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Abstract—Today’s cloud native applications are often built
using a service-oriented architecture supported by many mi-
croservices hosted using serverless Function-as-a-Service (FaaS)
platforms. The vast majority of serverless function benchmarks
and tests are performed using a single-client machine to generate
workloads against highly scalable serverless backends. However,
single-client test engines can lack sufficient computational re-
sources and network bandwidth to adequately stress serverless
backends. Testing tools such as Apache JMeter support orches-
trating tests using multiple client nodes, but lack the ability to
orchestrate sophisticated tests with distributed workload patterns
common with real-world serverless workloads. In this paper,
we introduce Distributed FaaSRunner, a distributed test tool
which supports the ability to reproduce multi-node serverless
workloads using traces derived by ingesting serverless function
log files and randomly generated workload traces. We test
Distributed FaaSRunner’s ability to precisely reproduce server-
less function request dispatch and arrival time using various
test cluster configurations. Using globally distributed clients, we
predict latency to adjust workload trace event dispatch times
to reproduce original request arrival latency. We demonstrate
that Distributed FaaSRunner can reproduce both temporal and
spatial characteristics of serverless workloads, enabling new
capabilities to assess performance of FaaS platforms beyond
traditional load testing.

Index Terms—Function-as-a-Service; Serverless Computing;
Load Testing; Multi-Node Testing; Reproducible Test;

I. INTRODUCTION

Scalability testing of microservices is imperative to en-
sure that service-oriented applications can handle user de-
mand within the required response times [1]. To ensure that
service deployments meet scalability requirements and to
compare the utility of different Function-as-a-Service (FaaS)
host platforms, it is important that scalability tests are easily
reproducible so new service deployments and configurations
can be continuously validated. Generating load tests using a
single client, particularly for short-lived microservices, is often
insufficient. Test clients are often the bottleneck when having
to generate thousands of concurrent requests in parallel against
endpoints with millisecond response times. Test clients may
lack adequate computational resources and network bandwidth
to meet throughput goals.

Support for reproducible tests enables fair and repeatable
comparisons of serverless application deployments made to
different cloud providers and/or platforms with different con-
figuration settings. By reproducing distributed multi-client
workloads, we can recreate identical load and distribution

characteristics, enabling the ability to infer which platforms
and configurations work best for particular scenarios. Precisely
reproducing the temporal and spatial characteristics of dis-
tributed workloads to compare alternate serverless application
deployments and platforms is currently challenging and largely
unsupported. While a few multi-node test tools exist, existing
tools do not support orchestrating complex tests to precisely
reproduce these characteristics of distributed workloads seen
in real-world environments.

A fundamental challenge in reproducing distributed work-
loads lies in addressing the reproduction of arrival times
recorded in event traces, while taking into account network
latency. Since network latency varies across cloud regions and
fluctuates over time due to congestion or route changes, when
reproducing workload load traces without correction, arrival
times may not faithfully reflect the original ordering of events.
As a result, naively replaying such traces can violate the
original event sequence and undermine temporal fidelity. To
mitigate this discrepancy, reproducing traces based on dispatch
times adjusted using network latency estimates can achieve
higher fidelity in timing reproduction. Our approach aims to
ensure that trace events match the original relative arrival
times. These inter-event timings can be crucial for testing
FaaS-specific behaviors such as cold start and reuse of run-
time environments. For distributed testing, latency adjustments
are key for reproducing temporal workload characteristics to
enable accurate comparisons across FaaS platforms.

In this paper, we introduce Distributed FaaSRunner, a
distributed load testing tool that precisely reproduces multi-
user workloads against serverless as well as general REST
endpoints [2]. To support distributed testing, we also provide a
workload trace generator, the Serverless Event Trace Generator
(SETGen), which can generate random or log derived work-
load traces. Distributed FaaSRunner orchestrates client nodes
distributed across cloud regions, localized to a single region,
or to a single availability zone (AZ). In addition, Distributed
FaaSRunner supports adjusting scheduled event timings based
on preobserved network latency. Users can specify each node’s
latency offset using the timeAdjustmentMs attribute in
the test cluster’s configuration file. This offset adjusts the
scheduled event times at each client node to account for node-
specific network latency. By accounting for network latency
of distributed clients, our design facilitates more faithful
reproduction of distributed event traces. We investigate our



ability to reproduce temporal characteristics of distributed
workloads using diverse test clusters and evaluate the impact
of latency-based schedule adjustments on the accuracy of
request arrival timing. Supporting distributed load testing with
reproducible workload traces offers a novel way to characterize
the performance of FaaS platforms not currently available.

