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ABSTRACT 

Hosting a multi-tier application using an Infrastructure-as-a-Service (IaaS) cloud requires 
deploying components of the application stack across virtual machines (VMs) to provide the 
application’s infrastructure while considering factors such as scalability, fault tolerance, 
performance and deployment costs (# of VMs).  This paper presents results from an empirical 
study which investigates implications for application performance and resource requirements 
(CPU, disk and network) resulting from how multi-tier applications are deployed to IaaS clouds.  
We investigate the implications of: (1) component placement across VMs, (2) VM memory size, 
(3) VM hypervisor type (KVM vs. XEN), and (4) VM placement across physical hosts 
(provisioning variation).  All possible deployment configurations for two multi-tier application 
variants are tested.  One application variant was computationally bound by the application 
middleware, the other bound by geospatial queries.  The best performing deployments required 
as few as 2 VMs, half the number required for VM-level service isolation, demonstrating 
potential cost savings when components can be consolidated.  Resource utilization (CPU time, 
disk I/O, and network I/O) varied with component deployment location, VM memory allocation, 
and the hypervisor used (XEN or KVM) demonstrating how application deployment decisions 
impact required resources.  Isolating application components using separate VMs produced 
performance overhead of ~1-2%.  Provisioning variation of VMs across physical hosts produced 
overhead up to 3%.  Relationships between resource utilization and performance were assessed 
using multiple linear regression to develop a model to predict application deployment 
performance.  Our model explained over 84% of the variance and predicted application 
performance with mean absolute error of only ~.3 seconds with CPU time, disk sector reads, and 
disk sector writes serving as the most powerful predictors of application performance.   
    

1.  Introduction 

Migration of multi-tier client/server applications to Infrastructure-as-a-Service (IaaS) clouds 
involves deploying components of application infrastructure to one or more virtual machine 
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(VM) images.  Images are used to instantiate VMs to provide the application’s cloud-based 
infrastructure.  Application components consist of infrastructure elements such as 
web/application servers, proxy servers, NO SQL databases, distributed caches, relational 
databases, file servers and others.   
 

Service isolation refers to the total separation of application components for hosting using 
separate VMs.  Application VMs are hosted by one or more physical machines (PMs).  Service 
isolation provides application components with their own explicit sandboxes to operate in, each 
having independent operating system instances.  Hardware virtualization enables service 
isolation using separate VMs to host each application component instance.  Before virtualization, 
service isolation using PMs required significant server capacity.  Service isolation has been 
suggested as a best practice for deploying multi-tier applications across VMs.  A 2010 Amazon 
Web Services white paper suggests applications be deployed using service isolation.  The white 
paper instructs the user to “bundle the logical construct of a component into an Amazon Machine 
Image so that it can be deployed (instantiated) more often” [36].  Service isolation, a 1:1 
mapping of application component(s) to VM images is implied.  Service isolation enables 
scalability and supports fault tolerance at the component level.  Isolating components may reduce 
inter-component interference allowing them to run more efficiently.  Conversely service isolation 
adds an abstraction layer above the physical hardware which introduces overhead potentially 
degrading performance.  Deploying all application components using separate VMs may increase 
network traffic, particularly when VMs are hosted by separate physical machines.  Consolidating 
components together on a single VM guarantees they will not be physically separated when 
deployed potentially improving performance by reducing network traffic.   
 

Provisioning variation results from the non-determinism of where application VMs are 
physically hosted in the cloud, often resulting in performance variability [1-3].  IaaS cloud 
providers often do not allow users to control where VMs are physically hosted causing this 
provisioning variation.  Clouds consisting of PMs with heterogeneous hardware and hosting a 
variable number of VMs complicates benchmarking application performance [37]. 
 

Service Isolation provides isolation at the guest operating system level as VMs share physical 
hardware resources and compete for CPU, disk, and network bandwidth.  Quantifying VM 
interference and investigation of approaches to multiplex physical host resources are active areas 
of research [8-10, 26, 33-35].  Current virtualization technology only guarantees VM memory 
isolation.  VMs reserve a fixed quantity of memory for exclusive use which is not released until 
VM termination.  Processor, network I/O, and disk I/O resources are shared through coordination 
by the virtualization hypervisor.  Popular virtualization hypervisors include kernel-based VMs 
(KVM), Xen, and the VMware ESX hypervisor.  Hypervisors vary with respect to methods used 
to multiplex resources.  Some allow pinning VMs to specific CPU cores to guarantee resource 
availability though CPU caches are still shared [26].  Developing mechanisms which guarantee 
fixed quantities of network and disk throughput for VM guests is an open area for research.   
 

This research investigates performance of multi-tier application component deployments to IaaS 
clouds to better understand implications of component distribution across VMs, VM placement 
across physical hosts and VM configuration.  We seek to better understand factors that impact 
performance moving towards building performance models to support intelligent methodologies 
that better load balance resources to improve application performance.  We investigate hosting 
two variants of a non-stochastic multi-tier application with stable resource utilization 
characteristics.  Resource utilization statistics that we capture from host VMs are then used to 
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investigate performance implications relative to resource use and contention. The following 
research questions are investigated: 
 

RQ-1) How does resource utilization and application performance vary relative to how 
application components are deployed?  How does provisioning variation, the 
placement of VMs across physical hosts, impact performance? 

RQ-2) Does increasing VM memory allocation change performance?  Does the virtual 
machine hypervisor (XEN vs. KVM) affect performance? 

RQ-3) How much overhead results from VM service isolation?  
RQ-4) Can VM resource utilization data be used to build models to predict application 

performance of component deployments? 
 

