
Mashup: Making Serverless Computing Useful for
HPCWorkflows via Hybrid Execution

Rohan Basu Roy
Northeastern University

Tirthak Patel
Northeastern University

Vijay Gadepally
MIT Lincoln Laboratory

Devesh Tiwari
Northeastern University

Abstract
This work introduces Mashup, a novel strategy to leverage
serverless computing model for executing scientific work-
flows in a hybrid fashion by taking advantage of both the tra-
ditional VM-based cloud computing platform and the emerg-
ing serverless platform. Mashup outperforms the state-of-
the-art workflow execution engines by an average of 34%
and 43% in terms of execution time reduction and cost reduc-
tion, respectively, for widely-used HPC workflows on the
Amazon Cloud platform (EC2 and Lambda).
CCS Concepts: • Computer systems organization →
Cloud computing; Heterogeneous (hybrid) systems; • Com-
puting methodologies → Distributed computing method-
ologies; Massively parallel and high-performance simula-
tions.

Keywords: Serverless Computing, Cloud Computing, HPC
Workflows, Hybrid Execution
ACM Reference Format:
Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Ti-
wari. 2022. Mashup: Making Serverless Computing Useful for HPC
Workflows via Hybrid Execution. In 27th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP ’22),
April 2–6, 2022, Seoul, Republic of Korea. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3503221.3508407

1 Introduction
HPC users are increasingly chaining multiple applications to-
gether to form a scientific “workflow”. This is because with
increasing complexity, maintaining and modularly grow-
ing a single monolithic application can become challeng-
ing [64, 70, 81]. However, these scientific workflows them-
selves can become very complex — each workflow can have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9204-4/22/04. . . $15.00
https://doi.org/10.1145/3503221.3508407

tens to thousands of tasks, and each task can have very dif-
ferent computational resource requirements and the degree
of parallelism can change over time [23, 25, 87].
Due to the complex structure and varying parallelism

degree in different phases of a workflow, a user needs to
over-provision the compute resources to meet the demand
at the peak of parallelism [30, 53]. In response, domain
users have developed multiple workflow managers to make
workflow execution efficient [5, 17–19, 31, 67]. This is es-
pecially popular on cloud computing platforms where re-
sources can be reserved and released more quickly than a
typical on-premise cluster [11, 40, 53, 84]. While these ap-
proaches have been popular, they still suffer from resource
under-utilization, over-provisioning challenges, and high
expenses [20, 46, 52, 62]. Motivated by these trends, this pa-
per explores: “how can scientific workflows take advantage
of the next emerging trend in cloud computing – serverless
computing”.
Unfortunately, the serverless computing model is not

traditionally designed for scientific applications [12, 24, 34].
Serverless computing platforms pose multiple design
and implementation challenges that make it difficult for
scientific workflow execution. As our study shows, even
if one could engineer a system to leverage the serverless
platform for scientific workflows, the resulting execution
would be sub-optimal. This work describes the design and
implementation of a system that overcomes these challenges
and makes serverless attractive for scientific workflows.

Contributions. In particular, this workmakes the following
contributions.

• We propose Mashup, a novel solution to leverage the
serverless computing model for executing HPC workflows.
The key idea behind Mashup is to execute HPC workflows
in a hybrid fashion – taking advantage of both traditional
VM-based cloud computing platforms and emerging
serverless platforms.

• Mashup designs novel techniques to mitigate the
challenges of executing HPC tasks on serverless com-
puting platforms (e.g., the challenge of cold-start,
stateless nature, and scalability). Mashup’s prototype
implementation demonstrates the advantage of the

46

https://doi.org/10.1145/3503221.3508407
https://doi.org/10.1145/3503221.3508407
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://www.acm.org/publications/policies/artifact-review-and-badging-current#functional

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari

A A A

B C

D DD E E E

…

… …

1000Genome

A: Individual (1252)
B: Individual-Merge (1)
C: Sifting (1)
D: Mutation-Overlap (626)
E: Frequency (626)

F

G G G…
H H H…
I I I…
J J J…

K

F

G G G…
H H H…
I I I…
J J J…

K

L

M

N

F: FastQSplit (2)
G: Filtercontams (500)
H: Sol2sanger (500)
I: Fast2bfq (500)
J: Map (500)
K: Mapmerge1 (2)
L: Mapmerge2 (1)
M: Chr21 (1)
N: Pileup (1)

Epigenomics

…O O O

…Q Q Q

R

O O O

…Q Q Q

R

P

S

SRAsearch

O: FasterQ-Dump (200)
P: Bowtie2-Build (1)
Q: Bowtie2 (200)
R: Merge1 (2)
S: Merge2 (1)

Phase 3
has 1 task (R)
with 2 components

…

Figure 1. DAG structures of the 1000Genome, SRAsearch,
and Epigenomics workflows (the numbers inside brackets
denote the number of components of the corresponding task).

approach and its novel techniques by speeding up the
execution of complex, real-world HPC workflows and sav-
ing the incurred expense on the cloud computing platform.

• Our extensive experimental evaluation confirms that
Mashup is effective in reducing executing time and
cost for widely-used HPC workflows (e.g., 1000Genome,
SRAsearch, Epigenomics [9, 57, 66]) on Amazon Cloud
Computing platform (EC2 and Lambda). Mashup outper-
forms the state-of-the-art approach for workflow execu-
tion engines (e.g., Pegasus and Kepler [2, 18]) by an average
of 34% and 43% in terms of execution time reduction and
cost reduction, respectively.

2 Background and Motivation
HPC workflows of various domains such as biology,
chemistry, and astrophysics consist of a large number of
loosely-coupled components [4, 7, 26, 29, 59, 61]. Hence,
these workflows are commonly expressed as Directed Acyclic
Graphs (DAGs) that establish the dependencies of the
individual components. Fig. 1 shows the DAGs of three work-
flows: 1000Genome, SRAsearch, and Epigenomics, which are
widely used by the HPC community [43, 47, 76, 77, 85, 92].
The number of components in each of these workflows can
range from a few hundred to a few thousand. Some of these
components do not have data or state dependency between
them and are inherently parallel. Other components with
dependencies are expressed according to their precedence
pattern in the DAG. Before we motivate the problem, we
briefly review some definitions and terms.

Components. A component is the most basic unit of the
execution in a scientific workflow. Different components can
run the same code but use different input data (e.g., all the
circles in Fig. 1 correspond to a unique component; circles
with the same color-coding execute the same code/logic).

Phase. The workflow components that can run in paral-
lel, with no precedence dependency among each other, are
jointly referred to as a phase (e.g., Epigenomics, shown in
Fig. 1, has 9 phases).
Task. Different components within a phase that execute
different code/logic are referred to as different tasks. A phase
consists of one or more tasks (e.g, phase one of the workflow
1000Genome in Fig. 1 has one task named Individual, while
phase two of the same workflow has two tasks named
Individual-Merge and Sifting).

Note that a task can have one or more components. These
components run the same piece of code with different inputs
(e.g., Fig. 1 shows that the task Individual in 1000Genome
workflow has 1,252 components, while Individual-Merge
and Sifting have one component each). A phase can have
multiple tasks. Tasks and their corresponding components
within a phase can run concurrently (e.g., phase three of
1000Genome contains two tasks, Mutation-Overlap and Sift-
ing, each with 626 components. All of these components can
execute in parallel). However, tasks across phases can have
dependencies. These dependencies can be at the component
level. Some components may be dependent on multiple com-
ponents of the previous phase, or a single component being
the producer for multiple components in the next phase. For
example, the single component of the task Individual-Merge
of 1000Genome is dependent on all the 1,252 components of
the task Individual.
To orchestrate the execution of these workflows, several

workflow management platforms like Pegasus, Kepler, and
Polyphony have been developed [2, 18, 67]. They control the
execution by appropriately spawning workflows based on
their DAG precedence. Their smallest unit of computation
is either a physical server or a virtual machine (VM) in a
cloud. These individual execution units are called nodes. To
exploit the code parallelism, multiple nodes are reserved for
the execution of a workflow, forming a cluster.
.
What are the sources of inefficiency when executing
scientific workflows on traditional clusters? Domain
scientists run workflows using on-premise parallel compute
clusters, or using cloud computing clusters [11, 25, 40, 80].
As illustrated above, scientific workflows can have complex
structures and varying degrees of parallelism during differ-
ent phases. This means that a user needs to over-provision
the compute resources to meet the demand at the peak of
parallelism. But, at other times, this may lead to resource
wastage as allocated computing resources might be idle.

A solution to this problem is the use of cloud computing
platforms [16, 40, 46, 52, 61, 89]. Using VM-based cluster
mitigates the problem of resource under-utilization, but
only to a certain extent. This is because provisioning
and dynamically changing the VM-based cluster size has
long latency (up to 40 minutes in some cases [15, 42, 54]).

47

Mashup: Making Serverless Computing Useful for HPC Workflows via Hybrid Execution PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

While this approach has been popular, it still suffers
from resource under-utilization and over-provisioning
challenges [20, 46, 52, 62]. A consequential challenge is
the cost/expense incurred by the end-user. To achieve
better performance, end-users tend to over-provision
resources and pay high bills to the service provider [20, 55].
Over-provisioned idle VMs still cost the end-users.

