Towards Low-Cost Global Highly Available Large
Container-Based Serverless Functions

Jasleen Kaur, Robert Cordingly, Ling-Hong Hung, Wes Lloyd
School of Engineering and Technology
University of Washington
Tacoma, Washington USA
jaslkaur, rcording, Ihhung, wlloyd@uw.edu

Abstract—Serverless computing and the Function-as-a-Service
(FaaS) paradigm have transformed how cloud-hosted applica-
tions are deployed, providing remarkable scalability and geo-
graphical distribution capabilities. AWS Lambda’s support for
containerized functions has further enhanced the packaging and
deployment process, enabling seamless portability and consis-
tency across various operational environments. However, a fun-
damental challenge remains: the replication of Docker container
images across multiple container registries in different regions to
ensure high availability of globally deployed functions with low
replication latency to support geographically dispersed clients.

While multi-region deployment minimizes latency and en-
hances service availability for diverse clients, the associated costs
and operational complexities are non-trivial. The replication
process, particularly for large container images, is both expensive
and slow, potentially hindering rapid scalability and respon-
siveness. Public cloud container image replication support such
as that offered by Amazon’s Cross Region Replication (CRR)
represents a significant stride forward, automating the replication
of container images across regions within container repositories.
Despite its advantages, CRR is constrained by several limitations:
all images in a container repository are replicated after this
feature is enabled, and there is an absence of fine-grained
filtering at the image level within repositories. This can result
in superfluous replications and increased costs.

This paper investigates alternatives for cost-effective and effi-
cient global deployment of container-based serverless functions
on AWS Lambda. We introduce on-demand container image
replication mechanisms with promise to reduce storage costs
by avoiding unnecessary replication. We investigate multiple
approaches to replicate container images only when needed to
minimizedata transfer latency and storage overhead. We provide
a comprehensive evaluation of these approaches, assessing their
impact on cost, replication time, and turnaround time for function
availability. Our findings demonstrate potential for substantial
cost savings while maintaining high availability and consistent
performance for container-based Lambda functions deployed
worldwide.

Index Terms—Serverless Computing, AWS Lambda, Elastic
Container Repository, S3, Docker, CRR, On-demand Replication,
Cost Optimization

I. INTRODUCTION

Serverless computing, particularly Function-as-a-Service
(FaaS), has gained popularity for cloud application hosting
due to its abstraction of infrastructure management [1]. Cloud
providers such as Amazon Web Services, Microsoft Azure,
and IBM Cloud each offer serverless computing platforms.
With serverless computing, software packaged as functions
are deployed to individual cloud regions. The number of cloud

regions, which are sets of geographically local data centers has
grown substantially, offering opportunities to leverage the best
resources based on various objectives [2]-[4]. For example,
users may choose regions based on client proximity to mini-
mize latency or select regions with low resource contention
during off-business hours for better performance and cost
savings [5] [6]. Cloud providers, however, lack mechanisms to
automatically scale serverless function deployments globally.

Recently Function-as-a-Service serverless platforms have
introduced support for hosting functions based on application
containers like Docker, simplifying deployment by packaging
function code, libraries, and data into containers [7]. AWS
Lambda supports container-based functions using container
images stored on Amazon S3 or the Amazon Elastic Container
Registry (ECR). However, container-based Lambda functions
can only use container images from private regional ECR
repositories, not public repositories. This design requires du-
plication of container images in every region where functions
are deployed. To store container images in private ECR
repositories costs $0.10/GB/month/region [8], which totals
$12/year/region for a each function with a 10GB container
image. If looking to replicate a function across all AWS
regions globally this results in a cost greater than $300/year
simply for image storage. This does not consider the cost
of executing functions. Thus, providing high availability for
container-based functions globally, especially those with large
images, is expensive and challenging [9].

This paper investigates alternative approaches to reduce
the costs of providing global high availability for container-
based serverless functions, particularly those requiring large
container images. These approaches can support creation of a
just-in-time deployment tool to enable global container-based
function deployment on demand. We compare our approaches
to deploy large container based functions on demand with
the Elastic Container Replication (ECR) service as a baseline.
We investigate tradeoffs between container image storage cost
and data transfer latency. Our envisioned workflow involves:
creating container-based functions in one region, triggering
container image replication in target region(s) on demand,
and deploying functions using the transferred images from
local ECRs. We focus on challenges associated with moving
larger container images (e.g. "10 GB) for serverless function
execution.

