “m-bound” application only component deployments which combined M and L on the same
VM experienced performance degradation. Both M and L used the Apache Tomcat web
application server, but L used a 32-bit version for hosting Codebeamer and required the ia32
Linux 32-bit compatibility libraries to run on a 64-bit VM. The performance degradations may
have resulted from virtualization of the ia32 library as 32-bit Linux can only natively address up
to 4GB ram.

The “d-bound” application using 10GB VMs performed on average 3.24 seconds (2.46%) faster
than when using 4GB VMs. Additional VM memory improved database query performance.
SC4 performed best at 12.5% faster or about 11.2 seconds faster. SC7, total service isolation,
performed the slowest at 12.6% slower than average equaling about 4.2 seconds longer than tests
with 4GB VMs.

Figure 5. 10 GB VM Performance Changes (seconds)

To verify that these results were not specific to repeated runs of an identical 100-model run
ensemble using the XEN hypervisor, we also tested increasing VM memory allocation using 20
different ensembles and the KVM hypervisor. Results were similar for both cases. The “m-
bound” model’s 15 component deployments performed on average 342 ms slower (-1.13%) with
10GB VMs and the “d-bound” model performed 3.24 seconds (2.46%) faster on average. Our
results demonstrate that increasing VM memory allocation may result in unexpected
performance changes in some cases exceeding +/-10%. For VM memory allocation,
depending on the application, more may not always be better.

16

5.5 XEN vs. KVM

To compare performance differences between the XEN and KVM hypervisors we ran test sets
using 20 different ensemble runs using 4GB VMs and the “m-bound” application. Tests were
repeated using both XEN and KVM hypervisors, random ensembles and the “d-bound” model.
On average KVM ensemble performance was ~29% slower than XEN for the “m-bound”
model, but ~1% faster for the “d-bound” model. The “d-bound” model was more CPU bound
enabling performance improvement compared with XEN. The “m-bound” model had a higher
proportion of I/O relative to CPU use and performed faster using XEN. “D-bound” ensemble
tests using KVM required on average 4.35 xs longer than the “m-bound” model, while XEN “d-
bound” runs were 5.7 xs longer than “m-bound”. The average performance difference between
the XEN and KVM hypervisors for running both the “m-bound” and “d-bound” models using 20
random ensemble tests is shown in figure 6.

Resource utilization data was collected for the “m-bound” model for all component deployments
(SC1-SC15) using 20 random 100-model run ensemble tests for the XEN and KVM hypervisors.
Resource utilization differences and correlations are summarized in table 9. Resource utilization
for XEN and KVM correlated for all statistics. On average KVM used 35% more CPU time than
XEN, but nearly an equal number of disk sector reads (98%), but performed far fewer disk sector
writes (50%). KVM exhibited 1.8% more network traffic (bytes sent/received) than XEN.
Increased CPU time for KVM may result from KVM’s full virtualization of devices where
devices are entirely emulated by software. XEN I/O uses paravirtual devices which offers more
direct device I/O.

Figure 6. XEN vs. KVM Performance Differences, 4 GB VM Different Ensembles

17

Table 9
KVM vs. XEN Resource Utilization - Randomized Ensembles

Parameter KVM Resource Utilization
(% of XEN)

R2

p

CPU time (sec) 135.2% 0.787769 .00001
Disk sector reads 97.91% 0.804115 5.96•10-6
Disk sector writes 50.48% 0.829572 2.38•10-6

Network bytes rec'd 101.77% 0.999872 1.09•10-26
Network bytes sent 101.85% 0.999874 9.61•10-27

We used a simple linear regression to compare XEN and KVM performance of component
deployments for the “m-bound” and “d-bound models. Deployments using 4GB VMs for the
“m-bound” model with random ensembles were shown to perform similarly (R²=0.749912,
df=13, p=.00003). Component deployment performance of XEN vs. KVM using the “d-bound”
model performance did not correlate. Given KVM’s improved “d-bound” performance relative
to XEN, this result was expected. Application performance using the KVM hypervisor appeared
to be more sensitive than XEN to disk I/O.

5.6 Service Isolation Overhead

To investigate overhead resulting from the use of separate VMs to host application components
the three fastest component deployments for the “m-bound” model were tested. Components
were deployed using the SC2, SC6, and SC11 configurations with and without using separate
VMs to host individual components.