What is the serverless computing model and how can
it alleviate the above challenges? Serverless computing,
also known as Function-as-a-Service (FaaS), is rapidly being
adopted as a computing paradigm in public clouds, especially
with the advent of AWS Lambda, Google Cloud Functions,
and Microsoft Azure Functions. In serverless computing,
serverless functions or execution units are microVMs (e.g.,
Firecracker [1]) or containers (e.g., OpenWhisk [45]) with
limited computing resources and fixed execution time lim-
its. Serverless functions spawn up with pre-configured file
systems and runtime environments, thus relieving the appli-
cation developers of the additional overhead of setting up
the environment. The users only need to upload their appli-
cation logic to the cloud provider, in the form of user-defined
functions along with the dependencies.
Functionally, the difference between microVMs with

traditional cloud VMs is that they are lightweight and can
spawn up relatively quickly. Unlike VM-based clusters,
serverless functions can scale up and down elastically
depending upon the resource requirements. This helps
in solving the problem of over- and under-utilization of
resources. Also, users are charged for the exact amount
of computing resources and only for the period that they
use the resources. This helps to reduce the recurring cost
due to resource wastage, which is frequently incurred in
traditional VM-based cloud clusters. However, it also poses
new challenges that need to be solved for efficient execution
of scientific workflows on serverless platforms.

What new challenges does serverless computing pose
for HPC workflows? Despite its advantages, serverless
computing poses several challenges, namely: (1) stateless
execution, (2) execution timeout, (3) cold-start and
scalability overhead at high concurrency.
By design, serverless functions are stateless and cannot

directly communicate with other concurrent functions. This
characteristic is unsuitable for HPC workflows which inher-
ently require tasks to communicate with each other. Second,
serverless functions have caps on resource usage (e.g., exe-
cution timeout). For example, AWS Lambdas have a strict
execution time limit of 15 minutes and 512 MB of disk space
with up to a maximum of 10 GB of memory. Many tasks in a
scientific workflow cannot finish their execution under such
strict time limits.

Third, cold-start overhead is incurred because a task code
needs to be loaded in a container before execution. This

Faste
rq-

Dump Bowtie2-

Build Bowtie2
Merge1

Merge2
0

25

50

75

100

E
xe

cu
tio

n
Ti

m
e

(%
 o

f M
ax

.)

Serverless
4 Nodes
64 Nodes

Figure 2. The preferable choice of execution environment
for the tasks in a workflow varies depending upon the re-
source requirements.

is particularly undesirable for tasks in a workflow that is
short-running. This is further compounded by the scalabil-
ity bottleneck at high concurrency observed in a serverless
environment (discussed in Sec. 3). Although a high level of
concurrency may not be a common and frequent characteris-
tic for enterprise applications [79, 83], high concurrency is a
requirement for many scientific workflows (e.g., the task In-
dividual in 1000Genome has 1,252 concurrent components).
Besides the above hurdles, a major challenge is deter-

mining which platform is optimal for executing a partic-
ular task in a workflow. The optimal execution environ-
ments (serverless vs. VM-based large clusters) for dif-
ferent taskswithin aworkflow can be different. We use
SRAsearch workflow as an illustrative example to demon-
strate this. For this experiment, we utilize the widely-used
r5.large instance type on AWS EC2 because it incurs a sim-
ilar expense per unit time as that of Amazon Lambda (the
serverless platform). The number of nodes in the VM-based
cluster is varied from four nodes to 64 nodes to illustrate
how increasing the VM-based resources (more parallelism)
may affect the preferred execution location of a task. On a
serverless platform, the different components of a task are
executed by separate serverless functions. Recall that a task
in a workflow can have multiple components and these com-
ponents can be executed concurrently. SRAsearch has five
tasks: FasterQ-Dump, Bowtie2-Build, Bowtie2, Merge1, and
Merge2, as shown in Fig. 1; each task has a different number
of components.
Fig. 2 shows that different tasks of SRAsearch achieve

lower execution times on different types of execution envi-
ronments, depending upon the size of the VM-based cluster.
For example, the task Fasterq-Dump achieves faster execu-
tion on a serverless platform when the VM-based cluster is
smaller, but the trend reverses when the number of nodes
is increased to 64. This is because a four-node cluster does
not provide sufficient parallelism to Fasterq-Dump to exe-
cute fast enough (multiple components contend for the same
resources). However, at a higher node count, the resource
contention problem on the VM-based cluster is alleviated,
and it outperforms the serverless execution.
Serverless functions may not be as powerful as VM clus-

ters and they have other associated overheads (Sec. 3). Due

48

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari

Scientific Workflow
(e.g., 1000Genome)

A A

D D E E

B C
A

D

E
B

C

Tasks
Serverless Platform

VM-Based Cluster

Serverless Challenges

Scaling
Time

Cold Start
Time

I/O Time Time Limit

Figure 3. Mashup’s hybrid execution model for scientific
workflows.

to these challenges, the VM-based clusters outperform but
provisioning large VM-based resources result in higher cost
and resource under-utilization. Overall, the optimal execu-
tion platform depends on the concurrency level and the
computation/memory intensity of the task; it is non-trivial
to determine apriori. Therefore, Mashup designs and imple-
ments a novel, hybrid execution strategy to find the optimal
execution platform and mitigate other previously discussed
serverless-specific challenges to minimize the execution time
of HPC workflows.

3 Mashup: Design and Implementation
The basic design principle behind Mashup is to take advan-
tage of serverless platforms for executing concurrent com-
ponents of a scientific workflow. The base design is to place
all tasks with more components than the number of avail-
able cluster nodes, on the serverless platform.We implement
and refer to this basic design as Mashup (without Placement
Decision Controller or PDC), or simplyMashup w/o PDC. Al-
though promising, it suffers from certain serverless-specific
inefficiencies. Mashup improves its design by reducing the
impact of those inefficiencies. Mashup designs and imple-
ments a placement decision controller (PDC) that determines
the task placement: serverless vs. VM cluster (Fig. 3).
Mashup’s PDC takes a two-step approach to determine

the optimal platform for a task. First, Mashup executes all
the tasks and their components in the VM-based cluster
of a given size and records the execution time. Then, in
the second step, Mashup executes all the tasks and their
associated components on the serverless platform. Mashup
compares the execution time for each task and chooses the
platform where it achieves lower execution time. This is
related to our discussion in the previous section, where we
showed that some tasks are more suitable for execution
on VM-based clusters, while others may achieve lower
execution time on a serverless platform. However, a simple
comparison of execution time might not be possible or
sufficient since the serverless execution suffers from various
challenges (e.g., time cap, I/O overhead, statelessness).

Getting around the problem of execution time cap.
Mashup mitigates this challenge by using checkpointing as
a tool to store the state of the functions in remote storage.
This checkpointing is performed 30 seconds before the time
limit is reached. Then, the next set of serverless functions

Frequency Map Individual
Task Name

0

5

10

15

20

R
ea

d/
 W

ri
te

 T
im

e
(%

 o
f S

er
ve

rl
es

s
E

xe
cu

tio
n

Ti
m

e)

(a)

Bowtie2 Map Chr21
Task Name

0

10

20

30

40

C
ol

d
St

ar
t T

im
e

(%
 o

f S
er

ve
rl

es
s

E
xe

cu
tio

n
Ti

m
e)

(b)

100 500 1000 1500
Components

0

25

50

75

100

Sc
al

in
g

Ti
m

e
(%

 o
f M

ax
.)

Individual
Frequency
Map

(c)

Figure 4. (a) I/O time, (b) cold start time, and (c) scaling time
significantly impact the performance of serverless functions.

that start the task from its stored state is spawned. Note that,
checkpointing is not required for running tasks on a VM
cluster. All placement decisions and execution/cost analysis
of Mashup includes these checkpoint/restart overheads (i.e.,
I/O latency related to checkpoint/restart toward execution
time and storage cost toward expenses).

Mitigating the I/O overhead of stateless execution.
Upon the completion of the execution of a serverless func-
tion, all the data generated and stored in the local storage of
the function’s microVM is erased. Thus, the only way that the
serverless functions can share data among multiple phases
is to communicate via external remote storage that acts as
a mediator. The state needs to be transferred via a storage
medium across two phases of a scientific workflow. This ex-
tra layer of communication increases the latency of scientific
workflow execution because remote storage bandwidth now
impacts the performance of a task. This I/O overhead (read
and write) via the external storage can be significant as char-
acterized in detail in [6], especially for tasks with multiple
components, where all the components do I/O via external
storage to communicate their states across phases.

The overhead is not uniform across all tasks – some tasks
incur more overhead than others. For example, Fig. 4(a)
shows the task Map has higher I/O overhead compared to
other tasks such as Frequency and Individual. This is because
Map performs both read and write, while the others perform
only read or write. This I/O overhead affects a task’s optimal
execution platform (serverless vs. VM-based cluster) – this is
accounted for by Mashup’s PDC controller. For example, the
task Frequency, which has 626 components, appears ideal
for serverless execution due to its high degree of parallelism,
but on a 64-node VM-based cluster, it executes 2× faster than
a serverless execution. This performance degradation on the
serverless platform is due to I/O overhead.
Though the computing time of a task might be lesser on

serverless than on a VM cluster, the I/O time can increase
the overall execution time of the task. With the help of its
PDC, Mashup identifies such tasks and executes them in a
VM cluster. Mashup’s decision of an appropriate execution
environment for such a task changes according to the cluster
size or the network I/O bandwidth of the cluster.

49

Mashup: Making Serverless Computing Useful for HPC Workflows via Hybrid Execution PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Addressing the effect of cold start times on short-
running tasks. Cold start overhead can be significant (up
to a few seconds) for some tasks in scientific workflows. For
example, Fig. 4(b) shows that for the task Bowtie2 (belonging
to SRAsearch workflow, with 200 components), the cold start
time is almost 40% of the task execution time. However, for
long-running tasks with one or few components like Chr21
(belonging to Epigenomics workflow, with 1 component),
the cold start time has little impact on its execution time.