2. Related Work 
 
Rouk identified the challenge of finding ideal service compositions for creating virtual machine 
images to deploy applications in cloud environments in [4].  Schad et al. [2] demonstrated the 
unpredictability of Amazon EC2 VM performance caused by contention for physical machine 
resources and provisioning variation of VMs.  Rehman et al. tested the effects of resource 
contention on Hadoop-based MapReduce performance by using IaaS-based cloud VMs to host 
worker nodes [1].  They tested provisioning variation of three different deployment schemes of 
VM-hosted Hadoop worker nodes and observed performance degradation when too many worker 
nodes were physically co-located.  Their work investigated VM deployments not for multi-tier 
application(s), but for MapReduce jobs where all VMs were homogeneous in nature.  Multi-tier 
applications with multiple unique components present a more complex challenge for resource 
provisioning than studied by Rehman et al.  Zaharia et al. observed that Hadoop's native 
scheduler caused severe performance degradation by ignoring resource contention among 
Hadoop nodes hosted by Amazon EC2 VMs [3].  They proposed the Longest Approximate Time 
to End (LATE) scheduling algorithm which better addresses performance variations of 
heterogeneous Amazon EC2 VMs.  Their work did not consider hosting of heterogeneous 
components.   
 

Camargos et al. investigated virtualization hypervisor performance for virtualizing Linux servers 
with several performance benchmarks for CPU, file and network I/O [5].  Xen, KVM, 
VirtualBox, and two container based virtualization approaches OpenVZ and Linux V-Server 
were tested.  Different parts of the system were targeted using kernel compilation, file transfers, 
and file compression benchmarks.  Armstrong and Djemame investigated performance of VM 
launch time using Nimbus and OpenNebula, two IaaS cloud infrastructure managers [6].  
Additionally they benchmarked Xen and KVM paravirtual I/O performance.  Jayasinghe et al. 
investigated performance of the RUBBoS n-tier e-commerce system deployed to three different 
IaaS clouds: Amazon EC2, Emulab, and Open Cirrus [7].  They tested horizontal scaling, 
changing the number of VMs for each component, and vertical scaling, varying the resource 
allocations of VMs.  They did not investigate consolidating components on VMs but used 
separate VMs for full service isolation.  Matthews et al. developed a VM isolation benchmark to 
quantify the isolation level of co-located VMs running several conflicting tasks [8].  They tested 
VMWare, Xen, and OpenVZ hypervisors to quantify isolation.  Somani and Chaudhary 
benchmarked Xen VM performance with co-located VMs running CPU, disk, or network 
intensive tasks on a single physical host [9].  They benchmarked the Simple Earliest Deadline 
First (SEDF) I/O credit scheduler vs. the default Xen credit scheduler and investigated physical 
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resource contention for running different co-located tasks, similar to resource contention of co-
hosting different components of multi-tier applications.  Raj et al. improved hardware level 
cache management of the Hyper-V hypervisor introducing VM core assignment and cache 
portioning to reduce inter-VM conflicts from sharing the same hardware caches.  These 
improvements were shown to improve VM isolation [10].   
 

Niehörster et al. developed an autonomic system using support vector machines (SVM) to meet 
predetermined quality-of-service (QoS) goals.  Service specific agents were used to provide 
horizontal and vertical scaling of virtualization resources hosted by an IaaS Eucalyptus cloud 
[11].  Their agents scaled # of VMs, memory, and virtual core allocations.  Support vector 
machines determined if resource requirements were adequate for the QoS requirement.  They 
tested their approach by dynamically scaling the number of modeling engines for GROMACS, a 
molecular dynamics simulation and also for an Apache web application service to meet QoS 
goals.  Sharma et al. investigated implications of physical placement of non-parallel tasks and 
their resource requirements to build performance model(s) to improve task scheduling and 
distribution on compute clusters [32].  Similar to Sharma’s models to improve task placement, 
RQ-4 investigates building performance models which could be used guide component 
deployments for multi-tier applications. 
 

Previous studies have investigated a variety of related issues but none have investigated the 
relationship between application performance and resource utilization (CPU, disk, network) 
resulting form how components of multi-tier applications are deployed across VMs (isolation vs. 
consolidation). 
 
3. Paper Contributions 
 
This paper presents a thorough and detailed investigation on how the deployment of multi-tier 
application components impacts application performance and resource consumption (CPU, disk, 
network).  This work extends prior research on provisioning variation and heterogeneity of 
cloud-based resources.  Relationships between component and VM placement, resource 
utilization and application performance are investigated.  Additionally we investigate 
performance and resource utilization changes resulting from: (1) the use of different hypervisors 
(XEN vs. KVM), and (2) increasing VM memory allocation.  Overhead from using separate 
VMs to host application components is also measured.  Relationships between resource 
utilization and performance are used to develop a multiple linear regression model to predict 
application performance.  Our approach for collecting application resource utilization data to 
construct performance model(s) can be generalized for any multi-tier application.   
 
4.  Experimental Design 
 
To support investigation of our research questions we studied the migration of a widely used 
Windows desktop environmental modeling application deployed to operate as a multi-tier web 
services application. Section 4.1 describes the application and our test harness.  Section 4.2 
describes components of the multi-tier application.  Section 4.3 details the configuration of tested 
component deployments.  Section 4.4 concludes by describing our private IaaS cloud and 
hardware configuration used for this investigation. 
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4.1  Test Application 
 
For our investigation we utilized two variants of the RUSLE2 (Revised Universal Soil Loss 
Equation – Version 2) soil erosion model [12].  RUSLE2 contains both empirical and process-
based science that predicts rill and interrill soil erosion by rainfall and runoff.  RUSLE2 was 
developed to guide conservation planning, inventory erosion rates, and estimate sediment 
delivery.  RUSLE2 is the US Department of Agriculture Natural Resources Conservation Service 
(USDA-NRCS) agency standard model for sheet and rill erosion modeling used by over 3,000 
field offices across the United States.  RUSLE2 was originally developed as a Windows-based 
Microsoft Visual C++ desktop application and has been extended to provide soil erosion 
modeling as a REST-based webservice hosted by Apache Tomcat [16]. JSON was the transport 
protocol for data objects.  To facilitate functioning as a web service a command line console was 
added.   RUSLE2 consists of four tiers including an application server, a geospatial relational 
database, a file server, and a logging server.  RUSLE2 is a good multi-component application for 
our investigation because with four components and 15 possible deployments it is both complex 
enough to be interesting, yet simple enough that brute force testing is reasonable to accomplish.  
RUSLE2’s architecture is a surrogate for traditional client/server architectures having both an 
application and relational database.  The Object Modeling System 3.0 (OMS3) framework [13-
14] using WINE [15] provided middleware to facilitate interacting with RUSLE2’s command 
line console.  OMS3, developed by the USDA–ARS in cooperation with Colorado State 
University, supports component-oriented simulation model development in Java, C/C++ and 
FORTRAN.  
 