Figure 7. Performance Overhead from Service Isolation (XEN left, KVM right)

60 runs using the same 100-model run ensemble, and 3 test sets of 20 different 100-model run
ensembles were completed for each configuration. The percentage performance change resulting
from service isolation is shown in Figure 7. For all but one configuration, service isolation
resulted in overhead which degraded performance compared to deployments where
multiple components were combined on VMs. The average overhead from service isolation
was ~1%. For tests using different ensembles the observed performance degradation for service
isolation deployments was 1.2%, .3%, and 2.4% for SC2-SI, SC6-SI and SC11-SI respectively.
Same ensemble test performance degradation was 1.1%, -.6%, and 1.4%. These results were

18

reproduced using the KVM hypervisor with an average observed performance degradation of
2.4%.

Although the performance overhead was not large, it is important to consider that using
additional VMs incurs higher hosting costs without performance benefits. The isolated nature of
our test design using isolated physical hardware, running no other applications, allows us to be
certain that observed overhead resulted entirely from VM-level service isolation. This overhead
is one of the tradeoffs for easier application tier-scalability with service isolation.

5.7 Predictive Model

Resource utilization data was collected for CPU time, disk sector reads/writes, and network bytes
sent/received as described in section 5.1. We observed resource utilization variation for each of
the deployments tested. Multiple linear regression (MLR) was used to build models to predict
component deployment performance using resource utilization data to support investigation of
RQ-4.

Multiple linear regression (MLR) is used to model the linear relationship between a dependent
variable and one or more independent variables [25]. The dependent variable was ensemble
execution time and the independent variables were VM resource utilization statistics including:
CPU time, disk sector reads/writes, network bytes sent/received, and the number of virtual
machines of the component deployment. The “R-squared” value, also known as the coefficient
of determination, explains the explanatory power of the entire model and its independent
variables as the proportion of variance accounted for. R-squared values were calculated for each
independent variable using single linear regression. Root mean squared deviation (RMSD) was
calculated for each variable. The RMSD expresses differences between the predicted and
observed values and serves to provide a measure of model accuracy. Ideally 95% of predictions
should be less than +/- 2 RMSD's from the actual value.

Table 10
Resource Utilization – Predictive Power

Parameter R2 RMSD
CPU time .7171 887.64

Disk sector reads .3714 1323.25
Disk sector writes .1441 1544.05

Network bytes recv'd. .0074 1662.76
Network bytes sent .0075 1662.68

Number of VMs .0444 1631.44

A MLR model was built using resource utilization variables from the “m-bound” model using
Xen 4GB VMs with 20 different ensemble tests. All of our resource utilization variables
together produced a model which accounted for 84% of the variance with a RMSD of only
~676 ms (R2=.8416, RMSD=664.17 ms). Table 10 shows individual R2 values for the resource
utilization statistics used in a simple linear regression model with ensemble execution time to
determine how much variance each explained. Additionally the average error (RMSD) is shown.
The most predictive parameters were CPU time which positively correlated with ensemble time
and explained over 70% of the variance (R2=.7171) and disk sector reads (R2=.3714) with a
negative correlation. Disk sector writes had a positive correlation with ensemble performance

19

(R2=.1441). The number of deployment VMs (R2=.0444) and network bytes received/sent were
not strong predictors of ensemble performance and explained very little variance.

Table 11
Deployment Performance Rank Predictions

Composition Predicted Rank Actual Rank Rank Error
SC1 12 15 -3
SC2 2 2 0
SC3 7 8 -1
SC4 6 9 -3
SC5 10 4 6
SC6 9 10 -1
SC7 4 5 -1
SC8 8 7 1
SC9 5 6 -1

SC10 3 3 0
SC11 1 1 0
SC12 15 12 3
SC13 14 14 0
SC14 13 13 0
SC15 11 11 0

We applied our MLR performance model to predict performance of component deployments.
Resource utilization data used to generate the model was reused to generate ensemble time
predictions. Average predicted ensemble execution times were calculated for each component
deployment (SC1-SC15) and rank predictions were calculated. Predicted vs. actual performance
ranks are shown in table 11. The mean absolute error (MAE) was 462 ms, and estimated ranks
were on average +/-1.33 units from the actual ranks. Eleven predicted ranks for component
compositions were off by 1 unit or less from their actual rank, with six exact predictions for SC2,
SC10, SC11, SC13, SC14, and SC15. The top three performing deployments were predicted
correctly in order. A second set of resource utilization data was collected for the “m-bound”
model using 4GB VMs and 20 random ensembles for SC1-SC15. This data was fed into our
MLR performance model and observed MAE was only 324ms. The average rank error was +/- 2
units. Seven predicted ranks were off by 1 unit or less from their actual rank, with three exact
predictions. The top fastest deployment was correctly predicted for the second dataset.