Mashup mitigates this challenge in two ways: (1) Mashup
chooses to not place very short-running tasks (less than one
second) on serverless platforms because the cold start cost
can be up to a few seconds in the worst case [41, 79, 83]. A
conservative two-second cold start overhead is always added
to serverless execution time during PDC decision-making.
(2) Mashup makes an exception for the previous decision
only if such short-running tasks have high concurrency
and re-appear frequently in the workflow (e.g., Mapmerge
in Epigenomics workflow). Cloud providers typically
keep microVMs and their memory contents alive for
5-10 minutes after a serverless microVM has completed
its execution, to avoid future cold-starts. Mashup takes
advantage of this policy for frequently re-appearing
short tasks. Also, Mashup actively pre-warms the task by
prefetching to avoid the cold start overhead for tasks with
high concurrency to take advantage of serverless parallelism.

Achieving high concurrency in a scalablemanner.Dur-
ing our experiments, we discovered that serverless platforms
are not as efficient at high levels of concurrency (> 100
components). Fig. 4(c) shows that as the concurrency in-
creases, the scaling time also increases (i.e., high scaling time
at higher concurrency level). Scaling time is defined as the
time difference between the start time of the first serverless
function and the start time of the last serverless function,
where all the functions belong to the same task (i.e., multiple
components of the same task).

Scaling issues are an artifact of multiple challenges. When
a serverless microVM (or a container) is initialized, the task
code along with its dependencies, which reside in a remote
server, is read into the storage of the microVM. When a
task has multiple components and each of them requires
separate serverless functions, the overhead of performing all
the aforementioned steps scales up linearly. The scheduler
takes more time to decide due to increased load and the
microVMs take longer to start up as the likelihood of the
same server hosting multiple microVMs increases.

For serverless platforms to be attractive for scientific work-
flows, the scaling time has to be low because, in real-world
workflows, multiple tasks have a high number of compo-
nents that need to be executed concurrently. Mashup makes
an interesting observation that scaling time is largely in-
dependent of the code executed by individual components.
This allows Mashup to estimate the execution time of a task

Algorithm 1Mashup’s Placement Decision Controller
1: Input: The DAG of a workflow
2: Output: Placement decision for all the tasks in the workflow

3: for all the tasks in the workflow do
4: Measure serverless execution time of the task (𝑇 func)
5: Scale up the components of the task
6: Start-up microVMs for the execution
7: Read input from the remote storage to the microVMs
8: Execute in each microVM
9: Checkpoint for storage and re-start, if required
10: Write output to storage
11: Measure VM cluster execution time of the task (𝑇VM)
12: Distribute input from master node to all workers
13: Execute task in worker nodes
14: Write output to the master node
15:
16: if 𝑇 func < 𝑇VM then
17: Placement decision for the task is serverless
18: else
19: Placement decision for the task is traditional VM cluster
20: end if
21: end for

using serverless functions without actually executing all of
its components. Mashup executes only one component using
a serverless function and estimates the cost of placing the full
task on serverless via a simple analytical model that captures
the linear behavior of scaling time. Mashup compares this
estimated time with the execution time on the VM cluster
and determines the optimal platform.

Next, we describe the optimization formulation of Mashup
that integrates all previously described mechanisms to deter-
mine the optimal execution platform for tasks in a workflow
(also summarized in Algorithm 1).

Mashup optimization formulation. Mashup solves the
optimization problem of finding the preferred execution en-
vironment for different tasks in a workflow to minimize the
execution time of the complete workflow. A workflow (𝑊)
has phases (𝑃𝑖 , with 1 ≤ 𝑖 ≤ 𝑃𝑚𝑎𝑥), with each phase having
tasks (𝑡 𝑗 , with 1 ≤ 𝑗 ≤ 𝑡𝑚𝑎𝑥), where each of the tasks have
𝐶𝑖, 𝑗 number of components. For tasks that are executed on a
serverless platform, the execution time consists of serverless
specific overheads like scaling time, cold start time, and I/O
time, along with the time consumed in running the task by
concurrent serverless functions. The serverless specific over-
head part of the execution time is dependent on the number
of components of the task. All of these components run in
parallel, and their combined runtime is equal to the runtime
of one component running in a serverless function. Thus, the
execution time of a task 𝑡 𝑗 in phase 𝑃𝑖 with 𝐶𝑖, 𝑗 components,
each executing on separate serverless functions is

𝑇
𝑓 𝑢𝑛𝑐

𝑖,𝑗
= 𝛼 ×𝐶𝑖, 𝑗 + 𝑅 𝑓 𝑢𝑛𝑐 (𝑡 𝑗) + 𝛽 (1)

𝛼 and 𝛽 are experimentally-derived constant factors. 𝛼 cap-
tures the proportionality by which the serverless specific
overhead scales with the number of components of a task.

50

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari

𝑅 𝑓 𝑢𝑛𝑐 (𝑡 𝑗) is the runtime of a component of the task 𝑡 𝑗 in
phase 𝑃𝑖 in a serverless function.
When a task runs on a VM-based cluster, all of its com-

ponents run on the nodes of the cluster. Depending on the
resource utilization of the tasks, the components can contend
for resources in the cluster, thus increasing the execution
time of the task. Unlike the serverless platform, task execu-
tion does not incur any additional overhead like scaling time
or cold start time. The execution time of a task 𝑡 𝑗 in phase
𝑃𝑖 with 𝐶𝑖, 𝑗 components, executing on a VM cluster is

𝑇𝑉𝑀
𝑖,𝑗 = (𝑅𝑉𝑀 (𝑡 𝑗))𝛾×𝐶𝑖,𝑗 (2)

Here 𝛾 (> 1) is a constant of proportionality by which the
runtime of a task, 𝑅𝑉𝑀 (𝑡 𝑗), increases with the number of
components. Mashup optimizes the following expression:

argmin
𝑚𝑖,𝑗 ∈{0,1}

[
𝑃𝑚𝑎𝑥∑
𝑖=1

𝑡𝑚𝑎𝑥∑
𝑗=1

𝑚𝑖, 𝑗 × (𝑇 𝑓 𝑢𝑛𝑐

𝑖,𝑗
) + (1 −𝑚𝑖, 𝑗) × (𝑇𝑉𝑀

𝑖,𝑗)] (3)

Here𝑚𝑖, 𝑗 can attain two values, 0 and 1. When𝑚𝑖, 𝑗 = 1, then
the task 𝑡 𝑗 of phase 𝑃𝑖 undergoes a serverless execution, else
it is executed on a VM cluster. Note that Mashup’s PDC ex-
perimentally determines the value of the factors (𝛼 , 𝛽 , and 𝛾)
since these depend on the workflow and the cloud platform.
Mashup’s PDC autonomously determines all the factors and
solves the optimization problem without requiring user en-
gagement. As our evaluation confirms, Mashup’s solution is
aligns well with the optimal execution environment deter-
mined via exhaustive search (Sec. 5, Fig. 9).

Miscellaneous design considerations. Finally, we discuss
a few generic design issues of Mashup.
Execution overheads.We note that Mashup requires execut-
ing the workflow once on the VM-based cluster which may
appear as additional overhead. However, most current scien-
tific workflow resource managers also require executing the
full workflow once to extract parallelism within the work-
flow. Mashup leverages the same run to make placement
decisions. Mashup requires executing certain tasks on the
serverless platform, but as our design describes these execu-
tions are minimized via various optimizations. Also, typically
the same scientific workflow is run multiple times in produc-
tion, amortizing the one-time cost.

Selection of VM instance type. The execution time of a task
on a VM-based cluster is affected by the chosen VM instance
type. For fairness and consistency, our default VM-based
cluster per node expense is approximately the same as that
of the serverless platform per unit time. However, as our
evaluation confirms (Sec. 5), for both cheap and expensive
VM instances, Mashup continues to provide benefits relative
to its chosen baseline VM-only execution mode. This is be-
cause Mashup’s design is targeting generic major sources of

Execution
Time

Expense Execution
Time and
Expense

Optimization Objective

0
25
50
75

100

E
xe

cu
tio

n
Ti

m
e

or
 E

xp
en

se
 (%

Im
pr

ov
em

en
t O

ve
r

Tr
ad

iti
on

al
 C

lu
st

er
)

(h
ig

he
r

is
 b

et
te

r) Execution Time
Expense

Figure 5. Reducing execution time also reduces expense
(SRAsearch).

inefficiencies instead of focusing on only outperforming a
specific cluster composition.

Choice of execution time as the primary objective metric. One
design consideration of Mashup could have been to minimize
both execution time and expense simultaneously. However,
by minimizing only execution time, the expense is reduced
due to an overall reduction of time for which computing
resources remain active for running a workflow (Fig. 5 as
an example for SRAsearch; other workflows yield similar
trends). Whereas, if expense reduction is chosen as an ob-
jective or expense reduction and execution time reduction
are given equal priority, the optimization tends to choose
the serverless platform for the execution of most tasks as
serverless functions are much cheaper than VM clusters.
Thus, even though the expense is reduced, the execution
time increases by a greater extent as many tasks are not
suitable for serverless execution. Mashup, with its focus on
execution time only, yields roughly similar cost savings as
putting equal weight on both objectives. We were also driven
by the preference of application users who prefer simple ob-
jective criteria and simple optimization frameworks where
reasoning about the execution time is easier.

Rationale for task-level placement decisions.Mashup performs
task-level placement decisions instead of component-level
placement decisions (i.e., it places the different components
belonging to the same task in the same execution platform).
This is because component-level placement decisions can ex-
ponentially increase the overhead associated with the place-
ment decision controller as all different combinations of
component placements have to be individually profiled for
all the tasks. A component-level approach also complicates
the data movement and exchange patterns among the dif-
ferent components as they might be executed on different
platforms, leading to an overall increase in the execution
expense and time.

