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ABSTRACT
Containers have become a popular method of deploying and man-
aging applications due to their lightweight nature, scalability, and
portability. However, as container technologies evolve, it is impor-
tant to understand new implications for performance and resource
isolation. In this paper, we compare the performance of the runc,
crun, and runsc container runtimes standalone and in parallel. We
found that all runtimes struggled to isolate identical memory oper-
ations of concurrent containers. Runsc had higher overhead and
lower performance than runc or crun, but less performance loss
when scaling to 40 concurrent containers.
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1 INTRODUCTION
Containerization is a software technology that enables the creation
and management of lightweight, portable, and isolated computing
environments. It can be seen as a way to package and distribute
applications with all the dependencies and configuration needed to
run them. This enables easy deployment and consistent runs across
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different computing environments, such as development machines,
testing servers, and production clusters.

Containers share the host operating system and provide an iso-
lated environment for the application without emulating the entire
computer system as a Virtual Machine (VM) does. This makes con-
tainers more lightweight and efficient, allowing more containers to
run on the same host compared to VMs, while providing improved
security and isolation compared to running applications directly on
a shared host. Containers have become an important part of mod-
ern software development and deployment, owing to their support
for faster and more reliable application deployment across various
platforms and environments [18].

One major benefit of containerization is the isolation it provides
to various processes. This isolation should ensure that containerized
applications should not be able to observe the characteristics of
co-hosted containers. Containerization is faced with the challenge
of side channel attacks. A side channel is a vulnerability where
an “attacker” gains access to sensitive information or resources
by exploiting weaknesses or unintended interactions between the
container and the underlying host system [1]. For example, if an
attacker identifies high CPU use they could run CPU-bound tasks
on the host to starve the CPU to impact a victim’s container.
1.1 Research Questions
This paper investigates the following research questions: What is
the degree of performance isolation provided by current container
runtimes? Do some runtimes provide better isolation when con-
tainers compete for identical resources simultaneously (e.g., CPU,
memory)?

For VMs with precise resource quotas (e.g. for CPU and mem-
ory), performance of identical workloads run concurrently across
multiple VMs on the same host should not degrade. In this pa-
per, we investigate the extent of resource isolation provided by
different container runtimes for running containerized workloads
concurrently on the same host. Ideally containers should provide
performance isolation similar to VMs when sharing a host.
1.2 Contributions
This paper provides the following research contributions:
(1) Benchmarking Suite: We developed the Container Parallel Test

Suite (CoPTS) benchmarking suite to automate scheduling par-
allel benchmark runs across different container runtimes. The
tool orchestrated experiments for the paper.
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(2) Analysis of CPU resource utilization of various benchmarks
using the Container Profiler tool [11, 12]

(3) Quantitative comparison of the performance isolation provided
by the runc, runsc, and crun container runtimes

2 BACKGROUND AND RELATEDWORK
2.1 Container Runtime Performance Overhead
As cloud technologies evolve, so do the number of virtualization
methods. In [17], Roberto et al. compared hypervisor-based VMs
and containers. Their study investigated overhead introduced by
virtualization compared to a non-virtualized environment. Hypervi-
sors abstract the hardware and this virtualization of hardware adds
overhead. Containers typically share a host kernel and therefore in-
troduce overhead at the OS level. Roberto et al. compared overhead
of Docker, LXC, KVM, and OSv vs. a non-virtualized environment.
They evaluated memory, CPU, disk I/O, and network performance.
They found that benchmarks run in containers performed better
than VMs while introducing minimal overhead providing a viable
alternative to virtualization.

Prior research on containerization has focused on comparing
containers to VMs and non-virtualized hosts while considering their
design differences. In this paper, we compare multiple container
runtimes in terms of performance and isolation. In [21], perfor-
mance of runc, gVisor, and Kata containers was compared, but the
performance implications of running many container instances in
parallel was not investigated.

In [5], Everarts de Velp et al. compared various container run-
times, images, storage drivers, and container managers to report
the combination(s) with the best performance. They profiled con-
tainer startup time and disk I/O performance using isolated runs
of various container technology combinations. In our paper, we
complement this work by benchmarking other resources including
memory and CPU in isolation and parallel.

Han et al. profiled resource contention using CPU and mem-
ory benchmarks run on up to 48 co-located VMs in parallel to
observe performance implications [10]. In contrasting our results
with 40 parallel containers to Han’s running 48 parallel VMs, we
conclude that containers afforded less performance degradation
for y-cruncher, but potentially more for sysbech prime number
generation as discussed later in section 4.

