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Abstract—Serverless computing has revolutionized the world of
cloud-based and event-driven applications with the introduction
of Function-as-a-Service (FaaS) as the latest cloud computing
model. This computational model increases the level of abstrac-
tion from the infrastructure and breaks the program into small
units called functions. Thus, it brings benefits such as ease of
development, saving resources, and reducing product launch
time for enterprises and developers. Thanks to the scale-to-
zero feature of this computational model, idle functions with
no traffic will be depreciated from memory. However, this cost-
saving approach adversely impacts delay leading to the cold
start problem. Unfortunately, the existing solutions to alleviate
the cold start delay are not resource-efficient as they follow a
fixed policy over time. Thereby, this paper proposes a novel
two-layer adaptive approach to tackle this issue. The first layer
utilizes a holistic reinforcement learning algorithm to discover
the function invocation patterns over time for determining the
best time to keep the containers warm. The second layer is
designed based on a Long Short-Term Memory (LSTM) to
predict the function invocation times in the future to determine
the required pre-warmed containers. The experimental results
on the Openwhisk platform show that the proposed approach
reduces the memory consumption by 12.73% and improves
the execution invocations on pre-warmed containers by 22.65%
compared to the Openwhisk platform.

Index Terms—Serverless Computing, Function-as-a-Service
(FaaS), Cold Start Delay, Serverless Platforms, Memory Con-
sumption, Openwhisk, Reinforcement Learning

I. INTRODUCTION

With the advent of the digital revolution and the entry
into the information age in the mid-20th century, traditional
organizations changed, e-commerce emerged, and computing
and communications were based on the Internet. Therefore,
the use of information technology became inevitable, and or-
ganizations needed infrastructure, network-based technologies,
computing resources, and storage. This path was followed
by the advent of client/server architecture and centralized
computing. However, implementation costs, human resources,
infrastructure maintenance concerns, and growing data vol-
umes led to the idea of cloud computing.

In cloud computing, infrastructure, computing and storage
resources, platforms and services are shared virtually, dynam-
ically and on-demand over the Internet. Cloud computing has
three models of services. These models are Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as
a Service (SaaS) [1].

In 2014, Amazon introduced the latest cloud computing
model called serverless computing. This computational model

1Faculty of Computer Science and Engineering, Shahid Beheshti University
2Cyberspace Research Institute, Shahid Beheshti University
Corresponding author: Bahar Farahani (b farahani@sbu.ac.ir)

reduces operational costs and the complexity of system devel-
opment, and also increases agility in an enterprise. Because
any responsibility for preparing, implementing, and manag-
ing infrastructure for product development is on the cloud
provider. By reducing these responsibilities, the enterprise can
focus on its business. It also allows developers to focus only
on writing the core logic of their functions and finally place
them on a serverless platform [2], [3], [4].

Despite all the benefits of serverless computing, it faces
some challenges. These challenges briefly divided into three
categories: system, performance, and software engineering
challenges. One of the most critical performance challenges
is the cold start delay, which is considered as a delay in
preparation of the function execution environment [5]. The
most common methods used by popular platforms to reduce
cold start delay are using a pool of warm containers, reusing
the containers, and calling functions periodically. However,
these methods waste resources such as memory, increase
cost and do not have any insight into function invocation
patterns over time. In other words, these methods provide
fixed mechanisms to reduce cold start delay, and they are not
suitable for dynamic cloud environment.

The convergence of serverless computing and the Internet
of Things (IoT), particularly for edge applications, is an
emerging paradigm that has attracted researchers’ attention in
recent years. Many IoT devices are resource-constrained by
processing and storage capacity as well as power consumption
requirements. Serverless computing and the corresponding
serverless functions ensure that the number of resources con-
sumed by an application running on a resource-constrained IoT
device can be controlled on-demand and dynamically. In ad-
dition, despite the scale-to-zero feature, edge device resources
such as energy sources are saved. Another main advantage
that serverless computing can provide to the edge is the
auto scalability feature, as load balancing and scalability are
handled by the cloud provider. Moreover, serverless computing
can play an important role in deploying IoT applications. Due
to the lightweight properties of serverless functions, they can
be easily deployed and placed independently anywhere in the
cloud, edge, or fog [6].