A. Problems with cloud provider managed image replication

Achieving high availability for containerized applications
often requires replicating container images across multiple re-
gions, which can be both costly and time-consuming. Amazon
addressed this challenge with the launch of ECR Cross Region
Replication (CRR) [10], a feature designed to automatically
replicate container images across regions in the Amazon
Elastic Container Registry (ECR). ECR CRR allows users to
filter repositories using a regular expression to match the prefix
of the repository name to configure Cross Region Replication
[11]. When configuring a replication rule in a private registry,
specifying a repository filter offers a way to manage which
repositories are replicated. Without any filters, all repositories’
contents are replicated by default. This filtering capability
allows for granular control over replication, ensuring that
only the desired repositories are replicated across regions.
However, there are limitations to the current implementation.
Only repository content pushed to a repository after CRR is
configured is replicated, pre-existing content is not replicated.
While filtering based on the repository name is supported,
there is no image level filtering, leading to potential issues
where CRR may replicate more images than necessary. These
limitations are highlighted in a reported issue on GitHub [12],
indicating the need for further refinement of ECR CRR to
optimize image replication across regions.

B. Research Questions

This paper investigates the following research questions:
RQ-1: How should container images be replicated for
on-demand use to support multi-region high availability of
container-based serverless functions?

For RQ-1, For viable solutions, we calculate the ensuing
storage costs in S3 or ECR, and transfer costs to make the
data available for compute. We compare various methods for
image replication and find the most cost-effective approach.
RQ-2: : How should container-based serverless functions
be best created on-demand once a container image is made
available locally in the region for execution?

For RQ-2, we propose using a proxy function to initiate
deployment of container-based functions in regions lacking the
container image. This proxy function manages image transfer
and function creation, with control transferred to the new
function post-deployment. We create a synchronous blocking
proxy function, which waits for the container-based function
to become available before calling it and returns results [13].
RQ-3: What are the cost implications for container image
replication for different image retention policies and image
replication methods?

For RQ-3, we determine worst-case costs to replicate images
under different usage scenarios and image retention policies.
Usage scenarios define different serverless function invocation
frequencies, (e.g. 3x/hour, 3x/day). Image retention policies
define how long an image should be retained in a regional
repository (e.g. one hour, one day, one week)

C. Contributions

This paper makes the following research contributions:

1. Investigation of alternatives to maintaining continuous
container image replicas across every region for global
high availability of container-based serverless function
deployments.

2. Investigation of tradeoffs for replicating container im-
ages on demand with an aim of reducing storage costs
while also attempting to minimize time taken for on de-
mand image replication to support global function high
availability across regions, including the implementation
of image-level filtering mechanisms.

3. Testing workloads different function invocations and
container image retention policies to evaluate worst case
cost of replication.

II. BACKGROUND AND RELATED WORK

A. Benchmarking Functions-as-a-Service (FaaS) globally on
any cloud

Multi-region FaaS involves deploying serverless functions
in multiple regions to achieve better performance, high avail-
ability, and fault tolerance. It allows clients to run their
applications closer to the users, reducing latency and improv-
ing user experience. Prior studies have investigated hosting
FaaS functions across multiple regions or across multiple
clouds. In one of the studies [4], performance of a Natural
Language Processing (NLP) pipeline built using serverless
FaaS functions is compared on two different CPU architectures
(x86_64 and ARMG64), and across four cloud regions on
three continents over twenty-four hours. To minimize the
function cold start latency, required data in S3 and associated
Docker container images were stored in the same region as
their dependent Lambda function. The cloud regions were
selected across three continents to include a variety of times
zones. Performance of the NLP pipeline was shown to be
negatively impacted during busy times of a typical 9am to
Spm workday as compared to off hours. Another related effort
on FaaS federation is rAFCL [14], a middleware platform that
maintains the reliability of complex Function Choreographies
(FCs), serverless workflow applications which connect server-
less functions by data and control flow. The platform creates
alternative strategies for each function of a FC based on user-
specified availability, which are not restricted to the same
cloud region. For example, FCs can automatically distribute
alternative functions to multiple regions across the top five
cloud providers without vendor lock-in, thereby ensuring that
FCs continue to execute even when individual functions fail.
The experimental results demonstrate that rAFCL outperforms
the resilience of AWS Step Functions. Serverless functions can
leverage deployments across multiple regions or even multiple
clouds to take advantage of their capabilities, pricing, and
geographical locations, but deploying functions across multi-
ple clouds increases the risk of configuration and consistency
errors due to the increased complexity and distributed nature.