The RUSLE2 web service supports ensemble runs which are groups of individual model requests 
bundled together.  To invoke the RUSLE2 web service a client sends a JSON object with 
parameters describing land management practices, slope length, steepness, latitude, and 
longitude.  Model results are returned as JSON objects.  Ensemble runs are processed by 
dividing sets of modeling requests into individual requests which are resent to the web service, 
similar to the “map” function of MapReduce.  These requests are distributed to worker nodes 
using a round robin proxy server.  Results from individual runs of the ensemble are “reduced” 
into a single JSON response object.  A test generation program created randomized ensemble 
tests.  Latitude and longitude coordinates were randomly selected within a bounding box from 
the state of Tennessee.  Slope length, steepness, and land management practice parameters were 
randomized.  Random selection of latitude and longitude coordinates led to variable geospatial 
query execution times because the polygons intersected with varied in complexity.  To verify our 
test generation technique produced test sets with variable complexity we completed 2 runs of 20 
randomly generated 100-model run ensemble tests were run using the 15 RUSLE2 component 
deployments and average execution times were calculated.  Execution speed (slow/medium/fast) 
of ensemble tests was preserved across subsequent runs indicating that individual ensembles 
exhibited a complexity-like characteristic (R²=.914, df=18, p=5•10-11). 
 

Our investigation utilized two variants of RUSLE2 referred to as “d-bound” for the database 
bound variant and “m-bound” for the model bound variant, names based on the component 
dominating execution time.  These application variants represent surrogates for two potentially 
common scenarios in practice: an application bound by the database tier, and an application 
bound by the middleware (model) tier.  For the “d-bound” RUSLE2 two primary geospatial 
queries were modified to perform a join on a nested query.  The “m-bound” variant was 
unmodified.  The “d-bound” application had a different resource utilization profile than the “m-
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bound” RUSLE2.  On average the “d-bound” application required ~2.45x more CPU time than 
the “m-bound” model.   
 
4.2  Application Services 
 

Table 1 

RUSLE2 Application Components 
Component Description  

M Model Apache Tomcat 6.0.20, Wine 1.0.1, RUSLE2, Object 
Modeling System (OMS 3.0) 

D Database 

Postgresql-8.4, PostGIS 1.4.0-2 
Geospatial database consists of soil data (1.7 million 
shapes, 167 million points), management data (98 
shapes, 489k points), and climate data (31k shapes, 3 
million points), totaling 4.6 GB for the state of TN. 

F File server 
nginx 0.7.62  
Serves XML files which parameterize the RUSLE2 
model.  57,185 XML files consisting of 305MB. 

L Logger 

Codebeamer 5.5 w/ Derby DB, Tomcat (32-bit) 
Custom RESTful JSON-based logging wrapper web 
service.  IA-32libs support operation in 64-bit 
environment. 

 

Table 1 describes the application components of RUSLE2's application stack. The M component 
provides model computation and web services using Apache Tomcat.  The D component 
implements the geospatial database which resolves latitude and longitude coordinates to assist in 
providing climate, soil, and management data for RUSLE2 model runs.  Postgresql with PostGIS 
extensions were used to support geospatial functionality [17-18].  The file server F component 
provides static XML files to RUSLE2 to parameterize model runs.  NGINX [19], a lightweight 
high performance web server hosted over 57,000 static XML files on average ~5KB each.  The 
logging L component provided historical tracking of modeling activity.  The Codebeamer 
tracking facility which provides an extensive customizable GUI and reporting facility was used 
to log model activity [20].  A simple JAX-RS RESTful JSON-based web service decoupled 
logging functions from RUSLE2 by providing a logging queue to prevent delays from interfering 
with model execution.  Codebeamer was hosted by the Apache Tomcat web application server 
and used the Derby file-based relational database.  Codebeamer, a 32-bit web application, 
required the Linux 32-bit compatibility libraries (ia32-libs) to run on 64-bit VMs.  A physical 
server running the HAProxy load balancer provided a proxy service to redirect modeling 
requests to the VM hosting the modeling engine.  HAProxy is a dynamically configurable fast 
load balancer that supports proxying both TCP and HTTP socket-based network traffic [21].   
 
4.3  Service Configurations 
 
RUSLE2’s infrastructure components can be deployed 15 possible ways using 1-4 VMs.  Table 2 
shows the tested service configurations labeled as SC1-SC15.  To create the deployments for 
testing, a composite VM image with all (4) application components installed was used.  An 
automated test script enabled/disabled application components as needed to achieve the 
configurations.  This method allowed automatic configuration of all component deployments 
using a single VM image.  This approach required that the composite disk image was large 
enough to host all components, and that VMs had installed but non-running components. 
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For testing SC1-SC15, VMs were deployed with physical isolation.  Each VM was hosted by its 
own exclusive physical host.  This simplified the experimental setup and provided a controlled 
environment using homogeneous physical host machines to support experimentation without 
interference from external non-application VMs.  For provisioning variation testing (RQ-1) and 
service isolation testing (RQ-3) physical machines hosted multiple VMs as needed.  For all the 
tests VMs had 8 virtual CPUs, and 10GB of disk space regardless of the number of components 
hosted.  VMs were configured with either 4GB or 10GB memory.    
 

Table 3 describes component deployments used to benchmark service isolation overhead (RQ-3).  
Separate VMs are delineated using brackets.  These tests measured performance overhead 
resulting from the use of separate VMs to isolate application components.  Service isolation 
overhead was measured for the three fastest component deployments: SC2, SC6, and SC11. 
 