Although serverless computing alleviates some of the major
challenges of IoT, still these converging technologies suffer
from specific limitations such as cold start delay that must be
approached holistically. Indeed, real-time interaction, prompt
processing, and low-latency response are the primary needs
for a wide variety of context-sensitive IoT applications from
healthcare to online games. Thereby, tackling the cold start
delay is the key to the successful integration of IoT and
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serverless computing [7].
In this paper, in order to reduce cold start delay and consider

resource consumption, we propose an intelligent approach that
determines the best policy for keeping the containers warm,
according to the function invocations over time.

The rest of the paper is organized as follows. In section II,
the basic concepts and features of serverless computing are
explained. In Section III, the related works for reducing cold
start delay are categorized and compared. Section IV describes
the proposed two-layer approach to balance the number of
cold start occurrences and memory consumption. Section V
presents and discusses the experimental results. Finally, section
VI concludes the paper.

II. SERVERLESS COMPUTING

Defining serverless computing can be a bit tricky. However,
one way to define it is to consider the amount of control
the developer has over resources. The IaaS model is where
the developer has the most control over both the application
and the cloud operating infrastructure. In the PaaS model, the
developer is not aware of the infrastructure, therefore has no
control over it. But has access to a ready platform to manage
the entire software stack. Finally, SaaS hosts applications as a
service in the cloud, and users across the Internet can use them
without installing them on the system. However, serverless
computing is somewhere between PaaS and SaaS. As shown
in Fig. 1, this computational model increases the granularity
of applications. According to it, an application is broken down
into independent units called functions and introduces a new
service model called Function as a Service (FaaS). In other
words, serverless computing is a general concept, and one way
to perform it is Function as a Service.

Each function is a small, short-lived, stateless, and task-
specific piece of code that is executed in response to events.
In other words, the functions are event-fdriven. These events
include the application interface requests (such as an HTTP
request), changes to the database, and events from IoT devices
[5], [8], [9].

Serverless functions are deployed on containers. As soon
as a function is triggered, a new container is created, and
the function with all its dependencies is deployed on it.
It should be noted that if several invocations are occurred
simultaneously to execute a function, new instances of the
function are created according to the number of requests, and
each instance is deployed and executed independently on a
separate container. According to Fig. 2 , when an invocation
occurs from an event source, the following steps must be
performed to execute the function [10], [11]:

1) Initialize a new container that includes preparing the con-
tainer environment such as setting environment variables,
connecting to the database, user authentication, etc.

2) Allocate memory and computing resources.
3) Load the function and required libraries.
4) Execute the function.
5) Return the results to the user and save the logs in the

database.

Fig. 1: Increasing the Granularity of Applications by Server-
less Computing.

The first three steps take time and leading to a delay in the
overall response time. This delay is called cold start. At the
end of the execution, the container with all its resources will
be released. This is called scale-to-zero that is an important
feature of serverless computing and leads to cost reduction.
According to this, users do not pay for times when the
functions are idle. On the other hand, it also leads to cold start
challenge. Because when new invocations occur, all previous
steps must be repeated. On the other hand, if the number
of simultaneous invocations exceeds the number of available
containers, several instances of a function must be created,
and each instance must go through the above steps separately.
Because as mentioned, each instance of the function is placed
on a separate container. Therefore, the functions have a cold
start delay at the first invocation and when the scale increases
[10], [12], [13].

III. RELATED WORK

To reduce the cold start delay, two general approaches can
be considered. These approaches include: Reduce cold start
delay and occurrence.

A. Reduce Cold Start Delay

The reduce cold start delay approach includes solutions
that focus on reducing the delay in each step of the function
execution mentioned in Section I.
• Reduce container preparation delay:

– The Openwhisk platform uses pre-warmed stem cell con-
tainers wich categorizes the containers according to the
memory and programming language. By this approach,
the preparation time of the container and consequently
the cold start delay is reduced. By default, there are two
of them with Node.Js execution environment. Each time
one of them is assigned to a request, another pre-warmed
container is created immediately [14].
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Fig. 2: Function-as-a-Service Execution Workflow.

– Akkus et al. in [15] reduce container preparation delay by
providing a platform called SAND that performs logic
separation at the application level. Furthermore, Oakes
et al. in [16] provide a platform called SOCK to deal
with performance bottlenecks of Linux kernels used in
containers. Moreover, Silva et al. in [17] introduce a
method called Prebaking that reuses the snapshots created
for the previous functions.