Building models to predict component deployment performance requires careful consideration of
resource utilization variables. This initial attempt using multiple linear regression was helpful to
identify which independent variables had the greatest impact on deployment performance.
Future work to improve performance prediction should investigate using additional resource
utilization statistics as independent variables to improve model accuracy. New variables
including CPU statistics, kernel scheduler statistics, and guest/host load averages should be
explored. The utility of neural networks, genetic algorithms, and/or support vector machines to
improve our model should be investigated extending related research [11, 27-31]. These
techniques can help improve performance predictions if resource utilization data is not normally
distributed.

6. Conclusions

(RQ-1) This research investigated the scope of performance implications which occur based on
how components of multi-tier applications are deployed across VMs on a private IaaS cloud. All

20

possible deployments were tested for two variants of the RUSLE2 soil erosion model, a 4-
component application. Up to a 14% and 25.7% performance variation was observed for the “m-
bound” and “d-bound” RUSLE2 models respectively. Significant resource utilization (CPU,
disk, network) variation was observed based on how application components were deployed
across VMs. Intuition was insufficient to determine the best performing deployments. Ad hoc
worst case scenario component placements significantly degraded application performance
demonstrating consequences for ignoring component composition. Component deployment
using total service isolation did not provide the fastest performance for our application.
Provisioning variation did not change fundamental performance of component deployments but
did produce overhead of ~2-3% when two or more VMs resided on the same physical host.

(RQ-2) Increasing VM memory allocation did not guarantee application performance
improvements. Increasing VM memory to improve performance appears useful only if memory
is the application’s performance bottleneck. The KVM hypervisor performed 29% slower than
XEN when application performance was bound by disk I/O but slightly faster ~1% when the
application was CPU bound. KVM resource utilization correlated with XEN but CPU time was
35% greater when KVM was used to perform the same work.

(RQ-3) Service isolation, the practice of using separate VMs to host individual application
components resulted in performance overhead up to 2.4%. Though overhead may be small, the
hosting costs for additional VMs should be balanced with the need to granularly scale application
components. Deploying an application using total service isolation will always result in the
highest possible hosting costs in terms of the # of VMs.

(RQ-4) Resource utilization statistics were helpful for building performance models to predict
performance of component deployments. Using just six resource utilization variables our
multiple linear regression model accounted for 84% of the variance in predicting performance of
component deployments and accurately predicted the top performing component deployments.

Providing VM/application level resource load balancing and using compact application
deployments holds promise for improving application performance while lowering application
hosting costs. To support load balancing and cloud infrastructure management, performance
models should be investigated further as they hold promise to help guide intelligent application
deployment and resource management for IaaS clouds.

References

[1] M. Rehman, M. Sakr, Initial findings for provisioning variation in cloud computing, Proc. of
the IEEE 2nd Intl. Conf. on Cloud Computing Technology and Science (CloudCom '10),
Indianapolis, IN, USA, Nov 30 – Dec 3, 2010, pp. 473-479.

[2] J. Schad, J. Dittrich, J. Quiane-Ruiz, Runtime measurements in the cloud: observing,
analyzing, and reducing variance, Proc. of the VLDB Endowment, vol. 3, no. 1-2, Sept.
2010, pp. 460-471.

[3] M. Zaharia, A. Konwinski, A. Joesph, R. Katz, I. Stoica, Improving MapReduce performance
in heterogeneous environments, Proc. 8th USENIX Conf. Operating systems design and
implementation (OSDI '08), San Diego, CA, USA, Dec 8-10, 2008, pp. 29-42.

[4] M. Vouk, Cloud Computing – Issues, research, and implementations, Proc. 30th Intl. Conf.
Information Technology Interfaces (ITI 2008), Cavtat, Croatia, June 23-26, 2008, pp. 31-40.

21

[5] F. Camargos, G. Girard, B. Ligneris, Virtualization of Linux servers, Proc. 2008 Linux
Symposium, Ottawa, Ontario, Canada, July 23-26, 2008, pp. 73-76.

[6] D. Armstrong, K. Djemame, Performance issues in clouds: An evaluation of virtual image
propagation and I/O paravirtualization, The Computer Journal, June 2011, vol. 54, iss. 6, pp.
836-849.

[7] D. Jayasinghe, S. Malkowski, Q. Wang, J. Li, P. Xiong, C. Pu, Variations in performance
and scalability when migrating n-tier applications to different clouds, Proc. 4th IEEE Conf on
Cloud Computing(Cloud ‘11), Washington D.C., USA, July 2011, pp.73-80.