Table 2 
Tested Component Deployments 

 VM1 VM2 VM3 VM4 
SC1 MDFL    

SC2 MDF L   

SC3 MD FL   
SC4 MD F L  

SC5 M DFL   

SC6 M DF L  

SC7 M D F L 

SC8 M D FL  

SC9 M DL F  

SC10 MF DL   

SC11 MF D L  

SC12 ML DF   

SC13 ML D F  

SC14 MDL F   

SC15 MLF D   

 
Table 3 

Service Isolation Tests 

NC NODE 1 NODE 2 NODE 3 
SC2-SI [M] [D] [F] [L]  

SC2 [M D F] [L]  
SC6-SI [M] [D F] [L] 

SC6 [M] [D] [F] [L] 
SC11-SI [M] [F] [D] [L] 

SC11 [M F] [D] [L] 

 
4.4  Testing Setup 
 
A Eucalyptus 2.0 IaaS private cloud [22] was built and hosted by Colorado State University 
consisting of 9 SUN X6270 blade servers sharing a private 1 Giga-bit VLAN.  Servers had dual 
Intel Xeon X5560-quad core 2.8 GHz CPUs, 24GB ram, and two 15000rpm HDDs of 145GB 
and 465GB capacity respectively.  The host operating system was CentOS 5.6 Linux (2.6.18-
274) 64-bit server for the Xen hypervisor [23] and Ubuntu Linux 10.10 64-bit server (2.6.35-22) 
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for the KVM hypervisor.  VM guests ran Ubuntu Linux (2.6.31-22) 64-bit server 9.10.  Eight 
servers were configured as Eucalyptus node-controllers, and one server was configured as the 
Eucalyptus cloud-controller, cluster-controller, walrus server, and storage-controller.  Eucalyptus 
managed mode networking using a managed Ethernet switch was used to isolate VMs onto their 
own private VLANs.   
 

Available versions of the Xen and KVM hypervisors were tested to establish which provided the 
fastest performance using SC1 from Table 2.  Ten trials of an identical 100-model run ensemble 
test were executed using the “m-bound” variant of the RUSLE2 application and average 
ensemble execution times are shown in Table 4.  Xen 3.4.3 hvm represents the Xen hypervisor 
running in full virtualization mode using CPU virtualization extensions similar to the KVM 
hypervisor.  Xen 3.4.3 using paravirtualization was shown to provide the best performance and 
was used for the majority of experimental tests.  Our application-based benchmarks of XEN and 
KVM reflect similar results from previous investigations [5-6]. 
 

Table 4 
Hypervisor Performance 

Hypervisor 

 

 

 

Avg. Time (sec) Performance 
Physical server 15.65 100% 

Xen 3.1 25.39 162.24% 
Xen 3.4.3 23.35 149.20% 
Xen 4.0.1 26.2 167.41% 
Xen 4.1.1 27.04 172.78% 

Xen 3.4.3 hvm 32.1 205.11% 
KVM disk virtio 31.86 203.58% 
KVM no virtio 32.39 206.96% 
KVM net virtio 35.36 225.94% 

 
The Linux virtual memory drop_caches function was used to clear all caches, dentries and inodes 
before each ensemble test to negate training effects from repeating identical ensemble tests.  This 
cache-flushing technique was verified by observing CPU, file I/O, and network I/O utilization 
for the automated tests with and without cache clearing.  When caches were not cleared, total 
disk sector reads decreased after the system was initially exposed to the same ensemble test.  
When caches were force-cleared for each ensemble run, the system reread data.  As the test 
harness was exercised we observed that Codebeamer’s Derby database grew large resulting in 
performance degradations.  To eliminate decreased performance from log file and database 
growth our test script deleted log files and removed and reinstalled Codebeamer after each 
ensemble run.  These steps prevented out of disk space errors and allowed uninterrupted testing 
without intervention.  
 

VM resource utilization statistics were captured using a profiling script to capture CPU time, 
disk sector reads and writes (disk sector=512 bytes), and network bytes sent/received.  To 
determine resource utilization of component deployments from all VMs hosting the application 
were totaled.   
 
5.  Experimental Results 
 
To investigate our research questions we completed nearly 10,000 ensemble tests totaling 
~1,000,000 individual model runs.  Tests were conducted using both the “m-bound” and “d-
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bound” RUSLE2 model variants.  VMs were hosted using either the XEN or KVM hypervisor 
and were configured with either 4GB or 10GB memory, 8 virtual cores, and 10GB disk space.   
15 component placements across VMs were tested, and these VMs were provisioned using 
physical hosts 45 different ways.  Test sets executed 20 ensembles of 100 model runs each to 
benchmark performance and resource utilization of various configurations.  All ensembles had 
100 randomly generated model runs.  Some test sets repeated the same ensemble test 20 times, 
while others used a set of 20 different ensemble tests for a total of 2,000 randomly generated 
model runs per test set.  Results for our investigation of RQ-1 are described in sections 5.1, 5.2, 
and 5.3.  Resource utilization characteristics of the component deployments are described in 
section 5.1 followed by performance results of the deployments in section 5.2.  Section 5.3 
reports on performance effects from provisioning variation, the variability resulting from where 
application VMs are physically hosted.  Section 5.4 describes how application performance 
changed when VM memory was increased from 4GB to 10GB, and Section 5.5 reports on the 
performance differences of the XEN and KVM hypervisors (RQ-2).  Section 5.6 presents results 
from our experiment measuring service isolation overhead (RQ-3).  Section 5.7 concludes by 
presenting our multiple linear regression based performance model which predicts performance 
of component deployments based on resource utilization statistics (RQ-4). 
 
5.1  Component Deployment Resource Utilization 
 
Resource utilization statistics were captured for all component deployments to investigate how 
they varied across all possible configurations.  To validate that component deployments 
exhibited consistent resource utilization behavior, linear regression was used to compare two 
separate sets of runs consisting of 20 different 100-model run ensembles using the “m-bound” 
model with 4GB XEN VMs.  The coefficient of determination R2 was calculated to determine 
the proportion of variance accounted for when regressing together the two datasets.  Higher 
values indicate similarity in the datasets.  Comparing R2 resource utilization for CPU time 
(R²=0.937904, df=298), disk sector reads (R²=0.96413, df=298), and network bytes 
received/sent (R²=0.99999, df=298) for repeated tests appeared very similar.  Only disk sector 
writes (R²=0.273696, df=298) was inconsistent.  Network utilization appeared similar for both 
the “m-bound” and “d-bound” model variants as they communicated the same information.  For 
the “d-bound” model D performed many more queries but this additional computation was 
independent of the other components M F L. 
 