B. Container-based serverless functions

Containers are isolated environments that provide a consis-
tent runtime environment for applications. Serverless container
images are typically small and lightweight. Cloud providers,
like Google [15], Alibaba [16], and Amazon [7] support
cloud functions to be deployed using container images. FaaS-
NET [17], a middleware system for accelerating container
provisioning in Function-as-a-Service (FaaS) platforms was
integrated into Alibaba Cloud Function Compute, where it
proved to be scalable and fast. An experimental evaluation
of FaaSNET found it to be extremely fast and highly scalable
as it could initiate 2,500 function containers on 1,000 virtual
machines in just 8.3 seconds. With FaaSNET integrated into
Alibaba’s Cloud Platform, it scaled container-based serverless
functions approximately 13x faster than the original baseline
approach used by Alibaba. Alongside serverless container pro-
visioning tools, prior work has sought to improve the cold start
latency of hosting container-based serverless functions in the
cloud. Pigeon [18], a private cloud serverless FaaS framework
built on top of Kubernetes, helps reduce function start up
latency by using oversubscribed static pre-warmed containers.
Compared to a Kubernete based serverless platform using the
native scheduler, Pigeon improved throughput threefold while
handling short-lived functions. Pigeon enhanced function cold
trigger rates by 26% to 80% as compared to the AWS Lambda
serverless platform.

C. FaaS deployment tools for pushing updates to different
cloud/regions

GlobalFlow [17] is a workflow orchestration service that
operates across multiple regions to effectively coordinate
the execution of geographically distributed AWS Lambda
functions that are necessary for cloud-based workflows. One
of its strategies is the copy-based approach, where Lambda
functions are copied from various regions to a target region to
generate and execute a new workflow job in the target region.
To aid FaaS application deployment across multiple regions,
data may also need to be transferred or replicated across
regions. The Performance and Profit Oriented Data Replication
Strategy (PEPR) for cloud systems can evaluate whether data
replication would be profitable for the cloud provider to
help satisfy a cloud service level agreement (SLA) [19]. But
to ensure profitability for customers or cloud users, focus
should be made on minimizing costs without compromising
the availability of serverless functions. To achieve better
performance of FaaS functions, especially for minimizing cold
start latency, data should be close to the compute. Approaches
to ensure co-location of code and data have been previously
discussed. The FaDO [20] orchestrator helps in viable place-
ment of data dependencies across multi-serverless compute
clusters in different regions. It uses HTTP reverse proxying
and load balancers to direct function invocation requests to
appropriate storage clusters offering distribution transparency
to the clients in bringing data to compute. However, FaDO
used Amazon’s S3 storage solutions to interact with the data
and is not concerned with container-based function images.

In our research, we focus on moving data to compute to
support container-based function invocations. The idea is to
investigate the potential to copy container images to the region
they are executed on demand to lower storage costs. To
support container image replication, AWS provides [10] the
Cross Region Replication (CRR) service that automatically
triggers data replication of desired S3 buckets. It has been
extended to Elastic Container Registries (ECR) to support
replication of Docker container images in the specified regions
automatically, when images are pushed to the private registry
with the CRR feature.