– Xu et al. in [18] use Adaptive Container Pool Scaling
Strategy (ACPS). According to it, there is a pool of
pre-launched containers that are classified according to
different programming languages. Moreover, the number
of cold starts for each category is predicted to determine
the number of container instances adaptively.

• Loading function code and other dependencies into memory:
– The application-level separation method introduced by

Akkus et al. in [15] places all the functions of an
application on the same container. In addition, Oakes et
al. in [16] use the Zygote technique for pre-importing
required libraries.

– To reduce the delay of calling functions by each other,
Akkus et al. in [15] also use a messaging queue to reduce
the delay of internal events.

B. Reduce Cold Start Occurrence

The aim of reducing the cold start occurrence approach is
to reduce the number of times the function suffers from this
delay. For this approach, two general solutions are presented in
the literature: Prepare function containers and container reuse.

• Prepare function containers: To reduce the cold start occur-
rence, one approach is to prepare a ready container before
the request for a function is entered.
– Tools such as CloudWatch [19], Thundra.io [20], Dash-

bird.io [21], and Lambda Warmer [22] were used to set
rules to periodically invoke functions and warm-up them
(for example, every 5 minutes).

– Xu et al. in [18] present a strategy called Adaptive Warm-
UP that uses the Long Short Term Memory (LSTM)
network to predict future invocation times. In addition,
Gunasekaran et al. in [23] provide a resource management
framework called Fifer that predicts future workloads
using the LSTM network.

– Agarwal et al. in [24] uses the Q-learning algorithm to
determine the number of function instances dynamically.
The number of available function instances and the dis-
cretize CPU consumption of each function, are considered
as environmental states, and the action is scaled up or
down of function instances.

• Container reuse: According to this approach, containers of
the previous execution are reused for new request.
– In some platforms like Google Cloud Functions, AWS

Lambda, Microsoft Azure, Open Lambda, and Open-
whisk, after completing a function execution, the con-
tainer and its resources are paused for a few minutes.
Thus, if a request is received during this period, the
container will be reused and it will have a warm start.
More specifically, in the openwhisk platform, the con-
tainer stays running or hot for 50 milliseconds after an
execution. After this time, the container and its resources
are paused, and after 10 minutes they are completely
released. This time is called the idle-container window.
This method can be effective in reducing delay. Because
restarting the paused container has less delay than allo-
cating a new container [25].

– OpenFaaS gives the developer the option to use an
always-running container for a function [26]. Knative and
fission platforms have a pool of warm containers [27],
[28]. Lloyd et al. in [29] also use an approach called
Keep-alive to keep containers warm at all times. McGrath
et al. in [30] use a queue of warm containers per function.
In addition, Solaiman et al. in [31] present a container
management architecture called WLEC that has warm and
template queues. The template queue keeps a copy for
each warm container.

– The AWS Lambda platform provides Provisioned Concur-
rency mechanism that the developer can determine the
number of required warm function instances for future
requests [32].

– Shahrad et al. in [33] present a resource management
policy called the Hybrid Histogram Policy that determines
the optimal value of the idle-container window according
to the characteristics of the functions.

– Gias et al. in [34] perform capacity planning for serverless
functions using a queueing-based approach and consider-
ing the effect of cold start delay. Therefore, the optimal
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TABLE I: Comparison of Related Work.

Reference Platform/Method Name Reduce Container Preparation Delay Reduce Cold Start Occurrence Analysis

Reduce Container
Preparation Delay

Function
Chain

Calling

Loading
Dependencies
into Memory

Prepare
Function

Containers

Container
Reuse

Optimal
Resource

Consumption
Adaptability

[14] Openwhisk x x x x x
[15] SAND x x x
[16] SOCK x x x x
[17] Prebaking x x x x x x

[18] Adaptive Warm-up and Adaptive
Container Pool Scaling Strategies x x x

[19-22] CloudWatch, Thundra.io,
Dashbird.io, Lambda Warmer x x x x x x

[23] Fifer x x x x
[24] - x x x x
[25] Open Lambda x x x x x x
[26] OpenFaaS x x x x x x
[27] Knative x x x x x x
[28] Fission x x x x x x
[29] Keep-alive x x x x x x
[30] - x x x x x x
[31] WLEC x x x x x x
[32] AWS Lambda x x x x x x
[33] Hybrid Histogram Policy x x x x
[34] COCOA x x x x x
[35] ETAS x x x x x x
[36] CAS x x x x x x

- Two-layer Proposed Approach x x x

idle time of a container is determined by considering the
resource consumption.