Optimal VM configuration.Mashup’s placement decision con-
troller ensures that the optimal VM-cluster configuration
is used for the execution of the workflow. For example, a
workflow (e.g., SRAsearch) can benefit from having a clus-
ter divided into two sub-clusters with two separate master

51

Mashup: Making Serverless Computing Useful for HPC Workflows via Hybrid Execution PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

nodes, so that different components running in parallel do
not contend for the same computational resource. Mashup
recognizes the most optimal VM configuration and uses that
as a baseline for the VM cluster to ensure that the VM cluster
does not suffer from apparent resource bottlenecks.

Mashup: Implementation. Overall, Mashup has been
designed and implemented with the focus on keeping the
barrier to adoption for scientific workflows very limited.
The user only needs to provide the executables of the tasks
with the workflow DAG structure to Mashup. Mashup takes
charge of the execution of the workflow – the placement
decision controller decides which task should be executed
on the serverless platform.
Mashup leverages the command-line interface (CLI) of the
cloud provider for installation and configuration with the
user account credentials. Mashup sets up a VM cluster ac-
cording to the user’s chosen VM family and node count.
Then, Mashup sets up the tasks of the workflow in the clus-
ter as well as in the cloud provider’s serverless platform.
Then, Mashup configures remote storage to be used for ex-
changing data among multiple tasks running in different
platforms and loads the initial input data (e.g., AWS Simple
Storage Service (S3) bucket).
For a serverless platform, Mashup uses AWS Lambda. It

packages and sends all the necessary task executables di-
rectly to the Lambda service controller. Mashup resides on a
local machine and through the help of the cloud provider’s
CLI commands, it executes the tasks in different platforms
of the cloud (serverless or VM cluster). Mashup offers the
checkpointing capability and automatically saves a task state
in S3 to perform checkpointing, once it approaches the execu-
tion time limit of the serverless platform. Mashup maintains
multiple copies of remote storage with frequent consistency
checks to recover from failures. It checkpoints the states of
the executed tasks to account for the chance of serverless
platform failures.

4 Experimental Methodology
Evaluated Workflows. Mashup’s evaluation is driven by
the following workflows: 1000Genome, SRAsearch, and
Epigenomics. These workflows are chosen for multiple
reasons. They have been extensively used by the HPC
community as standard benchmarks to compare the per-
formance of workflow management systems and sched-
ulers [43, 47, 76, 77, 85, 92]. The workflows consist of mul-
tiple possible precedences and connection dynamics in a
DAG: that is, fan-out (multiple components dependent on
the output of a single component from a different applica-
tion executed in the previous phase), fan-in (a component
dependent on multiple components executed in the previous
phase), and strong connection (all components in a phase
are connected to all components in the next phase). The

DAG structure of these workflows are diverse (Fig. 1), and
their resource requirements are also significant in terms of
resources like compute power, memory, and network band-
width [39, 58, 65].

These benchmarks are also a part of multiple scien-
tific research projects and solve critical problems. The
1000Genome (5 tasks with a total of 2,506 components
working on 600 GB of data) benchmark studies human
genetic variation and works on the most detailed catalog
of gene sequences. SRAsearch (5 tasks with a total of 404
components working on 6 TB of data) uses several search
optimizations to scan through biological data sequences to
unveil patterns of proteins and DNA. Epigenomics (9 tasks
with a total of 2007 components working on 5 TB of data)
is a compute-intensive workflow for automating various
operations in scientific sequence processing.

Competing Techniques.We compare the performance of
Mashup against the following methods:

Traditional VM-based Cluster (Traditional Cluster)
and Serverless-only execution. VM-based cluster execu-
tion corresponds to the traditional and most common way of
executing HPC workflows in the cloud computing setup. A
cluster of VMs on multiple nodes is reserved, with one node
as the master node. Tasks in each of the phases are spawned
in parallel, and consecutive phases are spawned sequentially
according to the precedence order defined in the DAG of
the workflow. Since the whole computation occurs within
a cluster, there is no need to maintain external storage, and
hence, it does not incur any storage expenses.

We observed that using a single cluster can be inefficient
for certain workflows due to resource contention (e.g.,
Merge1 in SRAsearch), and two clusters each of half-size
might yield better execution time results. While this infor-
mation is not available apriori, we utilized this information
to make the “traditional VM-based cluster” approach more
competitive and provide higher baseline performance for
Mashup. In the serverless-only execution strategy, all the
tasks are executed by serverless functions and no VM
clusters are involved. Checkpointing is used for components
that exceed the run-time limit of serverless functions, and
hence, remote storage effects on execution time and cost are
accounted for.

State-of-the-art Approaches. We also compare the
performance of Mashup with the state-of-the-art workflow
management systems; Pegasus and Kepler. We use the most
recent release (October-2018 for Kepler, and September-2019
for Pegasus) of the state-of-the-art HPC workflow managers.
These are the most widely used workflow managers in the
HPC community [38, 69, 75, 88], although these approaches
are agnostic to serverless computing platforms. Given a

52

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari

workflow DAG and a VM cluster, they perform a profiling
run to learn the structure and introduce several optimiza-
tions to decide how to schedule different applications to
exploit parallelism. Since the entire workflow runs on a
VM cluster, they do not need any external storage. Note
that, Mashup does not leverage these optimizations, but
still outperforms them. We also note that both Pegasus and
Kepler workflow managers require pre-profiling a workflow,
incurring an overhead similar to Mashup.

Evaluation Platform.We use different services of the Ama-
zon Web Services (AWS) to run the workflows. As a server-
less platform, we use AWS Lambdas, which is currently one
of the most widely used commercial Function-as-a-service
(FaaS) platforms. Each of the serverless functions execut-
ing a component of an application in a workflow corre-
sponds to one AWS Lambda with 3GB of memory (expense is
$0.12/hr/function). Compute nodes are AWS Elastic Compute
Cloud (EC2) VMs. To make each of the VMs similar to an
AWS Lambda, we choose r5.large instances for our main
set of experiments as they have similar per second execution
expense ($0.12/hr/node) as AWS Lambdas.
Furthermore, to demonstrate that our findings/trends

are not sensitive to the choice of VM-type, we evaluated
Mashup’s performance with other EC2 VM families that have
relatively lesser and more per second execution expense than
that of an AWS Lambda (m5.large, referred to as cheap VM
family, has $0.08/hr/node expense; r5b.large, referred to
as expensive VM family, has $0.15/hr/node expense).

We evaluate Mashup with a varying range of cluster sizes
from 2 nodes to 96 nodes. We choose this range of cluster size
as the execution time of the workflows varies considerably
from a 2 node cluster to a 96 node cluster (85% reduction in
execution time from a 2 node cluster to a 96 node cluster),
but on further increasing the cluster size, the performance
in terms of execution time does not improve considerably.
As an external storage service required in a hybrid execu-
tion environment, we use AWS Simple Storage Service (S3)
buckets, which are accessible both from Lambdas as well as
EC2s. While for the experimental demonstration, Mashup is
evaluated on AWS Lambda, its design principles are generic
and can be ported to other platforms. For statistical signif-
icance and accounting for cloud variability, we performed
our experiments ten times and averaged the execution time.
We confirm that our experiments and benefits are repeatable
and statistically significant.

Mashup is configurable for end-users to specify different
types of EC2 instances. The algorithm and optimization for-
mulation extends naturally, but as expected, determination
of optimal placement may require running the components
of workflows on different types of EC2 instances.

2 4 8 16 32 48 64 96

0

25

50

75

100

E
xe

cu
tio

n
Ti

m
e

(%
Im

pr
ov

em
en

t O
ve

r
Tr

ad
iti

on
al

 C
lu

st
er

)
(h

ig
he

r
is

 b
et

te
r)

1000Genome

2 4 8 16 32 48 64 96

Cluster Size (Number of Nodes)

SRAsearch

2 4 8 16 32 48 64 96

Epigenomics

Figure 6.Mashup consistently reduces execution time of a
workflow.

2 4 8 16 32 48 64 96

0

25

50

75

100

To
ta

l E
xp

en
se

 (%
Im

pr
ov

em
en

t O
ve

r
Tr

ad
iti

on
al

 C
lu

st
er

)
(h

ig
he

r
is

 b
et

te
r)

1000Genome

2 4 8 16 32 48 64 96

Cluster Size (Number of Nodes)

SRAsearch

2 4 8 16 32 48 64 96

Epigenomics

Figure 7.Mashup can also reduce expense due to a reduction
in the overall workflow execution time.

Evaluation Metrics. All performances are expressed as
a percentage improvement over a traditional VM clus-
ter execution. Hence, Mashup’s improvement is (1 −
Mashup performance

VM cluster performance) × 100%. We evaluate the workflow exe-
cution time and the execution expense, which includes the
combined expense of running all the VM nodes in a clus-
ter, the expense of running each of the serverless functions
(AWS Lambdas), and the expense of maintaining an S3 bucket
during execution (applicable only for Mashup).

5 Mashup: Evaluation and Analysis
In this section, we analyze the performance of Mashup.

Does Mashup reduce workflow execution times and
the overall expense? Fig. 6 confirms that Mashup is ef-
fective in reducing the workflow execution time. On an av-
erage, Mashup improves the workflow execution time of
1000Genome, SRAsearch and Epigenomics by 37%, 63% and
68% respectively over traditional cluster (Fig. 6). The im-
provement in Epigenomics is more than the other two work-
flows because Epigenomics has more percentage of tasks
that are suitable for serverless execution. For example, the
task FastQSplit in Epigenomics, which consists of more than
35% of the workflow execution time, is greatly benefited by
execution on serverless functions. A larger cluster has more
capacity in terms of computing resources and hence the per-
formance benefits from running certain tasks in serverless
reduce with an increase in cluster size.