2.2 Sandboxing in gVisor to improve isolation
Prior work has compared gVisor’s network and file access time
to that of more traditional containers like Docker [23]. This effort
examined the impact of having a separate application kernel for
typical system calls and briefly described the benefits it provides.
The design for having two isolation layers is to improve isolation
between containers but leads to increased time for disk I/O and
system calls [20]. In[23], Young et al. found that gVisor was at
least 2.2x time slower at making system calls when compared to
traditional containers and reading small files from the tempfs was
found to be 11x slower on gVisor.

Previous comparisons by Anjali et al. found that gVisor’s archi-
tecture led to considerable duplication of functionality [2]. While
gVisor’s sentry handles the majority of the system calls, it still em-
ulates all steps that other Linux containers take. Thus, the design

of gVisor is more complicated as it uses multiple implementations
of the same functionality. The paper also compared how LXC uses
the Linux kernel directly, and how Firecracker supports reduced
kernel functionality to improve performance [15].

In this paper, we compare Docker runtime (runc) alternatives.
We examine their ability to provide resource isolation while not
sacrificing performance when hosting parallel workloads.

3 METHODS
3.1 Container Parallel Test Suite
To support orchestration of running benchmarks concurrently us-
ing different container runtimes, for this paper we developed the
Container Parallel Test Suite (CoPTS). CoPTS provides an exten-
sible benchmarking suite implemented using Bash and Python to
automate orchestration of parallel benchmark runs across different
container runtimes. CoPTS supports:
(a) running multiple benchmarks including Bonnie++, Linpack, No-
ploop, Stream, Sysbench, Unixbench, and Y-Cruncher.
(b) execution of benchmarks on OCI compatible runtimes including
runc (Docker), runsc (gVisor), and crun runtimes.
(c) configurable options to specify: the benchmark to test, the num-
ber of processes to create, the number of containers to launch and
run sequentially per process, and the number of benchmark runs
per container. Parallel testing is achieved by having multiple pro-
cesses create and execute containers in parallel on the same host.
The design of CoPTS is extensible so that new benchmarks or con-
tainer runtimes can be added. CoPTS aggregates key performance
indicators generated by benchmarks (e.g. runtime or throughput)
into a tabular format to enhance readability. For each run, CoPTS
generates ‘x+1’ CSV files: • 1 file from each of the ‘x’ parallel pro-
cesses aggregating all benchmark iterations within it • 1 file that
aggregates the runs from all the parallel process. For example, to
orchestrate running the STREAM benchmark, CoPTS can be con-
figured to create 40 processes which each launch a container 20
times sequentially. Then for each container CoPTS runs STREAM
10 times. CoPTS then generates 40 files summarizing output from
each process to aggregate results from (20x10=200) runs. A final
output file is then produced to aggregate results from all 40 pro-
cesses to capture results for all (40x20=8,000) runs. The number of
processes, containers, and runs are all configurable. Additionally,
each container instance launched by CoPTS was limited to use 2
vCPUs and 4GB of memory.

3.1.1 Container Runtimes. This paper investigates the isola-
tion and performance of alternate container runtimes. Container
runtimes were selected based on their adoption in the industry, re-
lease dates, and compatibility with Docker. Docker was made open
source in 2013 and has since been widely adopted and crowned the
de facto representative for containerization. For this reason, this
paper uses Docker and runc as the baseline for our performance
comparisons. We compare performance and isolation of runc with
runsc and crun (2019). We chose these container runtimes because
they differ in their design philosophy. Runsc’s design is focused on
providing better isolation, while crun’s design is focused on allow-
ing for easy adoption and lower performance overheads. Container
technologies used in this paper are further described below.
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• Docker: Docker is an open-source container technology that pro-
vides interfaces to create and control containers. Docker employs
runc as its default container runtime. runc is an OCI-compliant,
high-performance, and low-level container orchestrator. Runc
manages container creation while serving as an intermediate
layer to conceal system call intricacies. Given runc’s dependence
on Linux kernel features such as control groups for resource
allocation, and namespaces for isolation during container cre-
ation, the host kernel is shared across all containers. Sharing the
host kernel without proper resource isolation can allow one con-
tainer to utilize resources beyond the limits set and impact the
throughput of other co-hosted containers [7, 14]. In this paper,
the Docker runtime (runc) serves as a baseline for comparison.
Performance and isolation attributes of alternate container run-
times are compared against runc to glean the advantages and
drawbacks of each.