– Banaei et al. in [35] provide a function scheduler called
ETAS which predicts the execution time of a invocation
and assigns the best worker node to it based on the
availability of a warm container or the availability of the
requested resources.

– Wu et al. in [36] propose a container lifecycle-aware
scheduling called CAS. This approach has 3 strategies
that monitor the state of the containers and select the
best container to execute the input invocation to prevent
the creation of new containers and cold start occurrence.

C. Comparison and Analysis of Related Work

In this section, we analyze the related work in terms of
resource consumption and adaptability.
• Resource consumption analysis:

Resource consumption analysis aims to determine whether
reducing cold start delay in a method leads to higher
resource consumption. Note that processes such as keeping
the containers warm, pausing and reusing it, creating a pool
of warm containers, and calling functions waste resources.
The reasons are as follows:
– Container reuse: This method has no threshold to de-

termine the best time to release the container after
completing a function. Therefore, if subsequent requests
are received long after the container has been released,
keeping the container warm will only lead to additional
resources and costs.

– Pool of warm containers: These containers are always
running and occupy memory and computing resources in
the presence or absence of requests.

– Calling functions periodically: This method does not have
any insight into the time and number of future requests.
There may not be a request in a while, thus we do not
need to restart the function container. On the other hand,
the requests may be bursty, and we have not considered
enough instances for all of them.

• Adaptability:
The purpose of adaptability analysis is to determine whether
a method for reducing cold start delay considers the pattern
of invocations using machine learning algorithms. Because
given the dynamics of the cloud environments, prediction of
the function invocations over time cannot be ignored. This
proves the importance of using machine learning algorithms.
Methods that provide fixed mechanisms to reduce cold start
delay may not respond to such a changing environment.
Due to the variability of function invocation times and the
dynamic nature of the cloud environment, we need a self-
adapting strategy that can provide automated decisions by
monitoring the execution environment. Therefore, reinforce-
ment learning-based algorithms seem to be suitable for this
area. Because they do not need prior knowledge of the
environment and learn the optimal action when the system is
running. On the other hand, classical reinforcement learning
algorithms, such as Q-learning, have a discrete state and
action space. However, when it comes to reducing cold
start delay, environmental states such as memory and CPU
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consumption and invocation times are continuous, therefore
it is best to use deep reinforcement learning algorithms. A
comparison of the methods is given in Table I. Each row
of this table represents the features and information of a
method. Table I contains five columns. The first column is
the reference number of the presented method. The second
column includes the name of the platform. The third and
fourth columns indicate that the purpose of this method is
to reduce the cold start occurrence or to reduce the cold start
delay. The fifth column compares the methods in terms of
resource consumption and adaptability. According to Table
I, most methods only either reduce the cold start delay or
reduce its occurrence. However, the Openwhisk platform
and Xu et al. in [18] provide methods to reduce the cold
start occurrence and delay. On the other hand, according to
the efficiency of keeping the containers warm in reducing
the cold start delay, there is a need to determine the value
of keeping the container warm according to the invocation
patterns. Because the advantage of these methods is reusing
the existing containers instead of creating new containers.

IV. THE POPOSED TWO-LAYER APPROACH

The most common way to reduce cold start delay among
popular platforms is to keep the containers warm for a fixed
period of time after completing a function. This is called the
idle-container window. However, among these platforms, only
Openwhisk has provided solutions to reduce both the time
and number of cold start delays. However, since the pattern of
function invocations varies over time, considering a constant
value for this window is not an efficient method. This proves
the importance of using machine learning algorithms to predict
future function invocation times. Therefore, the Openwhisk
platform method is considered the baseline of this paper, and
in this section, a two-layer approach is proposed to make the
platform adaptable.

The first layer aims to determine the best time for the idle-
container window to reduce the number of cold start delays
and resource consumption using the reinforcement learning
algorithm. Because there is a tradeoff between the number of
cold start occurrences and resource consumption. Therefore,
the longer this window is, the shorter cold start delays and
more consumption of resources.