Table 5 
“M-bound” Deployment Variation 

Parameter M-bound Deployment 
Difference 

 Avg. ensemble (sec) 23.4 13.7% (3.2 sec) 
Avg. CPU time (sec) 11.7 6.5% 

Avg. disk sector reads 57,675 14.8% 
Avg. disk sector writes 286,297 21.8% 

Avg. network bytes rec'd 9,019,414 144.9% 
Avg. network bytes sent 9,037,774 143.7% 

 
 

Application performance and resource utilization varied based on the deployment configuration 
of application components.   Comparing resource utilization among deployments for the “m-
bound” model network bytes sent/received varied by ~144%, disk sector writes by ~22%, disk 
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sector reads by ~15% and CPU time by ~6.5% as shown in table 5.  Comparing the fastest and 
slowest deployments the performance variation was ~3.2 seconds nearly 14% of the average 
ensemble execution time for all deployments.  Resource utilization differences among 
deployments of the “d-bound” model was greater than “m-bound” with ~820% for disk sector 
reads, ~145% for network bytes sent/received, 111% for disk sector writes but only ~5.5% for 
CPU time as shown in Table 6.  “D-bound” model performance comparing the fastest versus 
slowest deployments varied by 25.7% (>34 seconds). 
 

Table 6 
“D-bound” Deployment Variation 

 

Parameter D-bound Deployment 
Difference 

 Avg. ensemble (sec) 133.4 25.7% (34.3 sec) 
Avg. CPU time (sec) 27.8 5.5% 

Avg. disk sector reads 2,836,144 819.6% 
Avg. disk sector writes 246,364 111.1% 

Avg. network bytes rec'd 9,269,763 145.0% 
Avg. network bytes sent 9,280,216 143.9% 

 
Comparing both applications hosted by 4GB XEN VMs a ~138% increase in CPU time was 
observed for the “d-bound” model.  Network utilization increased ~3% and disk sector reads for 
the “d-bound” model where the M and D components were co-located increased 24,000% vs. the 
“m-bound” model, but decreased 87% for deployments where M and D were not co-located.  On 
average the XEN “d-bound” model ensemble execution times were 5.7x “m-bound”, averaging 
133.4 seconds versus 23.4.  Network utilization likely increased for the “d-bound” model due to 
the longer duration of ensemble runs. 
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Figure 1.  Resource Utilization Variation of Component Deployments 
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Figure 1 shows resource utilization variation for component deployments of the “m-bound” 
model.  Resource utilization statistics were totaled from all VMs comprising individual 
component deployments.  The graph shows the absolute value of the deviation from average 
resource utilization for the component deployments (SC1 – SC15).  The graph does not express 
positive/negative deviation from average but the magnitude of deviation.  Larger boxes indicate a 
greater deviation from average resource utilization and smaller boxes indicate performance close 
to the average.  The graph visually depicts the variance of resource utilization for our 15 
component deployments. 

 

 

 
Figure 2.  4GB “m-bound” regression plot (XEN) 

 
5.2  Component Deployment Performance 

 
To verify that component deployments performed consistently over time and to verify that we 
were not simply observing random behavior, two test sets consisting of 20 runs of the same 100-
model run ensemble test were performed using all component deployments.  The regression plot 
in Figure 2 compares the behavior of the two repeated test sets.  Linear regression confirms the 
consistency of component deployment performance across subsequent test sets (R²=0.949674, 
df=13, p=8.09•10-10).  The three ellipses in the graph identify three different performance groups 
from left to right: fast, medium and slow.  Performance consistency of "d-bound" tests was 
verified using the same technique.  The consistency was not as strong due to higher variance of 
"d-bound" model execution time but was statistically significant (R²=0.81501, df=13, 
p=4.08•10-6). 
 

To simulate a production modeling web service 20 randomized 100-model run ensembles were 
generated (2,000 unique requests) and used to benchmark each of the 15 component 
deployments.  Figure 3 shows the performance comparison of the “m-bound” vs. “d-bound” 
model using the 20 different ensemble tests.  Performance differences from average and overall 
rankings are shown in table 7.   
 



12 

 

 

Figure 3.  Performance Comparison – Randomized Ensembles (XEN) 

Table 7 
Performance Differences – Randomized Ensembles 

 
composition m-bound rank d-bound rank 

SC1 7.59% 14 4.46% 9 
SC2 -6.06% 1 -13.35% 1 
SC3 -0.80% 10 -12.64% 3 
SC4 -3.74% 6 -12.81% 2 
SC5 -1.13% 9 -2.64% 8 
SC6 -5.50% 2 -5.40% 4 
SC7 -4.38% 4 7.98% 12 
SC8 -2.21% 8 10.44% 14 
SC9 -2.92% 7 -3.16% 6 

SC10 -4.21% 5 -2.84% 7 
SC11 -5.20% 3 7.72% 11 
SC12 6.74% 11 -4.98% 5 
SC13 7.63% 15 8.57% 13 
SC14 6.97% 12 6.28% 10 
SC15 7.22% 13 12.36% 15 

 
 

We observed performance variation of nearly ~14% for the “m-bound” model and ~26% 
for the “d-bound” model comparing best-case vs. worse-case deployments.  Service 
compositions for the “m-bound” application with random ensembles can be grouped into three 
categories of performance fast {SC2, SC4, SC6, SC7, SC9, SC10, SC11}, medium {SC3, SC5, 
SC8}, and slow {SC1, SC12, SC13, SC14, SC15}.  Compositions with M and L components co-
located performed slower in all cases averaging 7.25% slower, about 1.7 seconds.  When 
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compositions had M and L co-located CPU time increased 14.6%, disk sector writes 18.4%, and 
network data sent/received about 3% versus compositions where M and L were separate.   
 