D. Support for AWS Lambda container based functions

Container images are executable packages that contain
the necessary software components to run an application or
service, including code, libraries, and system tools. Container
images are widely used by containerization technologies like
Docker to enable the efficient and portable deployment of
applications. Amazon announced support of container-based
Lambda functions in December 2020 [7], [21]. Containers up
to 10 GB can be packaged and deployed for use in serverless
functions simplifying the development and deployment of
large data-intensive functions that depend on dependencies
like machine learning or bioinformatics datasets. The same
operational simplicity, automatic scaling, high availability, and
native integrations with various services available to functions
packaged as zip archives also apply to functions based on con-
tainer images. AWS provides publicly available base images,
that include a runtime interface client to make the function
code compatible for all supported Lambda runtimes, allowing
developers to build images from the open-source images.

III. METHODOLOGY
A. Systems and tools

Multiple tools supported our study, as summarized in Ta-
ble I: Docker container images and container based lambda
functions for packaging and deployment of code, the Elastic
Container Registry, and Amazon S3 for image storage.

TABLE I: Systems and tools summary

Function Description
Docker Container A 10 GB container image used to package
Image function code.
Container-based Serverless event-driven computer service to
Lambda deploy container images.
Elastic Container R itories to regionally stor ntainer im
Registry epositories to regionally store container images
Object store service that has a lower pricin,
Amazon §3 : model as compared to ECR. b ¢
AWS CLI Accessing AWS services using command line.
B. Tasks

We describe below preparatory and development tasks per-
formed to support investigation of our research questions.

1) Implementation of alternative approaches to replicate
container images across regions on demand: To address (RQ-
1), we evaluated the following methods to move container
images to regions on demand:

a) Trigger to replicate container images in private ECR
registries: Starting with one master copy of the container
image stored in one ECR region, we used a Bash script
embedded into a build to pull the container image from the
master ECR. We then created private registries in local regions
as needed and pushed the downloaded image to those registries
to make the container image available in the desired regions
using the same script. We used evaluation metrics listed in
Section III-D to investigate the tradeoffs to copying the image
ourselves versus triggering AWS CRR for replication using
evaluation.

b) Store the Docker image in S3 and trigger replication
in ECR: Since the storage cost of container images in ECR
is high, we considered storing the container image data in
S3 bucket(s) to reduce the cost. We created a master copy
in one region’s S3 bucket. On instantiating a build trigger, a
Docker image was created using the raw data present in S3
and published in a local private ECR making the container
image available for a container based Lambda function. To
further reduce storage costs and build time for creating a
Docker image, we also considered storing an image in S3 in
compressed form [22] and then pushing it to the ECR registry.

2) Implement triggered Lambda function creation: For high
availability of container-based functions, we prototyped a
mechanism to transfer control from one Lambda function to
another to evaluate how much additional time was required
using this Proxy Function Approach. We triggered creation of a
new container-based Lambda function once image replication
was complete. We investigated passing-off control of the cur-
rent function to the newly created function. The new function’s
calling information (i.e., function name) is already available
to this proxy function and the responsibility for calling the
new function was delegated to the proxy function. After the
image was pushed to the desired ECR region, we triggered the
creation of the new container-based function and then invoked
the function. Figure 1 summarizes the regional replication
steps for container based functions.

G S
Task 1: é;‘f ::I:tizn: Task 3 :
Publish P Invoking
container function the
image in on- Lambda
the region demand Function
@y S o

Fig. 1: Regional container based function replication steps

3) Implementing and testing static retention policies of
container images: We investigated different static retention
policies to evaluate their implications and to help understand
how long we should retain container images in the ECR
after a period of inactivity. This addressed (RQ-3) in terms
of evaluating different schemes of purging to minimize costs
when an ECR image is no longer in use. We proposed a variety

of ways to call container-based functions based on different
retention policies and invocation frequencies.