The purpose of the second layer is to reduce the cold start
delay time. When requests are received bursty, there may not
be a warm container for each one, and some requests will
inevitably be delayed. Therefore in this layer, the number
of requests that will be delayed in the future is predicted
using LSTM and based on them, the number of pre-warmed
containers required in the future is determined. Fig. 3 shows
an overview of this approach.

A. Cold Start Occurrence Reduction Layer

As mentioned, the purpose of this layer is to reduce the
number of cold start occurrence over a period of time. Given
that the state and action space is continuous, there is a
need to receive immediate rewards at each step instead of

Fig. 3: Two-layer Proposed Approach.

each episode, and also considering that the approach used to
optimize the agent behavior should be on-policy, the Temporal
Difference (TD) Advantage Actor-Critic algorithm, which is a
deep reinforcement learning algorithm, is used. Therefore, the
intelligent agent learns the invocation pattern of the function
by observing the time intervals between invocations in the past
and determines the value of the idle-container window in the
future. The steps of this algorithm are as follows:

1) Determine the state of the environment: The function exe-
cution log is received from the platform and is considered
as state space. Therefore, the state space includes the time
intervals between the arrival of invocations and whether it
had a cold or warm start.

2) Determine appropriate action: The action is to determine
the value of idle-container window. In each step, we give
the state as input to the Actor neural network. This neural
network then returns two values of µ and σ as the mean
and standard deviation at the output. µ and σ are functions
of state s. Since we are interested in the case where
the action is a continuous variable, we used a stochastic
policy π = P (a|s), where P (a|s) is the probability
distribution of taking action a given state s. Thereby, P
will be a probability density. We use a Gaussian probability
distribution to represent our stochastic policy, where µ is
the mean, σ is the standard deviation of the Gaussian
(normal) distribution abbreviated as N(a|µ, σ), and a is
a continuous action drawn from. Therefore, the action is
randomly selected from a normal distribution with mean µ
and standard deviation σ.

3) Take action on the environment: The serverless computing
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platform is then updated with a new value for the idle-
container window parameter by the reconfiguration mod-
ule.

4) Receive rewards: at the end of a time period, and based
on the information received from the monitoring module,
the reward function is calculated based on Equation (1).
As mentioned, if the size of the idle-container window is
large, the number of delays is reduced. However, resource
consumption is increased because the idle container wastes
memory. Therefore, the reward function is based on the
ratio of the number of cold start delays to total invocations
and a penalty based on the amount of memory wastage
when keeping the container warm. If the number of delays
is high, the wasted memory is reduced. However, the
reward is a high negative number. Conversely, if the number
of delays is low, the wasted memory will increase, and the
reward will still be a high negative number. Hence, this
algorithm will balance the number of delays and memory
wastes. The number of cold start occurrences, the total
number of invocations, and the penalty are indicated by
Cold, N, and P, respectively.

Reward = −(Cold)/N − P (1)

B. Cold Start Delay Reduction Layer

A cold start delay is inevitable. Because some invocations
occur at long intervals, keeping the containers warm will result
in memory wastage. Therefore, some invocations that enter
outside the idle-container window will suffer a cold start delay.
Moreover, invocations may be occurring simultaneously, and
there may not be enough warm containers for all of them.
The purpose of this layer is to adapt the number of stem
cell containers. This layer predicts the maximum number of
concurrent invocations over a period of time, and accordingly
determines the number of pre-warmed containers. This is
a time series problem because the number of concurrent
invocations in the future depends on the pattern of the previous
invocations. Thus, in this approach we will use the LSTM.

V. EVALUATION

In this section, the efficiency of the proposed approach is
evaluated through the simulations. The following is a descrip-
tion of the Experimental Setup and Performance Evaluation.

A. Experimental Setup

This section includes the description of the Dataset, Com-
puting Platform, and Training Setup.
• Dataset: We considered two types of datasets. One includes

sequential invocations, and the other includes concurrent
invocations. To evaluate the first layer of the proposed
approach, a dataset containing sequential invocations is
required. According to the dataset simulation introduced by
Gias et al. in [34], we expect invocations to enter based on
the Poisson process. According to this process, the distribu-
tion of invocations entry time is random and exponentially
distributed. We created 10,000 entry times with different 5,

10, and 20 average entry rates of invocations per hour. These
entry times represent the time interval between invocations.
To evaluate the second layer of the proposed approach, a
dataset containing concurrent invocations is required. We
randomly created 10,000 invocations, including concurrent
invocations, to determine how this concurrency affects the
idle-container window and the number of pre-warmed con-
tainers, as well.