Service isolation (SC7) did not provide the best performance for either model.  SC7 was ranked 
4th fastest for the “m-bound” model and 12th for the “d-bound” model.  The top three 
performing deployments for both model variants required only two or three VMs.  Prior to 
testing the authors posited that isolating the application server (SC5), total service isolation 
(SC7), and isolating the geospatial database isolation (SC15) could be the fastest deployments.  
None of these deployments were top performers demonstrating our intuition was insufficient.  
Testing was required to determine the fastest component placements.  We observed up to ~26% 
performance variation comparing component deployments while making no application changes 
only deployment changes.  This variation illustrates the possible consequences for ad hoc 
component placement. 
 

Table 8 
Provisioning Variation VM Tests 

 PM 1 PM 2  PM 1 PM 2 
SC2A [MDF] [L]  SC9B [M] [DL] [F]  
SC3A [MD] [FL]  SC9C [M] [DL] [F] 
SC4A [MD] [F] [L] SC9D [M] [F] [DL] 
SC4B [MD] [F] [L]  SC10A [MF] [DL]  
SC4C [MD] [F] [L] SC11A [MF] [D] [L] 
SC4D [MD] [L] [F] SC11B [MF] [D] [L]  
SC5A [M] [DFL]  SC11C [MF] [D] [L] 
SC6A [M] [DF] [L] SC11D [MF] [L] [D] 
SC6B [M] [DF] [L]  SC12A [ML] [DF]  
SC6C [M] [DF] [L] SC13A [ML] [D] [F] 
SC6D [M] [L] [DF] SC13B [ML] [D] [F]  
SC8A [M] [D] [FL] SC13C [ML] [D] [F] 
SC8B [M] [D] [FL]  SC13D [ML] [F] [D] 
SC8C [M] [D] [FL] SC14A [MDL] [F] 
SC8D [M] [FL] [D] SC15A [MLF] [D]  
SC9A [M] [DL] [F]    

 
5.3  Provisioning Variation Testing 
  
IaaS cloud providers often do not allow user-level control of VM placement to physical hosts.  
The non-determinism of where VMs are hosted results in provisioning variation [1-3].  In the 
previous section we identified the best performing application component deployments.  We had 
two primary motivations for provision variation testing. First, to validate if deploying VMs using 
isolated physical hosts was sufficient to identify the best performing component deployments.  
For example does one of the deployments (SC11A, SC11B, SC11C) provide fundamentally 
different performance than SC11?  And second, to quantify the average performance change for 
provisioning variation configurations.  Intuition and previous research suggest that hosting 
multiple VMs on a single PM will reduce performance, but by how much? 
 

There are 45 provisioning variations of the 15 component deployments described in table 2 and 
tested in previous sections.  31 of the configurations were tested using the 20 randomized 100-
model run ensembles and KVM-based VMs with 4GB memory allocation.  Test configurations 
are identified by their base service configuration id SC1-SC15 and the letters A-D to identify 
provisioning variation configurations as described in table 8.  There were 14 variations of SC7 
which represent the VM-level service isolation variants of component configurations described 
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in table 2.  These were not tested because service isolation only adds overhead relative to their 
equivalents (SC1-SC6, SC8-SC15) as discussed in section 5.6 for RQ-3.  To compare 
performance the provision variation deployments from table 8 versus SC1-SC15, we calculated 
averages for provisioning variation configurations having more than 1 provisioning variation 
deployment (e.g. SC11A, SC11B, SC11C, SC11D).  Linear regression showed that component 
deployments performed the same regardless of provisioning variation (R²=0.956701, df=13, 
p=3.03•10-10), though they generally performed slower

 

.  Performance differences observed 
appeared to result from hosting multiple VMs on physical hosts.  On average performance for 
provision variation configurations was 2.5% slower.  Configurations with 2 VMs averaged 
3.05% slower, with 3 VMs 2.33% slower.  6 of 31 configurations exhibited small performance 
gains: SC4A, SC6A, SC8C, SC11A, SC11C, and SC12A.  Provisioning variation configurations 
which separated physical hosting of the M and L components provided an average improvement 
of .39% (10 configurations) whereas those which combined hosting of M and L were on average 
3.93% slower.  Performance differences for provisioning variation configurations are shown in 
figure 4.   

 

Figure 4.  Provisioning Variation Performance Differences vs. Physical Isolation (KVM) 

5.4  Increasing VM memory 
 

In [24] the RUSLE2 model was used to investigate multi-tier application scaling with 
components deployed on isolated VMs.  VMs hosting the M, F, and L components were 
allocated 2GB memory, and the D component VM was allocated 4GB.  To avoid performance 
degradation due to memory contention VM memory was increased to 10GB the total amount 
provided using individual VMs in [24].  Intuitively increasing VM memory should provide either 
a performance improvement or no change of performance.  20 runs of an identical 100-model run 
ensemble were repeated for the SC1-SC15 component deployments using 10GB VMs.  Figure 5 
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shows performance changes resulting from increasing VM memory allocation from 4GB to 
10GB for both the “m-bound” and “d-bound” applications.   

 

For the “m-bound” application using 10GB VMs reduced average ensemble performance .727 
seconds (-3.24%) versus using VMs with 4GB.  SC11 provided had the best performance, 6.7% 
faster than average component deployment performance for 10GB VM “m-bound” ensemble 
tests.  This was half a second faster than with 4GB VMs.  SC1, total service combination, 
performed the slowest, 8.9% slower than average, 3.1 seconds longer than with 4GB VMs.  For 
the “m-bound” application only component deployments which combined M and L on the same 
VM experienced performance degradation.  Both M and L used the Apache Tomcat web 
application server, but L used a 32-bit version for hosting Codebeamer and required the ia32 
Linux 32-bit compatibility libraries to run on a 64-bit VM.  The performance degradations may 
have resulted from virtualization of the ia32 library as 32-bit Linux can only natively address up 
to 4GB ram.   
 

The “d-bound” application using 10GB VMs performed on average 3.24 seconds (2.46%) faster 
than when using 4GB VMs.  Additional VM memory improved database query performance.  
SC4 performed best at 12.5% faster or about 11.2 seconds faster.   SC7, total service isolation, 
performed the slowest at 12.6% slower than average equaling about 4.2 seconds longer than tests 
with 4GB VMs.  