C. Experiments

1) Evaluating performance overhead to replicate data
across regions on demand: This experiment leverages Task 1,
which addresses (RQ-1). We compared each of the methods to
perform data replication discussed in Task 1 against the overall
cost, and time to transfer the data, using the AWS ECR CRR
service as a baseline (AWS CRR performs automatic cross
region replication of container images to remote regions). We
ran tests using a 10GB container image and performed image
replication. To conduct Experiment 1, we used three different
build services CodeBuild, GitHub Actions, and EC2 to transfer
data to destination region in the following three ways:

1. Build-from-S3: Stored supporting source files to build
Docker image in S3 to then push the image to ECR

2. Transfer-using-ECR: Implemented a trigger to replicate
container images in private ECR registries from one
region to another

3. Transfer-from-S3: Stored the Docker image in S3 and
triggered replication in ECR

2) Evaluating time taken to pass of control to a Lambda
function: In Task 2, we triggered the creation of a container-
based Lambda function in the target region immediately after
the image was successfully uploaded using the proxy function
approach discussed before. To evaluate this, we measured the
time taken to complete the transfer of control between the two
Lambda functions. We also assessed the latency involved in
invoking the newly created function, which directly impacts
the overall responsiveness of the system. This experiment
addresses (RQ-2), crucial for understanding the operational
characteristics and performance implications of our approach.
It provided valuable insights into the practicality and feasibility
of using container-based serverless functions for achieving
high availability and low latency for multi-region serverless
functions.

3) Evaluating the container image and container function
retention policies: This experiment, associated with Task
3 and (RQ-3), focused on evaluating the cost implications
of different container image retention policies for various
function usage scenarios. We considered a range of scenarios
that vary in the frequency of function invocation within a
given time window, such as X invocations per Y time (e.g.,
3 calls per week, 4 calls per day). For each scenario, we
evaluated different image retention policies, such as retaining
the image for 1 hour, 4 hours, 1 day, etc., after use with
an aim to determine the optimal image retention policy that
balances cost and performance for different usage patterns.
To calculate the cost, we considered the number of image
replications required for each usage scenario with different
retention policies, assuming that every function invocation
results in a ’cache MISS’ (i.e. when the image is not present
in the desired region when the function is called), representing
the worst-case scenario for cost calculation. The cost metrics
for this experiment include image storage in Elastic Container

Registry (ECR) for a specified time period, data transfer for
image replications across regions, and the cost to run the
build services (e.g., EC2, AWS CodeBuild, GitHub Actions).
By assuming the widest distribution of calls to examine
the worst-case cost outcome, we provide insights into cost-
effective strategies for managing container image storage and
replication in a serverless environment.

TABLE II: Comparing tradeoffs between costs and build
execution times for container image replication

Method Build-From-S3 Transfer-Using-ECR | Transfer-From-S3
Time(s) | Cost(c) | Time(s) Cost(c) Time s | Cost(c)
CodeBuild 480 16 460 18 470 15.8
Github Actions 580 22 520 99 600 31
EC2 m5zn.2xlarge 503.6 9.2 588.5 14.1 541.88 10.1

B AWS CodeBuild © GitHub Actions ® EC2 Instance

Execution Time (sec)

Build from S3

Transfer using ECR Transfer using S3

Fig. 2: Container image build and deployment times

D. Evaluation Criteria / Metrics

The evaluation for all the experiments was performed on a
10GB container image using the following metrics:
1. Cost
« Storing container image in ECR
« Storing container or data in S3
« Transfer costs of container images/data from S3 to
ECR or in between cloud regions
o Cost of running the build using CodeBuild, Github
Actions, or EC2 instance
« AWS Lambda function runtime
2. Data replication or data transfer latency among AWS
regions
3. Function turnaround time when the image is finally
deployed.
IV. RESULTS

A. RQ-1: Cost and time estimation of container image repli-
cation

Table II summarizes the experimental results from Exper-
iment 1 comparing three different ways to transfer container
images using AWS CodeBuild, Github Actions, and Amazon
EC2. Figure 2 compares the build and deployment times
between the three data transfer methods using three different
services and Figure 3 compares the cost. AWS CodeBuild
emerged as the fastest option across all scenarios, with data

transfer times for large images ranging from 460 to 480
seconds. Conversely, EC2 proved to be the most cost-effective
choice, with costs for large images ranging from 9.2 to 14.1
cents. These results highlight the trade-offs between time and
cost when selecting a method for building and transferring
Docker images across regions for use in a serverless environ-
ment.