A. Research Questions

To evaluate our tool’s ability to reproduce distributed work-
load traces, we investigate the following research questions:

(RQ-1 Workload Event Latency Characterization): What
is our ability to reproduce distributed workload traces using
distributed test clusters consisting of nodes disbursed across
multiple cloud regions at continental vs. global levels? Without
event scheduling adjustments, what request arrival latency is
observed at the serverless endpoints?

(RQ-2 Adjustment Capability): By adjusting arrival times
of scheduled events based on expected network latency, to
what extent can we reduce request arrival latency when
reproducing distributed event traces?

(RQ-3 Latency Prediction): What is the efficacy of alter-
nate methods to forecast network latency to adjust scheduled
event timings to reproduce distributed event traces at the
continental and global level?

II. BACKGROUND AND RELATED WORK

Scalability of web service and FaaS endpoints is often eval-
uated in terms of supported throughput (e.g. requests/second)
and whether services return valid responses under increasing
load. We review the capabilities and limitations of existing
load testing and event replay tools.

A. Load Testing Tools and Workload Replay tools

Apache JMeter is a widely recognized multi-threaded load
testing tool [3] , supporting distributed load testing by orches-
trating multiple clients to support parallel load generation of
service endpoints [4]. For multi-client load testing, however,
users can only specify a throughput rate. JMeter does not
support execution of workload traces to reproduce specific
request arrival patterns or load distributions. BlazeMeter, a
commercial SaaS platform built on top of JMeter, allows users
to execute JMeter test plans in the cloud and scale load gener-
ation by specifying the number of concurrent virtual users [5].
This provides cloud-based scalability and ease of deployment,
but inherits core limitations from JMeter. As a result, both
JMeter and BlazeMeter are essentially limited to stress testing,
as specific workload traces cannot be reproduced.

The CLI-based load testing tool, k6, emphasizes pro-
grammable tests using a lightweight high performance execu-
tion environment with tests defined using JavaScript [6]. Users
can issue requests based on event traces or generate loads
with specified throughput levels to multiple endpoints. K6
supports distributed tests via the k6-operator with Kubernetes
[7]. This mechanism allows users to expand load testing to
multiple Kubernetes Pods to execute tests in parallel. By
using the commercial cloud service Grafana Cloud, users can

perform distributed load tests with k6, and test results from
each client can be aggregated into a unified visual report
[8]. For distributed tests, however, the k6-operator supports
only a single Kubernetes cluster, limiting clients to a single
region. Grafana Cloud allows assigning a proportion of the
total virtual users to predefined regions or zones, but individual
events cannot be mapped to specific nodes as with Distributed
FaaSRunner. Therefore, it is difficult to accurately reproduce
spatial characteristics of distributed workloads.

Locust is a Python-based load testing tool that supports
distributed execution via a master-worker architecture. Its
programmability and native support for worker coordination
over TCP enables flexible test scenarios. Although Locust does
not provide built-in mechanisms for time synchronization or
replay of workload traces across nodes, users can implement
such functionality, including accurate reproduction of spatial
and temporal characteristics of workload traces. However,
doing so requires substantial coding effort.

FaaSRunner is a Python-based single-node test client de-
signed to orchestrate tests of serverless FaaS functions [9].
FaaSRunner performs experiments and measures round-trip
time, latency, and a number of other performance metrics.
FaaSRunner works in combination with the Serverless Appli-
cation Analytics Framework (SAAF) to characterize serverless
function execution providing more than 48 distinct metrics
(e.g. runtime, VM CPU type, and function state-cold/warm)
[10]. FaaSRunner’s implementation using Python threads has
limited throughput due to Python’s Global Interpreter Lock
(GIL). FaaSRunner does not support distributed multi-node
testing and is limited to using only a single node to stress
endpoints.

Shahrad et al. [11] provided production serverless workload
traces of Azure Functions [12], including per-function invoca-
tion counts, trigger types, execution times, and per-application
memory usage. To reproduce these traces, they developed
FaaSProfiler. They evaluated the function state (e.g., cold
or warm) by measuring request frequency and referring to
documentation published by cloud providers, without directly
inspecting the internal state of the FaaS infrastructure. They
analyzed the internal infrastructure state using logs from a
locally hosted OpenWhisk [13] setup in a separate study
[14], but this approach is not applicable to commercial FaaS
platforms. Furthermore, FaaSProfiler does not support multi-
node execution and lacks mechanisms to coordinate request
dispatch across multiple nodes. As a result, FaaSProfiler is
limited in its ability to reproduce workload traces that require
higher throughput than what can be achieved by a single node.