• gVisor: gVisor is a container engine developed by Google which
implements a runtime called runsc. runsc is an open container
initiative (OCI) runtime which has been designed to provide bet-
ter isolation between container runs[8]. Runsc prevents attackers
from gaining host access even if they have only compromised a
single subsystem. Runsc introduces an application-level kernel
(the sentry) that provides a layer of abstraction to the host ker-
nel. This prevents the user from obtaining direct access to the
host’s kernel to eliminate unfiltered system calls[23]. Runsc also
implements rule-based execution of system calls for added secu-
rity. gVisor’s sandboxing approach adds overhead to container
operations like system calls [2].

• Crun: provides a fast and low-memory footprint container run-
time compliant with the OCI specifications. Many container run-
times like runc and runsc are written in Go. The motivation to
develop crun was to provide a container runtime implemented
in C that is efficient. As a result, crun’s compiled binaries are 50
times smaller than runc [4, 19]. Crun is open-source and cur-
rently maintained by Red Hat as part of their larger containers
eco-system (Containers, 2021) [3].

Resource Type Benchmark
Memory stream, sysbench-memory, y-cruncher
CPU linpack, noploop, sysbench-cpu, y-cruncher

Table 1: Benchmarks and the primary resources they stress

3.1.2 Benchmarks. This paper compares container runtimes by
executing common benchmarks in parallel. Benchmarks that exer-
cise core system resources (e.g. CPU and memory) are chosen to
investigate performance and isolation characteristics of container
runtimes. For each benchmark, we’ve configured CoPTS to execute
an increasing number of parallel runs from 1 to 40 stepping up
by 10. We executed the following benchmarks:
• B1 - Linpack: provides a collection of Fortran subroutines that
performs lower-upper (LU) factorization to solve the matrix ex-
pressionA*X = B. This calculation is performed in a loop and since
it is a throughput-based benchmark, the number of loops can dif-
fer impacting the runtime. Linpack returns output in MegaFLOPS
(floating point operations per second) [6]. We configured matrix
A to be 600x600 in size.

• B2 - Noploop: provides a simple CPU clock speed benchmark
which records the runtime of performing a fixed number of No-
Operation (NOP) instructions. Dividing the number of NOPs
by the time taken provides the observed clock speed of the con-
tainer. Noploop is advantageous because it is simple to implement,
minimizes cache-miss based variations, stall cycles, and branch
mispredictions [9]. We set Noploop to 6 billion NOPs.

• B3 - Stream: System memory performance is measured using
Stream which employs uncomplicated vector kernel operations.
Stream measures throughput for four distinct operations: copy,
scale, add, and triad reporting aggregate throughput [16].

• B4 - Sysbench-CPU: provides a popular benchmark based on Lua-
JIT which can profile multiple resources. We leveraged sysbench
to generate 20 million prime numbers to stress the CPU [13].

• B5 - Sysbench-memory: was used to stress memory by writing
100GB in 1KB blocks to measure memory write throughput.

• B6 - Y-cruncher: computes Pi and other constants to trillions of
digits as a deterministic workload to generate CPU and memory
stress [22]. We calculated pi to 100 million digits.

3.2 Experiments
We conducted a series of experiments to profile isolation properties
of container runtimes. The experiments examined performance
using CPU and memory benchmarks, and also the isolation capa-
bilities of container runtimes for those two resources.
• E1 – CPU Utilization Performance Test
This experiment compares CPU performance of container run-
times by running CPU benchmarks across all runtimes. The
benchmarks for this experiment were: Linpack (B1), Noploop
(B2), and Sysbench CPU (B4).

• E2 – Memory Utilization Performance Test
This experiment compares the memory performance of container
runtimes by running memory benchmarks across all container
runtimes. The benchmarks for this experiment were: Stream (B3),
Sysbench Memory (B5), and Y-Cruncher (B6).

• E3 - CPU and Memory Resource Isolation Test
This experiment ran benchmarks on multiple container instances
in parallel on a shared host while scaling up the number of con-
current runs (1, 10, 20, 30, 40) to observe the resource utilization.
We then compare the performance of the runtimes in parallel and
in isolation (E1 and E2). The percentage change in performance
suggests the isolation offered by different runtimes.