• Computing Platform: As mentioned in Section III, the
Openwhisk platform method is used as the baseline for this
paper. The purpose of this paper is using Reinforcement
Learning algorithm to make this method adaptable in order
to reduce memory consumption. The Openwhisk platform is
implemented on an Ubuntu server by a Kubernetes cluster.
Then, the configuration parameters corresponding to the
parameters of the proposed approach on the platform should
be determined. This platform uses a parameter called idle-
container to keep the containers warm. However, by default
this parameter cannot be configured to the desired value.
Therefore, in this step, we first configured this parameter.
In addition, this platform has an adjustable configuration file
for the number of its pre-warmed containers.

• Training Setup: Each layer of the proposed approach
has its own hyperparameters. As mentioned in section
IV, in the first layer of the proposed approach, the TD
Advantage Actor-Critic algorithm is used to determine the
idle-container window. To implement the actor network,
three hidden layers have been used. Each layer contains
32 neurons, a ReLU activator function, and a uniform
weight function. This network also has two output layers
for µ and σ as mean and standard deviation, which have
Softplus activation function. Moreover, the Critic neural
network has two layers with 32 and 16 neurons and a
ReLU activation function. The output layer also has a linear
activation function to calculate the value of the next state.
It should be noted that, by adding a regularizer, the training
will stop faster, and the loss function will fluctuate. Fig. 4a
and Fig. 4b are the actor loss function and critic loss function
for training without regularization, respectively. In addition,
Fig. 5a and Fig. 5b are the actor loss function and critic loss
function for training with regularization, respectively. The
LSTM network has five hidden layers, each with 32 neurons
and a ReLU activation function. In addition, to prevent
overfitting, a Dropout layer with a value of 0.5 is used.
The network also has one output and a linear activations
function. Note that the Mean Squared Error (MSE) is also
used as a loss function. Note that, the training was done in
Google Colab using a TPU v2 node with 8 cores and 64
GB of total memory, and it took 2 hours and 20 minutes.
We have considered a monitoring module that activates the
trigger to retrain the model if the model accuracy decreases
or the data distribution changes. In addition, we can utilize
continuous learning to adapt to change.
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(a) Actor Loss Function. (b) Critic Loss Function.

Fig. 4: Training Loss Functions without Regularizer.

(a) Actor Loss Function.
(b) Critic Loss Function.

Fig. 5: Training Loss Functions with Regularizer.

TABLE II: The Number of Cold Start Occurrence.

Average Invocation
Rate per Hour

Proposed
Approach

Openwhisk
Platform

Memory
Improvement

5 123 126 11.11%
10 84 89 12.73%
20 53 55 4.05%

B. Performance Evaluation

In order to perform evaluation, we used an I/O bound
function that sends an HTTP request to a web page and
receives a text file. The response time of this function is
about 6 seconds. Then, according to the simulated intervals,
asynchronous requests are sent to the function through the
REST API of the Openwhisk platform. The result of each
request will be recorded in the Openwhisk platform log ser-
vice. Two simulations are performed: 1) Using the Openwhisk
platform with its default parameters. 2) Setting new parameters
for Openwhisk obtaining from the proposed approach. In the
second simulation, the results of each layer of the proposed
approach are compared to the results of the first simulation.
Note that test dataset includes 200 requests.

• Cold Start Occurrence Reduction Layer: Comparison

metrics in this layer are the value of the idle-container
window, number of cold start occurrences, and memory
consumption.
– Idle-container window: The idle-container window of the

Openwhisk platform is fixed at 10 minutes. However,
according to the proposed approach, this window has
different values for each average entry rate at different
time intervals. Fig. 6 compares the idle-container window
of the proposed approach and the Openwhisk platform
over time for three different average invocations per
hour (5, 10, 20). The horizontal axis shows the number
of time intervals of 200 invocations according to each
average entry rate. For example, when we have 5 average
invocations per hour, 200 requests have 40 time intervals
(200/5). Also, the idle-container window varies from 3
to 13 minutes. It should be noted that, this window
varies from 7 to 15 minutes, and 8 to 13 minutes for
average invocations per hour of 10 and 20, respectively.
According to the figures, the idle-container window is
determined according to the invocations entry pattern
using the proposed Reinforcement Learning algorithm.
Fig. 7 compares the Cumulative Distribution Function
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(a) 5 Invocations per Hour (b) 10 Invocations per Hour (c) 20 Invocations per Hour

Fig. 6: Idle-Container Window According to Proposed Approach and Openwhisk Platform.