B. Serverless Benchmarking Frameworks

Serverless benchmarking frameworks provide reusable li-
braries of serverless test cases, including individual functions
and entire applications. Serverless Benchmark Suite (SeBS)
provides serverless function and application use cases, in-
cluding web applications, multimedia use cases, utilities, an
inferencing example, and graph computational use cases [15].
Benchmarking frameworks, such as ServiBench, use proba-
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bilistic state machines to generate dynamic user stories and
trace complex serverless workflows [16]. ServerlessBench, is
a framework designed to assess metrics in serverless comput-
ing, including communication latency and startup latency [17].
Serverless benchmarking frameworks provide reusable use
cases for developers and practitioners to compare performance
of serverless platforms and configurations.

While serverless benchmarking frameworks provide
reusable serverless function and application use cases, these
frameworks do not facilitate distributed testing. They are not
designed to reproduce temporal or spatial characteristics of
distributed real-world serverless workloads or to characterize
how platform performance varies over time, across different
regions, and cloud providers.

III. METHODOLOGY

A. Architecture of Distributed FaaSRunner

The Distributed FaaSRunner developed in this study is a
Java-based distributed load testing tool capable of generating
high-throughput workloads targeting general HTTP endpoints.
It achieves precise scheduling of request transmissions by
leveraging multi-threaded parallelism and fine-grained timing
control, enabling accurate reproduction of timing-sensitive sce-
narios. While the tool itself is not limited to FaaS platforms, it
supports detailed performance analysis of cold starts, runtime
variability, and resource utilization when the target endpoint
is implemented as a FaaS function enabled by the Serverless
Application Analytics Framework (SAAF) described in III-C.
Additionally, Distributed FaaSRunner supports synchronous
and asynchronous HTTP request execution, enabling flexible
interaction with a broad range of deployment environments.

Node Structure and Scalability: Distributed FaaSRunner is
designed to operate in a multi-node environment, enabling
horizontal scalability to handle increasing loads. The archi-
tecture consists of two types of nodes: controller nodes and
worker nodes. Worker nodes communicate via TCP and are
deployed to distinct virtual machines (VMs) for scale-out.
Our current implementation supports a single controller node
per cluster. Supporting redundant controllers is left for future
enhancement. All nodes leverage the Network Time Protocol
(NTP) for clock synchronization. This architecture enables
sustained load levels infeasible with a single client node, by
orchestrating multiple nodes in a coordinated manner.

Execution Modes: The tool supports two operational modes,
tailored for different testing scenarios: Throughput Mode:
In this mode, the user specifies a target throughput and a
request dispatch pattern (e.g. Poisson, random, or uniform
distribution). Requests are generated and sent to a single
endpoint. The generation logic for each pattern follows the
same implementation as SETGen, described in Section III-B.
Support for multiple request dispatch patterns enables users to
produce different traffic profiles based on their testing objec-
tives. Event Trace Mode: In Event Trace Mode, the system
loads a predefined event trace from a JSON file and dispatches
requests to multiple endpoints with precise timing. Event
trace files are randomly generated or derived from parsing

serverless function log files to enable reproduction of complex
traffic patterns with specific request timings. Each event in
the trace is characterized by the following five attributes:
eventID: unique identifier for the event, time: scheduled
request time, nodeID: identifier of the responsible worker
node, endpoint: destination endpoint URL, and payload:
data to be included in the request.

The Event Trace Mode operates as follows: Event Loading:
a local client sends the full event trace file to the controller
node, where each event specifies the responsible nodeID
and scheduled event time. Per-Node Trace Generation: The
controller node parses the original event trace to generate
worker node specific event trace files. Event Distribution:
The controller distributes event trace files to the corresponding
worker nodes based on a configuration file attribute that maps
nodeID to a public IP. These preprocessing stages alleviate
potential bottlenecks in the distributed system. Experiment
Execution: After all workers are ready, the controller sends a
start signal. Each worker waits until the scheduled start time
before generating any scheduled requests.