[8] J. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos, G. Hamilton, M. McCabe,
J. Owens, Quantifying the performance isolation properties of virtualization systems, Proc.
ACM Workshop on Experimental Computer Science (ExpCS ’07), New York, NY, USA,
2007, Article 6.

[9] G. Somani, S. Chaudhary, Application performance isolation in virtualization, Proc. 2nd
IEEE Intl. Conf on Cloud Computing (Cloud 2009), Bangalore, Indian, Sept 2009, pp. 41-48.

[10] H. Raj, R. Nathuji, A. Singh, P. England, Resource Management for isolation enhanced
cloud services, Proc. ACM Cloud Comp. Security Wrkshp (CCSW ’09), Chicago, IL, USA,
Nov 2009, pp. 77-84.

[11] O. Niehörster, A. Krieger, J. Simon, A. Brinkmann, Autonomic resource management with
support vector machines, Proc. 12th IEEE/ACM Int. Conf. On Grid Computing (GRID
2011), Lyon, France, Sept 21-23, 2011, pp. 157-164.

[12] United States Department of Agriculture – Agricultural Research Service (USDA-ARS),
Revised Universal Soil Loss Equation Version 2 (RUSLE2),
http://www.ars.usda.gov/SP2UserFiles/Place/ 64080510/RUSLE/RUSLE2_Science_Doc.pdf

[13] L. Ahuja, J. Ascough II, and O. David, Developing natural resource modeling using the
object modeling system: Feasibility and challenges,” Advances in Geosciences, vol. 4, 2005,
pp. 29-36.

[14] O. David, J. Ascough II, G. Leavesley, L. Ahuja, Rethinking modeling framework design:
Object Modeling System 3.0, Proc. iEMSs 2010 Intl. Congress on Environmental Modeling
and Software, Ottawa, Canada, July 5-8, 2010, 8 p.

[15] WineHQ – Run Windows applications on Linux, BSD, Solaris, and Mac OS X,
http://www.winehq.org/

[16] Apache Tomcat – Welcome, 2011, http://tomcat.apache.org/
[17] PostGIS, 2011, http://postgis.refractions.net/
[18] PostgreSQL: The world's most advanced open source database, http://www.postgresql.org/
[19] nginx news, 2011, http://nginx.org/
[20] Welcome to CodeBeamer, 2011, https://codebeamer.com/ cb/user/
[21] HAProxy – The Reliable, High Performance TCP/HTTP Load Balancer,

http://haproxy.1wt.eu/
[22] D. Nurmi et al., The Eucalyptus open-source cloud-computing system, Proc. IEEE Intl.

Symposium on Cluster Computing and the Grid (CCGRID 2009), Shanghai, China, May 18-
21, 8p.

[23] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, A.
Warfield, Xen and the art of virtualization, Proc. 19th ACM Symposium on Operating
Systems Principles (SOSP '03), Bolton Landing, NY, USA, Oct 19-22, 2003, 14 p.

[24] W. Lloyd, S. Pallickara, O. David, J. Lyon, M. Arabi, K. Rojas, Migration of multi-tier
applications to infrastructure-as-a-service clouds: An investigation using kernel-based virtual

http://www.winehq.org/�
http://tomcat.apache.org/�
http://postgis.refractions.net/�
http://www.postgresql.org/�
http://nginx.org/�

22

machines, Proc. 12th IEEE/ACM Intl. Conf. On Grid Computing (GRID 2011), Lyon,
France, Sept 21-23, 2011, pp. 137-143.

[25] R.H. Myers, Classical and modern regression with applications, 2nd Edition, PWS-KENT
Publishing Company, Boston, MA, 1994.

[26] S. Govindan, J. Liu, A. Kansal, A. Sivasubramaniam, Cuanta: Quantifying effects of shared
on-chip resource interference for consolidated virtual machines, Proc. 2nd ACM Symposium
on Cloud Computing (SOCC 2011), Cascais, Portugal, Oct 26-28, 2011, 14p.

[27] G. Kousiouris, T. Cucinotta, T. Varvarigou, The effects of scheduling, workload type and
consolidation scenarios on virtual machine performance and their prediction through
optimized artificial neural networks, The Journal of Systems and Software, vol. 84, 2011,
pp. 1270-1291.

[28] N. Bonvin, T. Papaioannou, K. Aberer, Autonomic SLA-driven provisioning for cloud
applications, Proc. IEEE/ACM Int. Symposium on Cluster, Cloud, and Grid Computing
(CCGRID 2011), Newport Beach, CA, USA, 2011, pp. 434-443.