Further, Fig. 7 shows that Mashup is effective in reducing
the expense in running the workflows. Mashup reduces ex-
pense by an average of more than 62% for 1000Genome and

53

Mashup: Making Serverless Computing Useful for HPC Workflows via Hybrid Execution PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

1000Genome
SRAsearch

Epigenomics
0

25

50

75

100

E
xe

cu
tio

n
Ti

m
e

(%
(I

m
pr

ov
em

en
t O

ve
r

tr
ad

iti
on

al
 C

lu
st

er
)

(h
ig

he
r

is
 b

et
te

r)

1000Genome
SRAsearch

Epigenomics
0

25

50

75

100

To
ta

l E
xp

en
se

 (%
Im

pr
ov

em
en

t O
ve

r
Tr

ad
iti

on
al

 C
lu

st
er

)
(h

ig
he

r
is

 b
et

te
r)

Cheap VM family Expensive VM family

Figure 8. Mashup performs well with different family of
VM instances in its hybrid environment (results for 48 node
cluster).

59% for SRAsearch (Fig. 7). Reduction in expense is primarily
because of the reduction in the execution time. The careful
design of Mashup ensures that serverless-specific expenses
(e.g., storage and data movement) do become significant
enough to outweigh the savings in cost achieved via the
reduction in execution time. Note that the improvement in
expense is much lower for the workflow Epigenomics. This
is because this workflow has a lot of tasks that benefit from
a serverless execution; these tasks are long-running. Since in
addition to the serverless functions, the VM cluster also stays
active in such periods, it adds up to the expense and hence,
reduction in overall expense is limited. But, Mashup is able to
improve execution time by more than 90% for Epigenomics
(Fig. 6).

Though the hybrid execution environment of Mashup has
both active VM cluster and serverless functions (in contrast
to only VMs in a traditional VM-based execution), still the
expense incurred to the cloud provider ismuch lower because
of the overall reduction in workflow execution time. Using
much less computing resources than a traditional cluster
execution, Mashup can achieve lower execution time and
cost. For example, even with an active VM cluster of 48 nodes,
Mashup achieves 41% lower execution time and 81% lower
expense than a 96 node traditional VM cluster execution
for SRAsearch. We found that in all cases, using just half
of VM cluster nodes than a traditional cluster execution,
Mashup lowers both execution time and cost compared to
the double-sized traditional VM cluster execution.

Impact of workflow size. We confirmed that Mashup provides
benefits for all representative input sizes and types specified
with the workflow distribution considered in the study. For
example, on an average, Mashup improves the workflow
execution time of SRAsearch by 60%, 63%, 66%, and 65% over
a traditional cluster for four different representative input
data sets [57]. It reduces expense by 58%, 59%, 63%, and
60% respectively for these inputs. These inputs represent
different protein sequences, with data size varying from 5
TB to 8.4 TB.

In
d.

In
d.

-M
er

.
Si

ft
.

M
ut

.-O
v.

Fr
eq

.

w/o PDC
2
4
8

16
32
48
64
96

C
lu

st
er

 S
iz

e
(N

um
be

r
of

 N
od

es
)

1000Genome

Fa
s.
-D
u.

B
ow

.-B
u.

B
ow

tie
2

M
er
ge

1
M
er
ge

2

SRAsearch

Fa
st
Q
Sp

.
Fi
lte

r.
So

l2
.

Fa
st
2b

fq
M
ap

M
ap

M
.

M
ap

M
.

C
hr
21

Pi
le
up

Epigenomics

Figure 9. Mashup chooses the optimal execution environ-
ment for tasks in a workflow (green denotes execution by
serverless functions and blue denotes execution in VM clus-
ter). Only in one case Mashup is incorrect in the estimation
of the optimal execution environment for a task (shown by
a cross).

Does Mashup provide execution and cost-
effectiveness across different types of VM nodes?
Recall that, for a fair comparison, in the default case, we
keep the price of VM nodes approximately the same as the
Lambda workers (price per unit time). To check Mashup’s
sensitivity across different VM price points, we evaluate
Mashup on other different types of VM nodes; one with per
second execution expense lower than serverless functions
(cheap VM family) and another with the expense higher
than serverless functions (expensive VM family).
From Fig. 8, we observe that Mashup continues to be

beneficial across VM families, both in terms of workflow
execution time and execution cost over a traditional
VM cluster execution. Note that when the VM family
becomes more expensive, the improvement reduces both
in terms of expense and execution time. This is because
an expensive VM family already has significantly more
compute, memory, and network capacity than a cheap
VM family, and hence the scope of improvement using a
hybrid execution environment reduces. However, in terms
of absolute performance, Mashup with the cheap VM family
can reduce the execution time of a workflow by more than
52% and expense by 57% over a traditional VM cluster
execution on an expensive VM family.

Why does Mashup work effectively? Mashup works ef-
fectively because the PDC phase of Mashup helps it to un-
derstand the interaction of tasks in a workflow with the
underlying system hardware. This assists Mashup to make
an informed decision about the suitable choice of an execu-
tion environment. In almost all of our experiments, Mashup
has been successful in determining the optimal execution
environment for all the tasks with one exception (Fig. 9).
Note that the decision of the optimal execution environment
for the tasks in a workflow changes both with cluster size as
well as VM family type. Following a naive strategy (Mashup

54

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari

0 50 100

0
15

0
30

0
IP

C
 (%

)
Individual in
1000Genome

0 50 100
Time (% of Execution Time)

0
50

10
0

N
et

w
or

k
B

/W
 (%

)

Phase 2 in
1000Genome

0 50 100

0
15

0
30

0
IP

C
 (%

)

FasterQDump in
SRAsearch

0 50 100

0
50

10
0

M
em

or
y

B
/W

 (%
)

Merge1 in
SRAsearch

0 50 100
Time (% of Execution Time)

0
50

10
0

IP
C

 (%
)

FastQSplit in
Epigenomics

Serverless
Function
Traditional
Cluster

Figure 10. Underlying system metrics like instructions per
cycle (IPC), network and memory bandwidth (% of maximum
in a serverless function) helps to understand why profiling
by Mashup helps to reduce workflow execution time.

without PDC) would result in making the same choice of
execution environment (depending upon the number of com-
ponents of each of the tasks; the first row in Fig. 9).

Through this simple strategy without PDC can be effective
to some extent in certain cases, but it does not provide any
guarantee to find the most optimal execution environment,
and also the performance can deteriorate in some cases com-
pared to a traditional VM execution. Next, we discuss some
of the cases where a task execution environment decision
without PDC proves to be sub-optimal.

To illustrate, we consider and discuss the execution of
the task Individual in 1000Genome workflow. It has 1,253
components, so Mashup (without PDC) will spawn its com-
ponents on serverless functions. However, we observe that
especially when the cluster size increases, a VM cluster ex-
ecution has much less execution time. This is because the
instructions per second (IPC) of this task is higher in a VM
cluster compared to a serverless execution, as seen in Fig. 10.
The components of this task do not contend against one
another for resources and hence a VM cluster with more
aggregated compute power than serverless functions turns
out to be beneficial. A similar behavior is observed in the
task FasterQ-Dump of SRAsearch. It has 200 components,
but with an increase in cluster size, its performance improves
in a VM cluster compared to a serverless execution.

Similarly, there are other cases whereMashup’s PDC helps
it to achieve better placement of tasks. For example, the
second phase of the workflow 1000Genome has two tasks,
Individual-Merge and Sifting and hence Mashup (without
PDC) executes them on a VM cluster. However, both of these
tasks run in parallel, with processes spawned across the
entire cluster, and they contend for network bandwidth to
communicate with the master node. They are I/O intensive

0 25 50 75100
0

25
50
75

100

E
xe

cu
tio

n
Ti

m
e

(%
 o

f M
ax

.)

1000Genome

0 25 50 75100
Total Expense (% of Max.)

0
25
50
75

100
SRAsearch

0 25 50 75100
0

25
50
75

100
Epigenomics

Serverless
VM Cluster
Mashup

Figure 11.Mashup’s hybrid execution strategy achieves best
of the both worlds (smaller is better).

1000Genome
SRAsearch

Epigenomics
0

25

50

75

E
xe

cu
tio

n
Ti

m
e

(%
(I

m
pr

ov
em

en
t O

ve
r

Tr
ad

iti
on

al
 C

lu
st

er
)

(h
ig

he
r

is
 b

et
te

r)

5 7 43
10

3

25
38

53

1000Genome
SRAsearch

Epigenomics
0

25

50

75

To
ta

l E
xp

en
se

 (%
Im

pr
ov

em
en

t O
ve

r
Tr

ad
iti

on
al

 C
lu

st
er

)
(h

ig
he

r
is

 b
et

te
r)

5 7 23
11

2

75
64

5

Kepler
Pegasus
Mashup

Figure 12. Mashup performs better than other state-of-the-
art HPC workflow schedulers both in terms of reducing
execution time and expense (results for 48 node cluster). The
numbers over the bars denote percentage improvement over
VM cluster.

and hence bandwidth contention becomes a major bottle-
neck. Through its PDC phase, Mashup identifies this issue
and spawns these tasks on separate serverless functions. As
a result, we observe a higher achieved IPC in a serverless
environment (Fig. 10).
The other key source of effectiveness is Mashup’s ability to

reduce serverless computing specific overheads such as cold
start time, I/O time, and scaling time. Mashup’s placement
decision controller helps Mashup to reduce these overheads.
For example, on average, Mashup reduces cold start time,
I/O time, and scaling time by 90%, 61%, and 94% compared
to Mashup without PDC. A serverless-only execution incurs
almost 1.3× worse than Mashup without PDC in all dimen-
sions (cold start time, I/O time, and scaling time). Hence,
serverless-only execution is not a compelling design point;
it incurs more than 10% execution time degradation than the
VM cluster-based execution. Mashup without PDC improves
the situation, and Mashup provides further improvement
over Mashup without PDC in mitigating these serverless
specific overheads. Finally, Fig. 11 shows that Mashup’s hy-
brid execution strategy achieves the best of both worlds
(serverless-only execution and VM-based cluster execution)
– reducing execution time and expense desirably.