B. Serverless Event Trace Generator (SETGen)

Distributed FaaSRunner enables reproduction of event traces
to replicate temporal and spatial characteristics enabling a
new degree of test reproducibility beyond that of current load
testing tools. Distributed FaaSRunner’s temporal precision
enables the reproduction of traces of highly concentrated
event sequences consisting of hundreds of calls on a mil-
lisecond scale. SETGen supports creating event traces with
reproducible event patterns. SETGen provides two modes of
trace generation: log file-based and random. In the log file-
based mode, SETGen parses a serverless endpoint’s log files
from AWS CloudWatch and composes them into a workload
trace file for use by the Distributed FaaS Runner. If client IP
addresses are present in the logs, SETGen uses them to assign
events from the same IP to the same node in the resulting trace
file. In random generation mode, users provide a statistical
distribution pattern, request time intervals (in milliseconds),
and a total number of events or a trace duration. Individual
event times follow a specified statistical distribution: Uniform:
fixed dispatch intervals. Poisson: request dispatch intervals
follow an exponential distribution, f(x;λ) = λe−λx, with
λ = 1/µ, where µ is the user-defined request time interval.
Random: request dispatch intervals are selected from the
continuous range U(0, 2× 1000

x )[ms], with x = 1/µ, where µ is
the request time interval. Sinusoidal: request intervals oscillate
sinusoidally according to the function µ+A sin

(
2πt
T

)
, where

µ is the request time interval, A is the amplitude, and T is the
period.

C. Serverless Application Analytics Framework (SAAF)

SAAF is a framework to profile the performance, resource
utilization, and infrastructure of serverless FaaS functions
[18]. Using SAAF, attributes including CPU type, running
time, start time, etc. can be measured. SAAF also supports
profiling serverless functions written in multiple languages
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Fig. 1: SET Generator Event Distributions

including Python, Java, Go, and Node.js. Additionally, SAAF
is supported on many cloud platforms including AWS Lambda,
Google Cloud Functions, Digital Ocean Functions, IBM Cloud
Code Engine, Azure Functions, and OpenFaaS. We use SAAF
to assess whether a FaaS endpoint is cold or warm, and observe
distinct function invocation times.

D. Experimental Design

We leverage two metrics to assess the precision of repro-
ducing workload traces: Client Dispatch Delay: difference
between worker node’s actual request dispatch time and the
event’s scheduled time; and Request Arrival Latency: the
difference between the client’s request arrival time at the server
and the scheduled event time. For the FaaS endpoint, we
deployed SAAF’s Python ’hello’ template function to capture
profiling metrics for a no-op function on AWS Lambda. The
template function executes SAAF profiling in less than 10
ms, returning the function’s execution start time in SAAF’s
inspection data. We treat the time as the request arrival
time. We deploy separate AWS EC2 c7i.xlarge instances with
4 vCPUs and 8 GB RAM for the controller and worker
nodes unless otherwise noted. Each experiment repeated a
one minute workload trace eleven times to account for cold
starts and temporal variability. Data from the first run are
treated as a warm-up and are excluded from analysis. We used
the asynchronous request mode of Distributed FaaSRunner to
evaluate the tool’s precision under high-throughput and inde-
pendent dispatch conditions. Between workload trace runs, we
waited 30 seconds to ensure AWS Lambda function instances
remained warm [19]. We tested 3 types of distributions;
uniform, Poisson, and random. These workload traces were
generated by SETGen. We used the Amazon Time Sync
Service (ATSS), an implementation of NTP to synchronize
time on all nodes [20].

Ex. 1 (Single Node Performance Comparison): This ex-
periment evaluates the precision and reproducibility of work-
load traces using three load generation tools: k6, FaaSProfiler,
and Distributed FaaSRunner. The evaluation focused on how
each tool replicates event timings with varying request patterns
and throughput levels on a single client node. We deployed
AWS EC2 instances and the AWS Lambda function in the
same AZ (us-east-2c). We tested workload traces generated
by SETGen with uniform, Poisson, and random distributions

at 100, 200, 500, and 1000 requests per second (rps). All
workload traces were converted into proper formats for each
tool prior to the experiments using custom conversion scripts.
Each tool preloaded traces into memory before execution,
ensuring that no file I/O occurred during the request dispatch
phase, avoiding any I/O impact on performance.

Timing Measurement: k6: We measure the request dis-
patch time by summing the start time with the connection
latency, TLS handshake, and the time to write requests to
the socket. We utilized 200 virtual users (VUs) for the ex-
periments. FaaSProfiler: FaaSProfiler utilizes the requests-
futures library’s FuturesSession for asynchronous HTTP re-
quests. Timestamps are recorded immediately after invok-
ing the post() method, aligning with the tool’s inherent
design. We assume that the request has been dispatched
when the asynchronous method call completes, and use the
corresponding timestamp to record the request dispatch time.
Distributed FaaSRunner: We record the timestamp immedi-
ately after submitting the request to the asynchronous HTTP
client. We treat the timestamp as the request dispatch time.