 

Figure 5.  10 GB VM Performance Changes (seconds) 

To verify that these results were not specific to repeated runs of an identical 100-model run 
ensemble using the XEN hypervisor, we also tested increasing VM memory allocation using 20 
different ensembles and the KVM hypervisor.  Results were similar for both cases.  The “m-
bound” model’s 15 component deployments performed on average 342 ms slower (-1.13%) with 
10GB VMs and the “d-bound” model performed 3.24 seconds (2.46%) faster on average.  Our 
results demonstrate that increasing VM memory allocation may result in unexpected 
performance changes in some cases exceeding +/-10%.  For VM memory allocation, 
depending on the application, more may not always be better. 
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5.5  XEN vs. KVM 
  
To compare performance differences between the XEN and KVM hypervisors we ran test sets 
using 20 different ensemble runs using 4GB VMs and the “m-bound” application.  Tests were 
repeated using both XEN and KVM hypervisors, random ensembles and the “d-bound” model.  
On average KVM ensemble performance was ~29% slower than XEN for the “m-bound” 
model, but ~1% faster for the “d-bound” model.  The “d-bound” model was more CPU bound 
enabling performance improvement compared with XEN.  The “m-bound” model had a higher 
proportion of I/O relative to CPU use and performed faster using XEN.  “D-bound” ensemble 
tests using KVM required on average 4.35 xs longer than the “m-bound” model, while XEN “d-
bound” runs were 5.7 xs longer than “m-bound”.  The average performance difference between 
the XEN and KVM hypervisors for running both the “m-bound” and “d-bound” models using 20 
random ensemble tests is shown in figure 6. 
 

Resource utilization data was collected for the “m-bound” model for all component deployments 
(SC1-SC15) using 20 random 100-model run ensemble tests for the XEN and KVM hypervisors.  
Resource utilization differences and correlations are summarized in table 9.  Resource utilization 
for XEN and KVM correlated for all statistics.  On average KVM used 35% more CPU time than 
XEN, but nearly an equal number of disk sector reads (98%), but performed far fewer disk sector 
writes (50%).  KVM exhibited 1.8% more network traffic (bytes sent/received) than XEN.  
Increased CPU time for KVM may result from KVM’s full virtualization of devices where 
devices are entirely emulated by software.  XEN I/O uses paravirtual devices which offers more 
direct device I/O. 
 

 
Figure 6.  XEN vs. KVM Performance Differences, 4 GB VM Different Ensembles 
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Table 9 
KVM vs. XEN Resource Utilization - Randomized Ensembles 

Parameter KVM Resource Utilization 
(% of XEN) 

R2 

 

p 

CPU time (sec) 135.2% 0.787769 .00001 
Disk sector reads 97.91% 0.804115 5.96•10-6 
Disk sector writes 50.48% 0.829572 2.38•10-6 

Network bytes rec'd 101.77% 0.999872 1.09•10-26 
Network bytes sent 101.85% 0.999874 9.61•10-27 

 

We used a simple linear regression to compare XEN and KVM performance of component 
deployments for the “m-bound” and “d-bound models.  Deployments using 4GB VMs for the 
“m-bound” model with random ensembles were shown to perform similarly (R²=0.749912, 
df=13, p=.00003).  Component deployment performance of XEN vs. KVM using the “d-bound” 
model performance did not correlate.  Given KVM’s improved “d-bound” performance relative 
to XEN, this result was expected.  Application performance using the KVM hypervisor appeared 
to be more sensitive than XEN to disk I/O.   
 
5.6  Service Isolation Overhead 
  
To investigate overhead resulting from the use of separate VMs to host application components 
the three fastest component deployments for the “m-bound” model were tested.  Components 
were deployed using the SC2, SC6, and SC11 configurations with and without using separate 
VMs to host individual components.  

 

 

Figure 7.  Performance Overhead from Service Isolation (XEN left, KVM right) 

60 runs using the same 100-model run ensemble, and 3 test sets of 20 different 100-model run 
ensembles were completed for each configuration.  The percentage performance change resulting 
from service isolation is shown in Figure 7.  For all but one configuration, service isolation 
resulted in overhead which degraded performance compared to deployments where 
multiple components were combined on VMs.  The average overhead from service isolation 
was ~1%.  For tests using different ensembles the observed performance degradation for service 
isolation deployments was 1.2%, .3%, and 2.4% for SC2-SI, SC6-SI and SC11-SI respectively.  
Same ensemble test performance degradation was 1.1%, -.6%, and 1.4%.   These results were 
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reproduced using the KVM hypervisor with an average observed performance degradation of 
2.4%.   
 

Although the performance overhead was not large, it is important to consider that using 
additional VMs incurs higher hosting costs without performance benefits.  The isolated nature of 
our test design using isolated physical hardware, running no other applications, allows us to be 
certain that observed overhead resulted entirely from VM-level service isolation.  This overhead 
is one of the tradeoffs for easier application tier-scalability with service isolation. 
 
5.7  Predictive Model 
 
Resource utilization data was collected for CPU time, disk sector reads/writes, and network bytes 
sent/received as described in section 5.1.  We observed resource utilization variation for each of 
the deployments tested.  Multiple linear regression (MLR) was used to build models to predict 
component deployment performance using resource utilization data to support investigation of 
RQ-4. 
 

Multiple linear regression (MLR) is used to model the linear relationship between a dependent 
variable and one or more independent variables [25].  The dependent variable was ensemble 
execution time and the independent variables were VM resource utilization statistics including: 
CPU time, disk sector reads/writes, network bytes sent/received, and the number of virtual 
machines of the component deployment.  The “R-squared” value, also known as the coefficient 
of determination, explains the explanatory power of the entire model and its independent 
variables as the proportion of variance accounted for.  R-squared values were calculated for each 
independent variable using single linear regression.  Root mean squared deviation (RMSD) was 
calculated for each variable.  The RMSD expresses differences between the predicted and 
observed values and serves to provide a measure of model accuracy.  Ideally 95% of predictions 
should be less than +/- 2 RMSD's from the actual value. 
 