In practice, Mashup’s estimation of the execution time
of a task using PDC is more than 95% accurate. We found
that variability during profiling mostly affected only short-
running tasks (a few milliseconds to seconds). Mashup con-
servatively place those tasks on a VM-based cluster. We per-
formed the same task placements across different inputs pro-
vided in the workflow suite and found similar performance-
cost savings (32% performance and 41% cost on average).

55

Mashup: Making Serverless Computing Useful for HPC Workflows via Hybrid Execution PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

How does Mashup perform compared to other state-
of-the-art workflow managers. Here we compare
Mashup against Pegasus and Kepler. They execute work-
flows only on VM clusters and performs several optimiza-
tions in terms of scheduling tasks as well as controlling data
movement pattern. To the best of our knowledge, Mashup
is the first workflow manager that systematically uses a hy-
brid execution environment comprising of VM cluster and
serverless functions to execute HPC workflows. This hybrid
approach of workflow execution is beneficial than traditional
ways of executing a workflow in a VM cluster, as can be seen
from Fig. 12. On average, Mashup executes workflows with
a 34% less execution time compared to execution via both
Pegasus and Kepler workflow managers on the same VM
cluster. At the same time, Mashup also reduces the execution
expense by an average of 43% due to an overall reduction in
execution time.
The source of improvement is Mashup’s ability to take

advantage of serverless platforms for mitigating resource
contention among components of a single task on VM-based
execution. Unlike Mashup, Pegasus and Kepler do not take
into consideration the contention for resources among multi-
ple components of a single task. However, despite significant
improvements over the state-of-the-art, we note that Mashup
is complementary to Pegasus and Kepler’s efforts since the
optimizations embedded in Pegasus and Kepler (e.g., data
reuse, redundant computation elimination, task grouping)
can still be applied over Mashup.

Is Mashup portable across different cloud platforms?
Mashup’s design and benefits are portable beyond AWS. For
example, on Google Cloud, we observed similar trends (e.g.,
33% and 68% improvement in performance and cost, respec-
tively for 1000Genome; 43% and 88% improvement in perfor-
mance and cost, respectively for SRAsearch, using 16-node
configuration). We noticed that the placement decision of all
components remained the same. Even without the profiling,
Mashup offers similar cost and performance improvement
on Google Cloud (e.g., 10%, and 56% cost improvement for
1000Genome and SRAsearch, respectively without profiling
versus 68% and 88% improvement with profiling; 22%, and
38% execution time improvements versus 33% and 48% for
Mashup with profiling).

6 Related Works
Over the past several decades, scientific workflows have
been used across multiple domains to represent the complex
precedence pattern of different tasks and components [33,
43, 49, 63, 64, 84]. They have been behind several major
scientific discoveries [27, 56, 70, 81]. Since the number of
tasks and components in a workflow can be overwhelmingly
large (mostly in 1000s), it is not possible to manage each of

such components individually – hence the concept of work-
flow management systems like Pegasus, Kepler, DAGman,
Parsl, and others have become popular [2, 3, 5, 10, 14, 17–
19, 31, 44, 64, 67, 68, 71, 82]. Workflow managers frequently
use different optimizations to schedule the tasks, control
I/O pattern, and optimally share network resources [10, 14,
16, 18, 22, 46, 48, 51, 78, 89]. These optimizations frequently
make the workflow managers suitable only for certain spe-
cific kinds of workflows, having specific computational and
I/O characteristics [2, 3, 13, 21, 50, 56, 60, 64, 71, 82, 86]. But,
prior efforts have not devised strategies to leverage server-
less computing for reducing the execution time and cost of
scientific workflows. It requires developing new strategies to
mitigate serverless-specific challenges since the serverless
computing model was not originally designed to serve HPC
workflows as a primary objective –Mashup attempts to work
in this conventional landscape.

When workflows execute tasks in a cluster, different com-
ponents of it can contend for similar resources, thus in-
creasing the overhead [11, 25, 35]. To mitigate this, some
workflow managers execute workflows in a distributed
manner, in multiple clusters [36, 51, 72, 73, 80, 91]. But,
this approach increases the expense and also leads to re-
source under-utilization [8, 32]. Also, traditional workflow
managers exhibit inefficiencies to schedule a large num-
ber of short-running tasks among multiple nodes in a clus-
ter [28, 37, 74, 90]. To bridge these gaps, we design Mashup,
which uses a hybrid execution model and demonstrates that
it is possible to exploit a serverless executionmodel for speed-
ing up the execution of HPC workflows.

7 Conclusion
To the best of our knowledge, Mashup is the first work done
that systematically uses serverless computing and traditional
VM cluster hybrid environment for the execution of HPC
workflows. Typically HPC workflows have tasks that can
be accelerated by a serverless execution. However, not all
types of tasks are suitable for serverless platforms, due to
several serverless computing-specific challenges. Mashup ex-
ploits the benefits of serverless computing and improvesHPC
workflow execution time by 34% and reduces the expense
by 43%, on average over the state-of-the-art HPC workflow
managers. The framework of Mashup is open-sourced for com-
munity adoption and enabling future research. It is available
at https://zenodo.org/record/5733395.

Acknowledgments
We thank the anonymous reviewers for their valuable feed-
back. This work is supported byNSFAward 1910601, 1920020,
and 2124897. The research was sponsored by the United
States Air Force Research Laboratory and the United States

56

https://zenodo.org/record/5733395

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari

Air Force Artificial Intelligence Accelerator and was accom-
plished under Cooperative Agreement Number FA8750-19-
2-1000. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the United States Air Force or the U.S. Government.
The U.S. Government is authorized to reproduce and distrib-
ute reprints for Government purposes notwithstanding any
copyright notation herein.

References
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications. In
17th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 20). 419–434.

[2] Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram
Ludascher, and Steve Mock. 2004. Kepler: an extensible system for
design and execution of scientific workflows. In Proceedings. 16th Inter-
national Conference on Scientific and Statistical Database Management,
2004. IEEE, 423–424.

[3] Kaizar Amin, Gregor Von Laszewski, Mihael Hategan, Nestor J Zaluzec,
ShawnHampton, and Albert Rossi. 2004. Gridant: A client-controllable
grid workflow system. In 37th Annual Hawaii International Conference
on System Sciences, 2004. Proceedings of the. IEEE, 10–pp.

[4] Pau Andrio, AdamHospital, Javier Conejero, Luis Jordá, Marc Del Pino,
Laia Codo, Stian Soiland-Reyes, Carole Goble, Daniele Lezzi, Rosa M
Badia, et al. 2019. BioExcel Building Blocks, a software library for
interoperable biomolecular simulation workflows. Scientific data 6, 1
(2019), 1–8.

[5] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S Katz, Ben Clifford,
Rohan Kumar, Lukasz Lacinski, Ryan Chard, Justin M Wozniak, Ian
Foster, et al. 2019. Parsl: Pervasive parallel programming in python. In
Proceedings of the 28th International Symposium on High-Performance
Parallel and Distributed Computing. 25–36.

[6] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2021. Charac-
terizing and Mitigating the I/O Scalability Challenges for Serverless
Applications. In 2021 IEEE International Symposium on Workload Char-
acterization (IISWC).

[7] Andrea R Beccari, Carlo Cavazzoni, Claudia Beato, and Gabriele
Costantino. 2013. LiGen: a high performance workflow for chem-
istry driven de novo design.

[8] Jakub Beránek, Stanislav Böhm, and Vojtěch Cima. 2019. ESTEE: A
simulation toolkit for distributed workflow execution. In The Interna-
tional Conference for High Performance Computing, Networking, Storage,
and Analysis.

[9] Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang Mehta, Mei-
Hui Su, and Karan Vahi. 2008. Characterization of scientific workflows.
In 2008 third workshop on workflows in support of large-scale science.
IEEE, 1–10.

[10] Junwei Cao, Stephen A Jarvis, Subhash Saini, and Graham R Nudd.
2003. Gridflow: Workflow management for grid computing. In CCGrid
2003. 3rd IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2003. Proceedings. IEEE, 198–205.

[11] Adam G Carlyle, Stephen L Harrell, and Preston M Smith. 2010. Cost-
effective HPC: The community or the cloud?. In 2010 IEEE Second
International Conference on Cloud Computing Technology and Science.
IEEE, 169–176.

[12] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. 2019. The rise of serverless computing. Commun. ACM 62,
12 (2019), 44–54.

[13] Jieun Choi, Theodora Adufu, and Yoonhee Kim. 2017. Data-locality
aware scientific workflow scheduling methods in HPC cloud envi-
ronments. International Journal of Parallel Programming 45, 5 (2017),
1128–1141.

[14] Rafael Ferreira da Silva, Rosa Filgueira, Ilia Pietri, Ming Jiang, Rizos
Sakellariou, and Ewa Deelman. 2017. A characterization of workflow
management systems for extreme-scale applications. Future Generation
Computer Systems 75 (2017), 228–238.