B AWS CodeBuild ™ GitHub Actions ® EC2 Instance

100
99

75

50

Cost (cents)

25

31
22
Build from S3 Transfer using ECR Transfer using S3

Fig. 3: Comparing Execution Costs (1 day retention)

B. RQ-2: Additional time for container-based Lambda func-
tion to be available once the image is replicated to destination
region

After a container image is deployed to the destination re-
gion, in Experiment 2 we triggered the creation of a container
based Lambda function with the new image and then invoked
the newly created function. A proxy function was used to
trigger image replication, create the container based Lambda
function with the image, and pass control to the newly created
Lambda function. Table III highlights the total time before a
new container based function was available and ready for use.
The additional turnaround time observed was 17.56 seconds.

TABLE III: Serverless function response time after image
replication and function creation in the destination region

Scenario Time (s)
Creating the container based Lambda function with
the image 17.02
Invoking the lambda function 0.540

C. RQ-3: Worst case cost analysis of container image reten-
tion against invocation policies

This section describes the experimental results for Experi-
ment 3 in which we examined the worst case costs of making
a function available after completing the steps to replicate the
container image and make the function available in the new
region explained in figure 1. Table IV summarizes for different
function invocation frequencies, how often a function is not
available when invoked. For example, when there is a ’cache
miss’ for a one day image retention policy, how long will the
image have to be stored in the ECR repository. For example, if
we invoke the function 3x/day, perhaps once every 8 hours, and
retain the image only for 1 hour, we would need to replicate

the image 3x/day in the worst case scenario (i.e. 3 hours in a
day), resulting in 1.5 months/year.

TABLE IV: Retention time and annual ECR storage time of
a container image based on function invocation frequency

Invocation Retention time (%)
Rate and annual ECR storage time
1 hr 1 day 1 week 1 month
Sc A: 12.5% 100% 100% 100%
3x / day (1.5 mol/yr) (12 molyr) (12 mo/yr) | (12 mo/yr)
Sc B: 1.79% 42.85 % 100% 100%
3x / week (.21 mo/yr) | (5.13 mo/yr) (12 molyr) (12 mol/yr)
Sc C: 0.42% 10% 69.90% 100%
3x / month | (.05 mo/yr) | (1.18 mo/yr) | (8.3 mo/yr) | (12 mo/yr)

Further, in Tables V, VI, and VII we show the cost of
replicating an image using Github actions, an EC2 instance
(m5zn.2xlarge), and AWS Codebuild respectively against dif-
ferent retention policies when storing the image in ECR for
various lengths (e.g. 1 hour, 1 day, 1 week and 1 month).

TABLE V: Yearly cost of replication if an image is replicated
using Github Actions

Invocation Rate Image retention policies and ECR storage time
1 hr 1 day 1 week 1 month
Sc A : 3x/day $1,059.38 | $12.97 $12.97 $12.97
Sc B : 3x/week $150.93 $155.84 | $12.97 $12.97
Sc C : 3x/month $34.83 $35.96 $11.67 $12.97

TABLE VI: Yearly cost of replication if an image is replicated
using an m5zn.2xlarge EC2 instance

Invocation Rate Image retention policies and ECR storage time
1 hr 1 day 1 week 1 month
Sc A: 3x / day $119.54 | $12.11 | $12.11 $12.11
Sc B: 3x / week $17.38 $22.29 | $12.11 $12.11
Sc C: 3x / month $4.01 $5.14 $12.26 $12.11

TABLE VII: Yearly cost of replication if an image is replicated
using AWS CodeBuild

Invocation Rate Image retention policies and ECR storage time
1 hr 1 day 1 week 1 month
Sc A: 3x / day $163.56 | $12.148 | $12.148 $12.148
Sc B: 3x / week $23.30 $28.22 | $12.148 $12.148
Sc C: 3x / month $5.38 $6.51 $13.63 $12.148

V. CONCLUSION

This paper has described our investigation of alternate
approaches to replicate container-based images on demand and
the associated time and costs. These findings support address-
ing the issue with ECR Cross Region Replication, specifically
focusing on the problem of image-level filtering for high avail-
ability of container images across regions. Our experiments
revealed that AWS CodeBuild was the fastest service for
transferring large container images, with a container image
transfer time of 460 seconds using the Transfer-Using-ECR
method, which triggers replication of the desired image present
in one private registry to the destination ECR region using the