(a) 5 Invocations per Hour (b) 10 Invocations per Hour (c) 20 Invocations per Hour

Fig. 7: CDF of Idle-Container Window According to Proposed Approach and Openwhisk Platform.

(a) 5 Invocations per Hour (b) 10 Invocations per Hour (c) 20 Invocations per Hour

Fig. 8: CDF of Number of Cold Start Occurrence According to Proposed Approach and Openwhisk Platform.

(CDF) plot of the idle-container window determined by
the proposed approach and the Openwhisk platform for
three different average invocations per hour (5, 10, 20).
According to Fig. 7a, 73% of invocations have less than
10 minutes idle-container window. This value is equal to
67% and 76% for average invocations per hour of 10 and
20, respectively. Therefore, most of the time a container
does not need to stay warm for up to 10 minutes. In order
to reduce the cold start occurrence, different values can
be considered for the idle-container window depending
on the different invocation patterns. It can be interpreted
that the proposed approach expands the window for times
when the intervals are longer and decreases it when the
intervals are shorter.

– Number of Cold Start Occurrences: Fig. 8 compares the
CDF of number of the cold start occurrences for the

proposed approach and the Openwhisk platform. This
simulation performed for three different average invoca-
tions per hour of 5, 10 and 20. As shown in Fig. 8a, for
both CDFs, 75% of invocations have less than 4 cold start
occurrences within 1 hour when the average invocations
per hour is 5. According to Fig. 8b, when the average
invocations per hour is 10, in the proposed approach, 65%
of invocations have less than 5 cold start occurrences. This
value equals to 47% for the Openwhisk platform. Finally,
according to Fig. 8c, for both CDFs, 42% of invocations
have less than 5 cold start occurrences within 1 hour when
the average invocations per hour is 20. Table II compares
the number of cold start delays for the proposed approach
and the Openwhisk platform for the average invocations
per hour of 5, 10 and 20. As shown in Table II, the
proposed approach results in a negligible improvement
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(a) 5 Invocations per Hour (b) 10 Invocations per Hour (c) 20 Invocations per Hour

Fig. 9: Idle-Container Time According to Proposed Approach and Openwhisk Platform.

in the number of cold start occurrences. However, the
proposed approach and the Openwhisk platform have a
similar impact on reducing cold start occurrences. Note
that this result can be concluded from Fig. 7 as well. The
improvement in the number of cold start delays is low due
to memory control. If we want to reduce delay more than
the Openwhisk platform, we have to choose a larger idle-
container window. However this is contrary to the main
purpose of the paper (i.e., control memory consumption
while reducing cold start delay.)

– Memory consumption: We have compared the memory
consumption according to the idle-container time. That
is, the length of time interval a container waits until the
next invocation arrives. If the next invocation is warm,
this time is equal to the idle-container window according
to the proposed approach and 10 minutes according to the
Openwhisk platform. Fig. 9 compares the idle-container
time of the proposed approach and the Openwhisk plat-
form for average invocations per hour of 5, 10 and 20.
As shown in the Table II, our proposed approach has
11.11%, 12.73%, and 4.05% improvements in memory
consumption time for average invocation per hour of 5,
10, and 20, respectively.

• Results for Cold Start Delay Reduction Layer: The
purpose of the Cold Start Delay Reduction Layer is to
determine the number of pre-warmed containers based on
the number of concurrent invocations. Fig. 10 compares the
number of invocations executed on the pre-warmed contain-
ers for the proposed approach and the Openwhisk platform.
The test dataset has 200 invocations, and the maximum
number of concurrent invocations per hour is considered.
The dataset has a total of 106 concurrent invocations. Based
on the results, the proposed approach was able to correctly
predict 56 invocations and execute them on the pre-warmed
containers. However, the Openwhisk platform, which has
two pre-warmed containers at all of the time, has executed
32 requests on pre-warmed containers. Therefore, it is clear
that the proposed approach has 22.65% improvement in
execution of invocations on pre-warmed containers.

Fig. 10: Number of Invocations Executed on the Pre-warmed
Containers.