[15] Marcos Dias De Assunção, Alexandre Di Costanzo, and Rajkumar
Buyya. 2009. Evaluating the cost-benefit of using cloud computing
to extend the capacity of clusters. In Proceedings of the 18th ACM
international symposium on High performance distributed computing.
141–150.

[16] Daniel De Oliveira, Eduardo Ogasawara, Fernanda Baião, and Marta
Mattoso. 2010. Scicumulus: A lightweight cloud middleware to explore
many task computing paradigm in scientific workflows. In 2010 IEEE
3rd International Conference on Cloud Computing. IEEE, 378–385.

[17] Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor. 2009.
Workflows and e-Science: An overview of workflow system features
and capabilities. Future generation computer systems 25, 5 (2009), 528–
540.

[18] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan,
Philip J Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira
Da Silva, Miron Livny, et al. 2015. Pegasus, a workflow management
system for science automation. Future Generation Computer Systems
46 (2015), 17–35.

[19] Ewa Deelman, Karan Vahi, Mats Rynge, Rajiv Mayani, Rafael Ferreira
da Silva, George Papadimitriou, and Miron Livny. 2019. The evolution
of the pegasus workflow management software. Computing in Science
& Engineering 21, 4 (2019), 22–36.

[20] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-
efficient and qos-aware cluster management. ACM SIGPLAN Notices
49, 4 (2014), 127–144.

[21] P. Donnelly, N. Hazekamp, and D. Thain. 2015. Confuga: Scalable Data
Intensive Computing for POSIX Workflows. In 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. 392–
401.

[22] Rubing Duan, Radu Prodan, and Thomas Fahringer. 2007. Perfor-
mance and cost optimization for multiple large-scale grid workflow
applications. In Proceedings of the 2007 ACM/IEEE conference on Super-
computing. 1–12.

[23] Stefan Eilemann, Fabien Delalondre, Jon Bernard, Judit Planas, Felix
Schuermann, John Biddiscombe, Costas Bekas, Alessandro Curioni,
Bernard Metzler, Peter Kaltstein, et al. 2016. Key/value-enabled flash
memory for complex scientific workflows with on-line analysis and
visualization. In 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS). Ieee, 608–617.

[24] Simon Eismann, Joel Scheuner, Erwin van Eyk, Maximilian Schwinger,
Johannes Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru
Iosup. 2020. Serverless Applications: Why, When, and How? IEEE
Software 38, 1 (2020), 32–39.

[25] Pradeep Fernando, Ada Gavrilovska, Sudarsun Kannan, and Greg
Eisenhauer. 2018. Nvstream: Accelerating hpc workflows with nvram-
based transport for streaming objects. In Proceedings of the 27th In-
ternational Symposium on High-Performance Parallel and Distributed
Computing. 231–242.

[26] W Freudling, M Romaniello, DM Bramich, P Ballester, V Forchi, CE
García-Dabló, S Moehler, and MJ Neeser. 2013. Automated data reduc-
tion workflows for astronomy-The ESO Reflex environment. Astron-
omy & Astrophysics 559 (2013), A96.

[27] Richard Gerber, William Allcock, Chris Beggio, Stuart Campbell, An-
drew Cherry, Shreyas Cholia, Eli Dart, Clay England, Tim Fahey, Fer-
nanda Foertter, et al. 2014. DOE High Performance Computing Opera-
tional Review (HPCOR): Enabling Data-Driven Scientific Discovery at

57

Mashup: Making Serverless Computing Useful for HPC Workflows via Hybrid Execution PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

HPC Facilities. (2014).
[28] Wolfgang Gerlach, Wei Tang, Kevin Keegan, Travis Harrison, Andreas

Wilke, Jared Bischof, Mark DSouza, Scott Devoid, Daniel Murphy-
Olson, Narayan Desai, et al. 2014. Skyport-container-based execution
environment management for multi-cloud scientific workflows. In
2014 5th International Workshop on Data-Intensive Computing in the
Clouds. IEEE, 25–32.

[29] Samik Ghosh, Yukiko Matsuoka, Yoshiyuki Asai, Kun-Yi Hsin, and
Hiroaki Kitano. 2011. Software for systems biology: from tools to
integrated platforms. Nature Reviews Genetics 12, 12 (2011), 821–832.

[30] Devarshi Ghoshal and Lavanya Ramakrishnan. 2017. Madats: Man-
aging data on tiered storage for scientific workflows. In Proceedings
of the 26th International Symposium on High-Performance Parallel and
Distributed Computing. 41–52.

[31] Jeremy Goecks, Anton Nekrutenko, and James Taylor. 2010. Galaxy:
a comprehensive approach for supporting accessible, reproducible,
and transparent computational research in the life sciences. Genome
biology 11, 8 (2010), 1–13.

[32] N. Hazekamp, N. Kremer-Herman, B. Tovar, H. Meng, O. Choudhury,
S. Emrich, and D. Thain. 2018. Combining Static and Dynamic Storage
Management for Data Intensive Scientific Workflows. IEEE Transac-
tions on Parallel and Distributed Systems 29, 2 (2018), 338–350.

[33] Nicholas Hazekamp, Joseph Sarro, Olivia Choudhury, Sandra Gesing,
Scott Emrich, and Douglas Thain. 2015. Scaling up bioinformatics
workflows with dynamic job expansion: A case study using galaxy
and makeflow. In 2015 IEEE 11th International Conference on e-Science.
IEEE, 332–341.

[34] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018.
Serverless computing: One step forward, two steps back. arXiv preprint
arXiv:1812.03651 (2018).

[35] Valerie Hendrix, James Fox, Devarshi Ghoshal, and Lavanya Ramakr-
ishnan. 2016. Tigres workflow library: Supporting scientific pipelines
on hpc systems. In 2016 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid). IEEE, 146–155.

[36] Muhammad H Hilman, Maria A Rodriguez, and Rajkumar Buyya. 2020.
Multiple workflows scheduling in multi-tenant distributed systems: A
taxonomy and future directions. ACM Computing Surveys (CSUR) 53,
1 (2020), 1–39.

[37] Christina Hoffa, Gaurang Mehta, Tim Freeman, Ewa Deelman, Kate
Keahey, Bruce Berriman, and John Good. 2008. On the use of cloud
computing for scientific workflows. In 2008 IEEE fourth international
conference on eScience. IEEE, 640–645.

[38] Zahaf Houssam-Eddine, Nicola Capodieci, Roberto Cavicchioli,
Giuseppe Lipari, andMarko Bertogna. 2020. The HPC-DAG task model
for heterogeneous real-time systems. IEEE Trans. Comput. (2020).

[39] Zhuoyi Huang, Jin Yu, and Fuli Yu. 2013. Cloud processing of 1000
genomes sequencing data using Amazon Web Service. In 2013 IEEE
Global Conference on Signal and Information Processing. IEEE, 49–52.

[40] Qingye Jiang, Young Choon Lee, and Albert Y Zomaya. 2015. Executing
large scale scientific workflow ensembles in public clouds. In 2015 44th
International Conference on Parallel Processing. IEEE, 520–529.

[41] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. 2019. Cloud programming sim-
plified: A berkeley view on serverless computing. arXiv preprint
arXiv:1902.03383 (2019).

[42] Gideon Juve and Ewa Deelman. 2011. Wrangler: Virtual cluster provi-
sioning for the cloud. In Proceedings of the 20th international symposium
on High performance distributed computing. 277–278.

[43] Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, Bruce Berri-
man, Benjamin P Berman, and Phil Maechling. 2009. Scientific work-
flow applications on Amazon EC2. In 2009 5th IEEE international con-
ference on e-science workshops. IEEE, 59–66.

[44] Johannes Köster and Sven Rahmann. 2012. Snakemake—a scalable
bioinformatics workflow engine. Bioinformatics 28, 19 (2012), 2520–
2522.

[45] Aleksandr Kuntsevich, Pezhman Nasirifard, and Hans-Arno Jacobsen.
2018. A distributed analysis and benchmarking framework for apache
openwhisk serverless platform. In Proceedings of the 19th International
Middleware Conference (Posters). 3–4.

[46] Young Choon Lee and Albert Y Zomaya. 2013. Stretch out and compact:
Workflow scheduling with resource abundance. In 2013 13th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing. IEEE,
219–226.

[47] Weiling Li, Yunni Xia, Mengchu Zhou, Xiaoning Sun, and Qingsheng
Zhu. 2018. Fluctuation-aware and predictive workflow scheduling in
cost-effective infrastructure-as-a-service clouds. IEEE Access 6 (2018),
61488–61502.

[48] Cui Lin, Shiyong Lu, Xubo Fei, Artem Chebotko, Darshan Pai, Zhao-
qiang Lai, Farshad Fotouhi, and Jing Hua. 2009. A reference architec-
ture for scientific workflow management systems and the VIEW SOA
solution. IEEE Transactions on Services Computing 2, 1 (2009), 79–92.

[49] Xiangyu Lin and Chase Qishi Wu. 2013. On scientific workflow sched-
uling in clouds under budget constraint. In 2013 42nd International
Conference on Parallel Processing. IEEE, 90–99.

[50] Eric Lyons, Michael Zink, Anirban Mandal, Cong Wang, Paul Ruth,
Chandrasekar Radhakrishnan, George Papadimitriou, Ewa Deelman,
Komal Thareja, and Ivan Rodero. 2020. DyNamo: Scalable Weather
Workflow Processing in the Academic Multicloud. In 100th American
Meteorological Society Annual Meeting. AMS.