To ensure the test results were not affected by any other applications
running on the same host, we performed our experiments on an
AWS EC2 c5d.metal instance running Ubuntu Server 22.04 LTS
which provided an isolated cloud server. This machine features 96
vCPUs with 192 GiB of memory.

One limitation of our experiments is that we cannot differentiate
the amount of performance degradation resulting from the choice
of container runtime versus the amount of degradation caused by
resource contention of CPU hyper-threading. Our experimental
configurations enabled benchmarking the same workloads against
different container runtimes, while the Linux scheduler governed
the executions. To ensure fairness in our evaluations, our experi-
ments subjected all three container runtimes to the identical host
environment, aiming to isolate the performance discrepancies at-
tributable solely to the container runtime choice.
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4 RESULTS
For the paper, we ran Linpack, Noploop, Stream, Sysbench CPU,
Sysbench Memory, and Y-Cruncher. We first profiled benchmark
resource utilization using the Container Profiler on a c5.xlarge
AWS EC2 instance to ensure benchmarks had distinct resource
utilization profiles. The c5.xlarge instance features 4 vCPUs and 8
GiB of memory. The Container Profiler is a Linux-based tool that
enables resource utilization profiling of scripts and container-based
tasks. It collects metrics related to CPU, memory, disk, and network
utilization at the VM, container, and process levels [11, 12].

Figure 1: CPU Profile for various Benchmarks
In figure 1 we can see that other than Noploop, our benchmarks

had unique resource utilization and therefore provide a comple-
mentary set of benchmarks. Noploop exhibited similar resource
utilization to Linpack but we implement it in our comparison as
it is light-weight and unique in that it provides an estimation of
effective CPU clock speed.
B1 - Linpack
We observed the following results from running Linpack across our
container runtimes:

Figure 2: Linpack Benchmark Results
Based on Figure 2 and Table 2, we can see that runsc performs

poorly relative to runc when scaling up concurrent runs (1, 10,

Container
Runtime

Throughput Throughput
LossIsolated Run 40 Parallel Runs

runc 1.00x 0.87x ∼ -13%
runsc 0.97x 0.74x ∼ -24%
crun 0.99x 0.87x ∼ -12%

Table 2: Linpack performance comparison for an isolated
run and 40 concurrent runs. Results are normalized to the
isolated (1 run) performance of runc (x=9,054,862 KFLOPS)
as a baseline. (Higher is better)
20, 30, 40). runsc’s performance loss at 40 concurrent runs vs. 1
isolated run was 2x greater than runc. Similarly, on comparing the
performance of runc and crun, we found that their throughput and
performance loss when scaling up was almost identical. For Linpack
we observed the following ordering of container CPU isolation: crun
> runc > runsc.
B2 - Noploop
We observed the following results when running Noploop across
our container runtimes:

Figure 3: Noploop Benchmark Results

Container
Runtime

Estimated CPU Clock Speed (Ghz) Throughput
LossIsolated Run 40 Parallel Runs

runc 3.1 GHz 2.85 GHz ∼ -8%
runsc 3.04 GHz 2.82 GHz ∼ -7.5%
crun 3.1 GHz 2.85 GHz ∼ -7.9%

Table 3: Noploop performance comparison for an isolated
run and 40 concurrent runs. (Higher is better)

Based on Figure 3 and Table 3, for Noploop, we see that runsc
performs slightly worse than runc and crun but the clock speed
degradation when scaling from 1 to 40 concurrent runs is fairly
similar (runc > crun > runsc). Running 40 concurrent container
instances on the same host had the effect of degrading clock speed
by approximately 8%. Noploop performance overall was similar
across our container runtimes and therefore did not inform us about
which container runtimes provided better CPU isolation.
B3 - Stream
The results for running Stream across our container runtimes for the
copy operation are shown in table 4 and figure 4. For Stream, runsc
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Figure 4: Stream Benchmark Results

Container
Runtime

Throughput (MB/sec) Throughput
LossIsolated Run 40 Parallel Runs

runc 1.00x 0.35x ∼ -65%
runsc 0.92x 0.37x ∼ -60%
crun 0.94x 0.34x ∼ -63%

Table 4: Stream throughput copy comparison for an isolated
run and 40 concurrent runs. Results are normalized to the
isolated (1 run) throughput of runc (x=14,843 MB/sec) as a
baseline. (Higher is better)

performed poorly vs. runc and crun when scaling up the number of
concurrent runs. Runsc’s performance loss with 40 concurrent runs
vs. 1 isolated run, however, was less than runc. Results for scale,
add, and triad operations were similar to copy. For stream we infer
the following order for memory isolation: runsc > crun > runc.