As all dispatch timings are recorded at the application layer
on the client side, they do not guarantee the exact time at which
the request packet was sent on the network. To validate the
actual request execution during experiments, we additionally
measured the observed throughput at the target endpoint.
Specifically, we used the START log entries automatically
emitted by AWS Lambda in the CloudWatch Logs, which are
recorded when the function begins execution, to verify that
each request was successfully invoked [21].

Ex. 2 (Horizontal Scalability Evaluation): To assess
the scalability of dispatch timing precision for multi-node
experiments, we deployed five nodes to us-east-2c AZ as a
test cluster. Each node executed the same trace concurrently.
We tested uniform, Poisson, and random workload traces that
performed sequential function calls with distinct event timings
with an expected throughput of 500 rps per node. We used a
backend Lambda function with a ’concurrent executions’ quota
of 3,000. This experiment evaluates horizontal scalability by
investigating timing skew and reproducibility under concurrent
execution with multiple nodes.

Ex. 3 (Parallel Trace Reproducibility): This experiment
evaluates the tool’s ability to reproduce traces with parallel
requests. We consider three types of request patterns to eval-
uate different levels of concurrency: 1) Sequential pattern,
the baseline, with uniform request rates at 100, 200, and 500
rps, with no concurrency. 2) Small burst pattern, where the
base rate is fixed at 500 rps, and five requests are dispatched in
parallel every 10 milliseconds. 3) Large burst pattern, which
issues 10, 20, and 50 parallel requests at 100-ms intervals,
for base rates of 100, 200, and 500 rps, respectively. We
tested two configurations to investigate how the horizontal
scaling of client nodes affects the accuracy of parallel request
reproduction. In the single-node setting, one client instance in
us-east-1a is responsible for issuing all requests in parallel. In
the multi-node setting, five client instances in us-east-1a are
used to distribute the same burst workload, with each node
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responsible for a fraction of the requests scheduled at the same
timestamp. For multi-node experiments on EC2, we tested
EC2 placement groups: cluster (i.e., worker VMs grouped)
and spread (i.e., worker VMs isolated) [22].

Ex. 4 (Impact of Test Cluster Configuration and Offset
Correction on Request Arrival Time): This experiment
investigates: (i) how the geographic distribution of worker
nodes impacts the reproducibility of request arrival times at the
server (RQ-1), and (ii) the efficacy of applying static time off-
sets, determined by measurement observations to improve the
reproducibility of arrival times (RQ-2). We deployed one EC2
instance (c6i.xlarge, 4 vCPUs, 8 GB RAM) as a worker node
in each of following regions: eu-central-1, ap-southeast-1,
ap-northeast-1, sa-east-1, and af-south-1. C6i.xlarge instances
were used in this experiment because c7i.xlarge instances
were unavailable in af-south-1. Each node sent 100 rps for
60 seconds to an AWS Lambda endpoint deployed in us-
east-1a, following a uniform distribution. We first ran the
workload trace without any correction for 11 consecutive runs,
serving two purposes: to quantify the effect of geographic
dispersion on reproducibility (RQ-1), and to obtain median
arrival latencies for each region to calculate offsets, a process
we refer to as the measurement-based approach (MBA). After
a 10-minute pause, we replayed the same trace 11 times with
the offset correction applied. In both uncorrected and corrected
sets, the first run was treated as a warm-up and excluded
from analysis. Finally, we compared the median request arrival
latency of the corrected sets vs. the uncorrected sets to assess
to what extent our measurement-based approach to offset
correction improves temporal reproducibility (RQ-2).

Ex. 5 (Request Arrival Latency Prediction): We evaluated
how accurately the median request arrival latency can be
estimated in advance, to enable adjustment of request timings
for workload traces (RQ-3). Our goal was to assess accuracy
of alternative methods to predict event offsets to minimize
request arrival latency when requests originate from different
locations (i.e., cloud regions). Our objective is to adjust event
timings up front without having to first profile event latencies
for the entire workload trace.