VI. CONCLUSION

Cold start delay is one of the most important challenges in
serverless computing. Reducing this delay in real-time appli-
cations is critical because it directly affects performance and
customer satisfaction. However, the most common solutions
used by serverless platforms, such as keeping the containers
warm, have a fixed policy and lead to memory waste. There-
fore, we need a method that determines the time required to
keep the containers warm by discovering the invocation pattern
of the functions. It should also balance reducing cold start
latency and memory consumption. To meet these goals, in
this paper, we propose a two-layer approach. In the first layer,
the Reinforcement Learning algorithm is used to discover the
function invocation pattern and determine the idle-container
window. In the second layer, according to the prediction
of the next invocation time by LSTM, the required number
of pre-warmed containers is determined. Evaluations prove
that it is possible to determine the amount of idle-container
window by discovering the pattern of invocations. This reduces
the number of cold start occurrences and controls memory
consumption. In addition, the number of cold start delays that
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occurred according to the proposed approach is approximately
equal to the Openwhisk platform results. Moreover, the Cold
Start Occurrence Reduction Layer of the proposed approach
has 11.11%, 12.73%, and 4.05% improvement in memory
consumption time for the average invocations per hour of 5, 10
and 20, respectively. Finally, the Cold Start Delay Reduction
Layer of the proposed approach has 22.65% improvement for
execution invocations on pre-warmed containers.
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[33] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” in 2020 {USENIX} Annual Technical Conference
({USENIX}{ATC} 20), 2020, pp. 205–218.

[34] A. U. Gias and G. Casale, “Cocoa: Cold start aware capacity planning for
function-as-a-service platforms,” in 2020 28th International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS). IEEE, 2020, pp. 1–8.

[35] A. Banaei and M. Sharifi, “Etas: predictive scheduling of functions
on worker nodes of apache openwhisk platform,” The Journal of
Supercomputing, pp. 1–36, 2021.

[36] S. Wu, Z. Tao, H. Fan, Z. Huang, X. Zhang, H. Jin, C. Yu, and C. Cao,
“Container lifecycle-aware scheduling for serverless computing,” Soft-
ware: Practice and Experience, vol. 52, no. 2, pp. 337–352, 2022.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on April 28,2022 at 17:26:52 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3165127, IEEE Internet of
Things Journal

Parichehr Vahidinia received the M.S. degree in
the field of Information Technology from Shahid
Beheshti University, Tehran, Iran in 2021. Her cur-
rent research focuses on Serverless Computing and
Artificial Intelligence.

Dr. Bahar Farahani received her Ph.D. and Post-
doctoral degrees in Computer Engineering from
University of Tehran, and Shahid Beheshti Uni-
versity, respectively. She is an assistant professor
at Cyberspace Research Institute, Shahid Beheshti
University. She authored several peer-reviewed Con-
ference/Journal papers as well as book chapters on
IoT, Big Data, and AI. Dr. Farahani has served as
a Guest Editor of several journals, such as IEEE
Internet of Things Journal (IEEE IoT-J), IEEE Trans-
actions on Very Large Scale Integration Systems

(IEEE TVLSI), IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (IEEE TCAD), Elsevier Future Generation Computer
Systems (FGCS), Elsevier Microprocessors and Microsystems (MICPRO),
Elsevier Journal of Network and Computer Applications (JNCA), and El-
sevier Information Systems. Besides, she has also served in the Technical
Program Committee (TPC) of many international conferences/workshops on
AI/IoT/eHealth as well as the Technical Chair of the IEEE COINS conference.

Dr. Fereidoon Shams has received his Ph.D. in
Software Engineering from the Department of Com-
puter Science, Manchester University, UK, in 1996
and his M.S. from Sharif University of Technology,
Tehran, Iran, in 1990. His major interests are Soft-
ware Architecture, Enterprise Architecture, Service
Oriented Architecture, Agile Methodologies, Ultra-
Large-Scale (ULS) Systems and Ontological Engi-
neering. He is currently a Professor of Software En-
gineering Department, Shahid Beheshti University
of Iran. Also, he is heading two research groups

namely SOEA (Service Oriented Enterprise Architecture Reference Lab)
(soea.sbu.ac.ir) and ISA (Information Systems Architecture) (isa.sbu.ac.ir) at
Shahid Beheshti University.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on April 28,2022 at 17:26:52 UTC from IEEE Xplore.  Restrictions apply. 