CodeBuild service. Further, we found replicating images using
EC2 m5zn.2xlarge VMs to be the most cost-effective method
of replication, with a cost of $0.5 for replicating one image
using the Build-From-S3 method with a 1-day retention policy.
This approach creates a container image using the source
files present in S3 and uses an EC2 instance as a medium
to build and push the image to the desired ECR repository.
Additionally, our analysis of the worst-case cost of replicating
an image using different retention policies and invocation
frequencies showed that the cheapest approach is to use an
EC2 instance, especially when invoking the function call 3x
per month and retaining the image for an hour. In conclusion,
this paper has demonstrated cost vs. performance trade-offs
for three alternate approaches for just-in-time container image
replication to support global high availability of container-
based serverless functions.

REFERENCES

[1] M. Yan et al., “Building a chatbot with serverless computing,” pp. 1-4,
2016.

[2] S. Ginzburg and M. J. Freedman, “Serverless isn’t server-less: Measuring
and exploiting resource variability on cloud faas platforms,” pp. 43-48,
2020.

[3] R. Cordingly, J. Kaur, D. Dwivedi, and W. Lloyd, “Towards serverless
sky computing: An investigation on global workload distribution to
mitigate carbon intensity, network latency, and cost,” IEEE, pp. 59-69,
2023.

[4] D. Lambion et al., “Characterizing x86 and arm serverless performance
variation: A natural language processing case study,” pp. 69-75, 2022.

[51 P. Patros et al., “Toward sustainable serverless computing,” IEEE Inter-
net Computing, vol. 25, no. 6, pp. 42-50, 2021.

[6] M. Shahrad et al., “Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider,” pp. 205-218, 2020.

[7] “Aws container based lambda.” [Online]. Avail-
able: https://aws.amazon.com/blogs/aws/new-for-aws-lambda-container-
image-support/

[8] “Ecr pricing.” [Online]. Available: https://aws.amazon.com/ecr/pricing/

[9] J. M. Hellerstein et al., “Serverless computing: One step forward, two

steps back,” arXiv preprint arXiv:1812.03651, 2018.

“Aws crr.” [Online]. Available: https://aws.amazon.com/about-

aws/whats-new/2015/03/amazon-s3-introduces-cross-region-replication/

“Tag level filtering in aws ecr crr” [Online]. Available:

https://github.com/aws/containers-roadmap/issues/1737/

“Repository level filtering in aws ecr crr” [Online].

Available: https://aws.amazon.com/blogs/containers/using-amazon-ecr-

replication-rules-to-optimize-your-application-delivery-process/

S. Quinn, R. Cordingly, and W. Lloyd, “Implications of alternative

serverless application control flow methods,” pp. 17-22, 2021.

S. Ristov et al., “Faascinating resilience for serverless function chore-

ographies in federated clouds,” IEEE Trans on Network and Service

Management, vol. 19, no. 3, pp. 2440-2452, 2022.

“Google cloud functions.” [Online].

https://cloud.google.com/functions/

“Alibaba cloud functions.” [Online].

https://www.alibabacloud.com/en/product/function-compute/

A. Wang er al., “{FaaSNet}: Scalable and fast provisioning of custom

serverless container runtimes at alibaba cloud function compute,” pp.

443-457, 2021.

W. Ling et al., “Pigeon: A dynamic and efficient serverless and faas

framework for private cloud,” IEEE, pp. 1416-1421, 2019.

U. Tos et al., “A performance and profit oriented data replication strategy

for cloud systems,” IEEE, pp. 780-787, 2016.

C. P. Smith et al., “Fado: Faas functions and data orchestrator for

multiple serverless edge-cloud clusters,” IEEE, pp. 17-25, 2022.

M. Brooker et al., “On-demand container loading in {AWS} lambda,” in

2023 USENIX Annual Tech Conf (USENIX ATC 23), 2023, pp. 315-328.

“Docker save image.” [Online]. Available:

https://docs.docker.com/reference/cli/docker/image/save/

[10]
(1]

(12]

(13]

[14]

[15] Available:

[16] Available:

(17]

(18]
[19]
[20]
[21]

(22]