We compared three methods to estimate event offsets against
our baseline approach of profiling the entire workload up front
to measure request arrival latencies and establish event offsets
(our MBA). Our first method used AWS Network Manager’s
Infrastructure Performance feature, which provides round-
trip time (RTT) data measured by AWS-managed internal
probes [23]. These measurements are performed at 5-minute
intervals between regions and are published as P50 metrics, of-
fering reliable and consistent latency information. Our second
method relied on CloudPing, a third-party latency monitoring
tool that continuously measures TCP handshake RTTs (e.g.,
P50, P90) between AWS regions [24]. Our third approach
constructed a simple linear regression model based on physical
distances between regions and previously observed latencies.
AWS Region coordinates (latitude and longitude) were sourced
from publicly available data on GitHub [25], and although
the exact data center locations are not officially disclosed, we

TABLE I: Endpoint throughput mean and standard deviation
for each tool using our workload trace w/ uniform distribution

Tool Target rate Mean (rps) Std

k6 100 100.036 0.007
k6 200 200.062 0.028
k6 500 500.080 0.040
k6 1000 1000.055 0.113
FaaSProfiler 100 100.047 0.012
FaaSProfiler 200 186.591 2.389
FaaSProfiler 500 188.807 1.783
FaaSProfiler 1000 188.020 1.336
Distributed FaaSRunner 100 100.031 0.006
Distributed FaaSRunner 200 200.049 0.033
Distributed FaaSRunner 500 500.093 0.030
Distributed FaaSRunner 1000 1000.153 0.151

assume that errors on the order of several tens of kilometers
are inconsequential when inter-regional distances are typically
on the order of thousands of kilometers. To construct the
distance-based linear regression model, we first executed 11
runs of our workload trace under the same conditions with 10
regions (us-east-1, us-east-2, us-west-1, us-west-2, ca-central-
1, eu-central-1, ap-northeast-1, ap-southeast-2, sa-east-1, and
af-south-1) and used the results to train the model.

We then performed a single run of our workload trace
with 6,000 function calls to obtain the median request arrival
latency which we used to calculate each method’s accuracy.
The first 30 seconds of the trace were used only to measure
the actual median request arrival latency for each region,
which also served as offset values for our MBA. For our
evaluation, for the ground-truth, we used the median request
arrival latency observed during the last half of the trace
(30 seconds). To ensure temporal consistency, for our AWS
Network Manager and CloudPing approaches, we used the
most recent RTT values available immediately prior to this
evaluation run. Since AWS Network Manager and CloudPing
report RTT, we approximated one-way network latency by
dividing the RTT values by two. In Figure 7, we compare
six AWS regions from this experiment: us-east-1, eu-central-
1, ap-northeast-1, ap-southeast-2, sa-east-1, and af-south-1.
Prediction error was calculated by comparing the predicted
values from each method with our ground-truth observations.

IV. RESULTS

A. Ex. 1. Single Node Performance Comparison

We first report the observed endpoint throughput to ensure
that all tools successfully executed the input traces and issued
requests as expected. This step is essential to validate that the
client-side dispatch timing measurements correspond to actual
request executions. Table I summarizes the mean and standard
deviation of endpoint throughput, binned at 1-second intervals,
between the arrival of the first and last requests. While both
k6 and Distributed FaaSRunner successfully reproduced the
target throughput up to 1000 rps, FaaSProfiler plateaued at
around 188 rps, failing to sustain higher throughput. This
result indicates that FaaSProfiler’s throughput was constrained
to below 200 rps on a c7i.xlarge instance.

Figure 2 compares the client dispatch delay precision for
k6, FaaSProfiler, and Distributed FaaSRunner based on the
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client dispatch delay observed under workloads according to
a uniform distribution at 100, 200, 500, and 1000 rps. Since
FaaSProfiler failed to sustain 200 rps and above, only the
100 rps case is included. Both Distributed FaaSRunner and
FaaSProfiler demonstrate high reproducibility, with nearly all
requests dispatched within 0.5 milliseconds of their scheduled
time. While k6 achieves high precision for approximately half
of the requests (with delays under 0.1 ms), the remaining
requests exhibit delays around 1 ms, revealing a bimodal
dispatch pattern that limits its accuracy for reproducing fine-
grained workload traces. The results of the client dispatch
delay experiment are summarized in Table II. The table
shows statistical measures of the client dispatch delay at each
throughput level for Distributed FaaSRunner. Based on these
results, we see that reproducing the workload trace features
sub-ms dispatch delay with a mean of 0.18 ms across all
distributions at 1000 rps. These results suggest that Distributed
FaaSRunner offers the highest timing fidelity among the eval-
uated tools, making it well suited for experiments that require
sub-ms precision in trace-driven workload reproduction.