[29] C. Xu, J. Rao, X. Bu, URL: A unified reinforcement learning approach for autonomic cloud
management, Journal of Parallel and Distributed Computing, vol. 72, 2012, pp. 95-105.

[30] P. Lama, X. Zhou, Efficient server provisioning with control for end-to-end response time
guarantee on multitier clusters, IEEE Transactions on Parallel and Distributed Systems, vol.
23, No. 1, Jan 2012, pp. 78-86.

[31] P. Lama, X. Zhou, Autonomic provisioning with self-adaptive neural fuzzy control for end-
to-end delay guarantee, Proc. 18th IEEE/ACM Int. Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS 2010), Miami Beach,
FL, USA, August 17-19, 2010, pp. 151-160.

[32] B. Sharma, V. Chudnovsky, J. Hellerstein, R. Rifaat, C. Das, Modeling and synthesizing task
placement constraints in Google compute clusters, Proc. 2nd ACM Symposium on Cloud
Computing (SOCC 2011), Cascais, Portugal, Oct 26-28, 2011, 14p.

[33] A. Gulati, G. Shanmuganathan, I. Ahmad, C. Waldspurger, M. Uysal, Pesto: Online storage
performance management in virtualized datacenters, Proc. 2nd ACM Symposium on Cloud
Computing (SOCC 2011), Cascais, Portugal, Oct 26-28, 2011, 14p.

[34] H. Kang, Y. Chen, J. Wong, J. Wu, Enhancement of Xen’s scheduler for MapReduce
workloads, Proc. 20th Intl. ACM Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’11), San Jose, CA, June 8-11, 2011, pp. 251-262.

[35] T. Voith, K. Oberle, M. Stein, Quality of service provisioning for distributed data center
inter-connectivity enabled by network virtualization, Future Gen. Comp. Systems, vol.28,
2012, pp.554-562.

[36] J. Varia, Architecting for the Cloud: Best Practices. Amazon Web Services White Paper,
2010, https://jineshvaria.s3.amazonaws.com/ public/cloudbestpractices-jvaria.pdf

[37] Schwarzkopf, M., Murray, D., Hand, S., The seven deadly sins of cloud computing research,
Proc. 4th USENIX Conf. on Hot Topics in Cloud Computing (HotCloud ’12), Boston, MA,
June 12-13, 2012, 5p.

23

Table 1. RUSLE2 Application Components

List of Tables

Table 2. Tested Component Deployments

Table 3. Service Isolation Tests

Table 4. Hypervisor Performance

Table 5. “M-bound Deployment Variation

Table 6. “D-bound” Deployment Variation

Table 7. Performance Differences – Randomized Ensembles

Table 8. Provisioning Variation VM Tests

Table 9. KVM vs. XEN Resource Utilization – Randomized Ensembles

Table 10. Resource Utilization – Predictive Power

Table 11. Deployment Performance Rank Predictions

24

Figure 1. Resource Utilization Variation of Component Deployments

List of Figures

Figure 2. 4GB “m-bound” regression plot (XEN)

Figure 3. Performance Comparison – Randomized Ensembles (XEN)

Figure 4. Provisioning Variation Performance Differences vs. Physical Isolation (KVM)

Figure 5. 10 GB VM Performance Changes (seconds)

Figure 6. XEN vs. KVM Performance Differences, 4 GB VM Different Ensembles

Figure 7. Performance Overhead from Service Isolation (XEN left, KVM right)

25

cpu time disk sector reads disk sector writes network bytes rcvd network bytes sent
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

sc15
sc14
sc13
sc12
sc11
sc10
sc9
sc8
sc7
sc6
sc5
sc4
sc3
sc2
sc1

Resource Type

R
e

so
u

rc
e

 f
o

o
tp

ri
n

t

Figure 1. Resource Utilization Variation of Component Deployments

26

Figure 2. 4GB “m-bound” regression plot (XEN)

27

Figure 3. Performance Comparison – Randomized Ensembles (XEN)

28

Figure 4. Provisioning Variation Performance Differences vs. Physical Isolation (KVM)

29

Figure 5. 10 GB VM Performance Changes (seconds)

30

Figure 6. XEN vs. KVM Performance Differences, 4 GB VM Different Ensembles

31

Figure 7. Performance Overhead from Service Isolation (XEN left, KVM right)

	5.2 Component Deployment Performance
	5.4 Increasing VM memory
	5.5 XEN vs. KVM
	5.6 Service Isolation Overhead
	5.7 Predictive Model
	References