B4 - Sysbench CPU
We observed the following results when running sysbench-CPU
across our container runtimes:

Container
Runtime

Avg. Event Exec Time in sec Runtime
IncreaseIsolated Run 40 Parallel Runs

runc 1.00x 1.51x ∼ +51%
runsc 1.02x 1.54x ∼ +50%
crun 1.02x 1.25x ∼ +25%

Table 5: Sysbench Prime Number Generation runtime com-
parison for an isolated run and 40 concurrent runs. Re-
sults are normalized to the isolated (1 run) runtime of runc
(x=150.34 seconds) as a baseline. (Lower is better)

Based on figure 5 and table 5, for an isolated run, runsc and crun
performed poorly compared to runc. However, for the 40 concurrent
runs, crun outperformed runsc and runc. For Sysbench CPU, we
infer the following order for CPU isolation: crun > runc > runsc.

Figure 5: Sysbench-CPU Benchmark Results

B5 - Sysbench Memory
We observed the following results when running sysbench-memory
across our container runtimes:

Figure 6: Sysbench-memory Benchmark Results

Container
Runtime

Data Transfer Rate in MiB/sec Throughput
LossIsolated Run 40 Parallel Runs

runc 1.00x 0.92x ∼ -8%
runsc 0.84x 0.78x ∼ -6%
crun 1.00x 0.92x ∼ -7%

Table 6: Sysbench Memory throughput comparison for an
isolated run and 40 concurrent runs. Results are normalized
to the isolated (1 run) throughput of runc (x=68,903 MiB/sec)
as a baseline. (Higher is better)

Runsc performed poorly compared to runc and crun across all
configurations as shown in figure 6 and table 6. Runsc, however,
had slightly less performance loss at 40 concurrent runs vs. runc
and crun. We observed the following order of memory isolation:
runsc > crun > runc.
B6 - Y Cruncher
After running the Y-Cruncher benchmark across our container
runtimes, we observed the results shown in table 7 and figure 7.
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Figure 7: Y-Cruncher Benchmark Results
Container
Runtime

Execution Time in sec Runtime
IncreaseIsolated Run 40 Parallel Runs

runc 1.00x 1.22x ∼ +22%
runsc 2.46x 2.59x ∼ +5%
crun 0.99x 1.24x ∼ +25%

Table 7: Y-Cruncher runtime comparison for an isolated
run and 40 concurrent runs. Results are normalized to the
isolated (1 run) runtime of runc (x=32.77 sec) as a baseline.
(Lower is better)

For y-cruncher, runsc performed twice as poorly as runc and crun.
Though net throughput across different configurations was poor
for gVisor (runsc), the performance loss when scaling up to 40
concurrent runs was nearly five times less than runc and crun.
For y-cruncher we infer the following order for memory isolation:
runsc > runc > crun.
5 CONCLUSION
From our experiments, we observed performance of CPU and mem-
ory benchmarks on runsc, the container runtime employed by
gvisor, were consistently less than runc and crun. For all bench-
marks, runsc had lower throughput and/or longer runtime. Worst
case performance was for y-cruncher where runtime in isolation
was 2.46x, and in parallel 2.59x compared to runtime in isolation
on runc. Y-cruncher performance with 40 parallel instances only
degraded 5% on runsc suggesting another bottleneck other than
parallel instances restricted performance.

The throughput of stream copy operations dropped over 60% for
all container runtimes suggesting container isolation is poor for
this memory operation. Prime number generation runtime with
sysbench increased over 50% on runc and runsc, whereas crun
increased only 25% when scaling up from 1 to 40 parallel instances.
Here optimizations provided by crun were very helpful to deliver
better runtime. Overall crun had less performance degradation
compared to runc, the default container runtime, for all benchmarks
except y-cruncher. Crun featured a performance loss less than runc

of: 1% linpack, .01% noploop, 2% stream, 26% sysbench-cpu, and 1%
sysbench-mem.

If containerization offered perfect isolation of resources then we
should not see any loss of throughput or increase in runtime for
benchmarks run in parallel vs. isolation. However, we observed
performance degradation for every benchmark.
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