TABLE II: Client dispatch delay (ms) for increasing asyn-
chronous request rates for Distributed FaaSRunner. CV de-
notes the coefficient of variation.

Pattern Rate Min Q1 Median Q3 Max Mean SD CV%

uniform 100 0.119 0.225 0.257 0.302 9.392 0.271 0.139 51.384
uniform 200 0.050 0.190 0.212 0.233 7.968 0.222 0.153 69.005
uniform 500 0.032 0.143 0.181 0.196 16.124 0.183 0.291 158.520
uniform 1000 0.027 0.086 0.093 0.098 39.707 0.123 0.508 414.312
Poisson 100 0.079 0.190 0.230 0.284 6.317 0.246 0.152 61.956
Poisson 200 0.077 0.166 0.205 0.239 12.324 0.213 0.171 80.353
Poisson 500 0.022 0.123 0.188 0.216 14.177 0.188 0.226 120.481
Poisson 1000 0.020 0.097 0.123 0.176 32.779 0.172 0.662 385.132
random 100 0.079 0.203 0.238 0.280 5.647 0.249 0.140 56.281
random 200 0.076 0.178 0.207 0.236 9.997 0.215 0.167 77.894
random 500 0.036 0.144 0.189 0.209 17.288 0.194 0.331 170.437
random 1000 0.022 0.105 0.155 0.198 29.394 0.182 0.564 310.126

B. Ex. 2. Horizontal Scalability Evaluation

Results of Ex. 2 are presented in Table III. Despite the
increased total request volume in the multi-node setting (five
nodes), the performance in terms of Client Dispatch Delay
does not show notable degradation. The accuracy of request
scheduling remains comparable to our single-node test config-
uration, indicating that Distributed FaaSRunner maintains its
dispatch precision even with horizontally scaled workloads.

Figure 3 shows the client dispatch delay histograms for two
configurations: a single node that runs the uniform trace at
500 rps and five nodes that execute the uniform trace at a
combined throughput of 2500 rps (500 rps per node). The
similar distributions demonstrate that Distributed FaaSRunner
scales horizontally without compromising timing accuracy.

TABLE III: Distributed FaaSRunner Client dispatch delay
(ms) (single vs. multi node). CV=coefficient of variation.

Distribution Rate Nodes Min Q1 Median Q3 Max Mean SD CV%

Uniform 500 1 0.063 0.181 0.290 0.334 55.243 0.292 0.518 177.126
Uniform 2500 5 0.053 0.164 0.264 0.325 82.574 0.394 1.729 438.818
Poisson 500 1 0.052 0.177 0.306 0.376 55.635 0.336 0.624 185.635
Poisson 2500 5 0.050 0.198 0.340 2.233 91.955 2.393 4.714 196.997
Random 500 1 0.054 0.174 0.296 0.373 28.972 0.320 0.414 129.569
Random 2500 5 0.047 0.187 0.309 0.543 71.341 1.392 3.234 232.301
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C. Ex. 3. Parallel Trace Reproducibility

Figure 4 illustrates results of reproducing traces using a
single node or multiple nodes deployed using cluster or spread
EC2 placement groups. Cluster placement consolidates VMs to
a single rack or host to minimize network latency while spread
placement distributes VMs across racks in an AZ to reduce risk
of correlated hardware failures. For sequential traces (seq 100,
seq 200, seq 500), a single-node reproduced requests with
very high timing precision. A single node, however, had
increasingly high dispatch latency for small and large parallel
burst patterns and became a bottleneck.

In contrast, when the burst traces were distributed across
five nodes, no notable degradation in timing precision was
observed. This suggests that parallel burst patterns can be
reproduced with high accuracy when the workload is hori-
zontally distributed. No meaningful difference was observed
between EC2 placement group types. Both cluster and spread
placement yielded comparable client dispatch delay.

D. Ex. 4. Impact of Test Cluster Configuration and Offset
Correction on Request Arrival Time

Results of Ex. 4 are presented in Figure 5 and Table IV.
Figure 5 shows the request arrival latency distributions before
and after correction, while Table IV reports the median and
standard deviation for each region, with the uncorrected and
corrected values on separate rows. Before correction, the me-
dian request arrival latency tended to increase with geographic
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Fig. 4: Client dispatch delay: Sequential (seq) vs Parallel (par).
Small and large denote small burst (10 ms interval) and large
burst (100 ms interval) respectively

distance, often exceeding 50–100 ms (RQ-1). After applying
static time offset correction based on the observed per-node
median latency, the median arrival time for all regions fell
to within a few milliseconds of zero. This correction notably
improved the reproducibility of the trace in terms of request
arrival timing, achieving an order-of-magnitude enhancement
in temporal precision (RQ-2). These findings demonstrate that,
even in geographically dispersed environments, static offset
adjustments can substantially enhance the temporal fidelity of
distributed workload trace reproduction, offering a promising
approach for multi-node testing with high temporal accuracy
and spatial fidelity.