 

Table 10 
Resource Utilization – Predictive Power 

 

Parameter R2 RMSD 
CPU time .7171 887.64 

# Disk sector reads .3714 1323.25 
# Disk sector writes .1441 1544.05 

Network bytes recv'd. .0074 1662.76 
Network bytes sent .0075 1662.68 

Number of VMs .0444 1631.44 
 
 

A MLR model was built using resource utilization variables from the “m-bound” model using 
Xen 4GB VMs with 20 different ensemble tests.  All of our resource utilization variables 
together produced a model which accounted for 84% of the variance with a RMSD of only 
~676 ms (R2=.8416, RMSD=664.17 ms).  Table 10 shows individual R2 values for the resource 
utilization statistics used in a simple linear regression model with ensemble execution time to 
determine how much variance each explained.  Additionally the average error (RMSD) is shown.  
The most predictive parameters were CPU time which positively correlated with ensemble time 
and explained over 70% of the variance (R2=.7171) and disk sector reads (R2=.3714) with a 
negative correlation.  Disk sector writes had a positive correlation with ensemble performance 
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(R2=.1441).  The number of deployment VMs (R2=.0444) and network bytes received/sent were 
not strong predictors of ensemble performance and explained very little variance.  
  
 

Table 11 
Deployment Performance Rank Predictions 

Composition Predicted Rank Actual Rank Rank Error 
SC1 12 15 -3 
SC2 2 2 0 
SC3 7 8 -1 
SC4 6 9 -3 
SC5 10 4 6 
SC6 9 10 -1 
SC7 4 5 -1 
SC8 8 7 1 
SC9 5 6 -1 

SC10 3 3 0 
SC11 1 1 0 
SC12 15 12 3 
SC13 14 14 0 
SC14 13 13 0 
SC15 11 11 0 

 
We applied our MLR performance model to predict performance of component deployments.  
Resource utilization data used to generate the model was reused to generate ensemble time 
predictions.  Average predicted ensemble execution times were calculated for each component 
deployment (SC1-SC15) and rank predictions were calculated.  Predicted vs. actual performance 
ranks are shown in table 11.  The mean absolute error (MAE) was 462 ms, and estimated ranks 
were on average +/-1.33 units from the actual ranks.  Eleven predicted ranks for component 
compositions were off by 1 unit or less from their actual rank, with six exact predictions for SC2, 
SC10, SC11, SC13, SC14, and SC15.  The top three performing deployments were predicted 
correctly in order.  A second set of resource utilization data was collected for the “m-bound” 
model using 4GB VMs and 20 random ensembles for SC1-SC15.  This data was fed into our 
MLR performance model and observed MAE was only 324ms.  The average rank error was +/- 2 
units.  Seven predicted ranks were off by 1 unit or less from their actual rank, with three exact 
predictions.  The top fastest deployment was correctly predicted for the second dataset. 
 

Building models to predict component deployment performance requires careful consideration of 
resource utilization variables.  This initial attempt using multiple linear regression was helpful to 
identify which independent variables had the greatest impact on deployment performance.  
Future work to improve performance prediction should investigate using additional resource 
utilization statistics as independent variables to improve model accuracy.  New variables 
including CPU statistics, kernel scheduler statistics, and guest/host load averages should be 
explored.  The utility of neural networks, genetic algorithms, and/or support vector machines to 
improve our model should be investigated extending related research [11, 27-31].  These 
techniques can help improve performance predictions if resource utilization data is not normally 
distributed. 
 
6.  Conclusions 
 
(RQ-1) This research investigated the scope of performance implications which occur based on 
how components of multi-tier applications are deployed across VMs on a private IaaS cloud.  All 
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possible deployments were tested for two variants of the RUSLE2 soil erosion model, a 4-
component application. Up to a 14% and 25.7% performance variation was observed for the “m-
bound” and “d-bound” RUSLE2 models respectively.  Significant resource utilization (CPU, 
disk, network) variation was observed based on how application components were deployed 
across VMs.  Intuition was insufficient to determine the best performing deployments.  Ad hoc 
worst case scenario component placements significantly degraded application performance 
demonstrating consequences for ignoring component composition.  Component deployment 
using total service isolation did not provide the fastest performance for our application.  
Provisioning variation did not change fundamental performance of component deployments but 
did produce overhead of ~2-3% when two or more VMs resided on the same physical host. 
 

(RQ-2)  Increasing VM memory allocation did not guarantee application performance 
improvements.  Increasing VM memory to improve performance appears useful only if memory 
is the application’s performance bottleneck.  The KVM hypervisor performed 29% slower than 
XEN when application performance was bound by disk I/O but slightly faster ~1% when the 
application was CPU bound.  KVM resource utilization correlated with XEN but CPU time was 
35% greater when KVM was used to perform the same work. 
 

(RQ-3) Service isolation, the practice of using separate VMs to host individual application 
components resulted in performance overhead up to 2.4%.  Though overhead may be small, the 
hosting costs for additional VMs should be balanced with the need to granularly scale application 
components.  Deploying an application using total service isolation will always result in the 
highest possible hosting costs in terms of the # of VMs. 
 

(RQ-4) Resource utilization statistics were helpful for building performance models to predict 
performance of component deployments.  Using just six resource utilization variables our 
multiple linear regression model accounted for 84% of the variance in predicting performance of 
component deployments and accurately predicted the top performing component deployments.   
 

Providing VM/application level resource load balancing and using compact application 
deployments holds promise for improving application performance while lowering application 
hosting costs.  To support load balancing and cloud infrastructure management, performance 
models should be investigated further as they hold promise to help guide intelligent application 
deployment and resource management for IaaS clouds. 
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Figure 1.  Resource Utilization Variation of Component Deployments 
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Figure 2.  4GB “m-bound” regression plot (XEN) 
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Figure 3.  Performance Comparison – Randomized Ensembles (XEN) 
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Figure 4.  Provisioning Variation Performance Differences vs. Physical Isolation (KVM) 
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Figure 5.  10 GB VM Performance Changes (seconds) 
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Figure 6.  XEN vs. KVM Performance Differences, 4 GB VM Different Ensembles 
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Figure 7.  Performance Overhead from Service Isolation (XEN left, KVM right) 
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