TABLE IV: Effect of static time offset correction on request
arrival latency (ms)

Region
Original
Median

MBA
Median

CP
Median

Original
SD

MBA
SD

CP
SD

eu-central-1a 47 0 -1 13.61 13.67 13.51
sa-east-1a 58 0 -2 18.11 18.35 17.94
ap-southeast-2a 101 0 -3 40.67 41.38 40.70
ap-northeast-1a 76 -1 -1 27.01 26.95 26.93
af-south-1a 113 2 -2 48.69 49.11 49.85
us-east-1a 3 0 -3 1.49 1.63 1.04

E. Ex. 5. Request Arrival Latency Prediction

In this experiment, we evaluated the efficacy of predicting
inter-region request arrival latency to support adjusting event
timings in advance without profiling as required in Ex. 4.
As shown in Figure 6, a linear regression model based on
geographical distance achieved an R² of 0.927 after excluding
several exceptional region pairs — (af-south-1, sa-east-1),
(af-south-1, ap-southeast-2), (ap-northeast-1, af-south-1), (sa-
east-1, ap-southeast-2), and (eu-central-1, ap-northeast-1) —
suggesting that distance is a key independent variable for
predicting latency. Figure 7 presents the relative error (%) of
predicted median request arrival latency for each region pair.
Prediction using our linear regression model incurred from
10 to 27% relative error, and was unsuitable for correcting
event timings in region pairs with high latency prediction
error (RQ-3). This limitation stems in large part from tem-
poral variability in inter-region network latency; this level of
variation aligns with prior findings reporting daily fluctuations
between 2% and 29% [26]. In contrast, RTT-based estimators
such as CloudPing and AWS Network Manager consistently
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Fig. 5: Request arrival latency comparison with static time
offset correction. MBA denotes measurement-based approach.

yielded relative error below 10% for most region pairs, making
them promising alternatives (RQ-3). Among all methods, our
MBA demonstrated the highest accuracy, maintaining relative
errors within just a few percent for all region pairs (RQ-
3). These results suggest that while the MBA is the most
suitable approach when precise correction is required, RTT-
based estimators like CloudPing and AWS Network Manager
can also serve as sufficiently accurate alternatives to avoid the
requirement of profiling workload traces in advance.

V. CONCLUSION AND FUTURE WORK

In this paper, we showed that Distributed FaaSRunner can
reproduce event traces with better precision than existing
distributed testing tools. Distributed FaaSRunner supports
distributed traces that reproduce events using geographically
specified nodes to reproduce spatial workload traces, a feature
missing from other tools. Our results confirm our ability to
reproduce these distributed traces with both high throughput or
bursty patterns. Combined with SAAF, Distributed FaaSRun-
ner can report the actual arrival time of individual requests.
By measuring drift between scheduled event times and the
actual event times, workload request arrival timings can be
corrected by modeling network latency to enable event timing
adjustments to reproduce temporal precision of workloads with
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Fig. 7: Relative error (%) of predicted request arrival latency
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AWS Network Manager, CloudPing, measurement-based ap-
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excluded from the model training are plotted as zero.

dispersed clients. (RQ-1 Reproducibility without Adjust-
ment): Without any adjustment, we observe that the median
delay between scheduled and actual request arrival time often
exceeds 50–100 ms, especially between geographically distant
regions, reflecting inherent network latency. Although Dis-
tributed FaaSRunner can issue requests with sub-millisecond
accuracy, such end-to-end delays constrain the workload traces
reproducibility at the server. (RQ-2 Adjustment Capability):
Applying static adjustments derived from the MBA consis-
tently reduces the median request arrival latency to within
a few milliseconds (e.g. 0-2 ms) across all tested regions.
This demonstrates that such adjustments substantially improve
reproducibility of scheduled event timings. (RQ-3 Latency
Prediction): Publicly available latency monitoring tools can
predict request arrival latency with a typical relative error of
less than 10% compared to ground-truth measurements. In
contrast, latency estimates based solely on geographic distance

using a linear regression model tend to suffer from higher
prediction error (10–27%).
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