[51] Ketan Maheshwari, Eun-Sung Jung, Jiayuan Meng, Venkatram Vish-
wanath, and Rajkumar Kettimuthu. 2014. Improving multisite work-
flow performance using model-based scheduling. In 2014 43rd Interna-
tional Conference on Parallel Processing. IEEE, 131–140.

[52] Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski.
2015. Algorithms for cost-and deadline-constrained provisioning for
scientific workflow ensembles in IaaS clouds. Future Generation Com-
puter Systems 48 (2015), 1–18.

[53] Ming Mao and Marty Humphrey. 2011. Auto-scaling to minimize cost
and meet application deadlines in cloud workflows. In SC’11: Proceed-
ings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–12.

[54] Ming Mao and Marty Humphrey. 2012. A performance study on the
vm startup time in the cloud. In 2012 IEEE Fifth International Conference
on Cloud Computing. IEEE, 423–430.

[55] Paul Marshall, Kate Keahey, and Tim Freeman. 2011. Improving uti-
lization of infrastructure clouds. In 2011 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. IEEE, 205–214.

[56] Marta Mattoso, Kary Ocana, Felipe Horta, Jonas Dias, Eduardo Oga-
sawara, Vitor Silva, Daniel de Oliveira, Flavio Costa, and Igor Araújo.
2013. User-steering of HPC workflows: state-of-the-art and future di-
rections. In Proceedings of the 2nd ACM SIGMOD Workshop on Scalable
Workflow Execution Engines and Technologies. 1–6.

[57] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko,
Kristian Cibulskis, Andrew Kernytsky, Kiran Garimella, David Alt-
shuler, Stacey Gabriel, Mark Daly, et al. 2010. The Genome Analysis
Toolkit: a MapReduce framework for analyzing next-generation DNA
sequencing data. Genome research 20, 9 (2010), 1297–1303.

[58] Anton Nekrutenko and James Taylor. 2012. Next-generation sequenc-
ing data interpretation: enhancing reproducibility and accessibility.
Nature Reviews Genetics 13, 9 (2012), 667–672.

[59] Panayiotis Neophytou, Roxana Gheorghiu, Rebecca Hachey, Timothy
Luciani, Di Bao, Alexandros Labrinidis, Elisabeta G Marai, and Panos K
Chrysanthis. 2012. Astroshelf: understanding the universe through
scalable navigation of a galaxy of annotations. In Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data.
713–716.

58

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari

[60] Marco AS Netto, Rodrigo N Calheiros, Eduardo R Rodrigues, Renato LF
Cunha, and Rajkumar Buyya. 2018. HPC cloud for scientific and
business applications: taxonomy, vision, and research challenges. ACM
Computing Surveys (CSUR) 51, 1 (2018), 1–29.

[61] Kary Ocaña, Silvia Benza, Daniel De Oliveira, Jonas Dias, and Marta
Mattoso. 2014. Exploring large scale receptor-ligand pairs in molecular
docking workflows in HPC clouds. In 2014 IEEE International Parallel
& Distributed Processing Symposium Workshops. IEEE, 536–545.

[62] Gagandeep Panwar, Da Zhang, Yihan Pang, Mai Dahshan, Nathan
DeBardeleben, Binoy Ravindran, and Xun Jian. 2019. Quantifying
memory underutilization in hpc systems and using it to improve per-
formance via architecture support. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 821–835.

[63] Ioan Raicu, Ian T Foster, and Yong Zhao. 2008. Many-task comput-
ing for grids and supercomputers. In 2008 workshop on many-task
computing on grids and supercomputers. IEEE, 1–11.

[64] Gonzalo P Rodrigo, Erik Elmroth, Per-Olov Östberg, and Lavanya
Ramakrishnan. 2017. Enabling workflow-aware scheduling on hpc
systems. In Proceedings of the 26th International Symposium on High-
Performance Parallel and Distributed Computing. 3–14.

[65] Eric E Schadt, Michael D Linderman, Jon Sorenson, Lawrence Lee,
and Garry P Nolan. 2010. Computational solutions to large-scale
data management and analysis. Nature reviews genetics 11, 9 (2010),
647–657.

[66] Greg Schulz. 2011. Cloud and virtual data storage networking. CRC
Press.

[67] Khawaja S Shams, Mark W Powell, Tom M Crockett, Jeffrey S Norris,
Ryan Rossi, and Tom Soderstrom. 2010. Polyphony: A workflow or-
chestration framework for cloud computing. In 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing. IEEE,
606–611.

[68] Srinath Shankar and David J DeWitt. 2007. Data driven workflow
planning in cluster management systems. In Proceedings of the 16th
international symposium on High performance distributed computing.
127–136.

[69] Julian Shun. 2020. Practical parallel hypergraph algorithms. In Proceed-
ings of the 25th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 232–249.

[70] Ola Spjuth, Erik Bongcam-Rudloff, Guillermo Carrasco Hernández,
Lukas Forer, Mario Giovacchini, Roman Valls Guimera, Aleksi Kallio,
Eija Korpelainen, Maciej M Kańduła, Milko Krachunov, et al. 2015.
Experiences with workflows for automating data-intensive bioinfor-
matics. Biology direct 10, 1 (2015), 1–12.

[71] Young-Kyoon Suh, Hoon Ryu, Hangi Kim, and Kum Won Cho. 2016.
EDISON: a web-based HPC simulation execution framework for large-
scale scientific computing software. In 2016 16th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE,
608–612.

[72] Kyle MD Sweeney and Douglas Thain. 2018. Early Experience Us-
ing Amazon Batch for Scientific Workflows. In Proceedings of the 9th
Workshop on Scientific Cloud Computing. 1–8.

[73] Kyle MD Sweeney and Douglas Thain. 2018. Efficient integration of
containers into scientific workflows. In Proceedings of the 9thWorkshop
on Scientific Cloud Computing. 1–6.

[74] Claudia Szabo, Quan Z Sheng, Trent Kroeger, Yihong Zhang, and
Jian Yu. 2014. Science in the cloud: Allocation and execution of data-
intensive scientific workflows. Journal of Grid Computing 12, 2 (2014),
245–264.

[75] Matteo Turilli, Mark Santcroos, and Shantenu Jha. 2018. A compre-
hensive perspective on pilot-job systems. ACM Computing Surveys
(CSUR) 51, 2 (2018), 1–32.

[76] Amandeep Verma and Sakshi Kaushal. 2017. A hybrid multi-objective
particle swarm optimization for scientific workflow scheduling. Paral-
lel Comput. 62 (2017), 1–19.

[77] Laurens Versluis, Erwin Van Eyk, and Alexandru Iosup. 2018. An
analysis of workflow formalisms for workflows with complex non-
functional requirements. In Companion of the 2018 ACM/SPEC Interna-
tional Conference on Performance Engineering. 107–112.

[78] Cong Wang, George Papadimitriou, Mariam Kiran, Anirban Mandal,
and Ewa Deelman. 2020. Identifying Execution Anomalies for Data
Intensive Workflows Using Lightweight ML Techniques. In 2020 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE, 1–7.

[79] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart,
and Michael Swift. 2018. Peeking behind the curtains of server-
less platforms. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18). 133–146.

[80] Teng Wang, Suren Byna, Bin Dong, and Houjun Tang. 2018. UniviStor:
Integrated hierarchical and distributed storage for HPC. In 2018 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE, 134–
144.

[81] David Woollard, Nenad Medvidovic, Yolanda Gil, and Chris A
Mattmann. 2008. Scientific software as workflows: From discovery to
distribution. IEEE software 25, 4 (2008), 37–43.

[82] Jia Yu and Rajkumar Buyya. 2004. A novel architecture for realizing
grid workflow using tuple spaces. In Fifth IEEE/ACM International
Workshop on Grid Computing. IEEE, 119–128.

[83] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing
serverless platforms with serverlessbench. In Proceedings of the 11th
ACM Symposium on Cloud Computing. 30–44.

[84] Dong Yuan, Yun Yang, Xiao Liu, and Jinjun Chen. 2010. A cost-effective
strategy for intermediate data storage in scientific cloud workflow
systems. In 2010 IEEE international symposium on parallel & distributed
processing (IPDPS). IEEE, 1–12.

[85] Shuai Zeng, Zhen Lyu, Siva Ratna Kumari Narisetti, Dong Xu, and
Trupti Joshi. 2018. Knowledge Base Commons (KBCommons) v1. 0:
A multi OMICS’web-based data integration framework for biological
discoveries. In 2018 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM). IEEE, 589–594.

[86] Qimin Zhang, Nathaniel Kremer-Herman, Benjamin Tovar, and Dou-
glas Thain. 2018. Reduction ofWorkflow Resource Consumption Using
a Density-based Clustering Model. In 2018 IEEE/ACM Workflows in
Support of Large-Scale Science (WORKS). IEEE, 1–9.

[87] Dongfang Zhao, Chen Shou, Tanu Maliky, and Ioan Raicu. 2013. Dis-
tributed data provenance for large-scale data-intensive computing. In
2013 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 1–8.

[88] Qi Zhao, Zhengyi Qiu, and Guoliang Jin. 2019. Semantics-aware
scheduling policies for synchronization determinism. In Proceedings of
the 24th Symposium on Principles and Practice of Parallel Programming.
242–256.

[89] Yong Zhao, Youfu Li, Ioan Raicu, Shiyong Lu, Cui Lin, Yanzhe Zhang,
Wenhong Tian, and Ruini Xue. 2014. A service framework for scientific
workflow management in the cloud. IEEE Transactions on Services
Computing 8, 6 (2014), 930–944.

[90] Yong Zhao, Youfu Li, Ioan Raicu, Shiyong Lu, Wenhong Tian, and
Heng Liu. 2015. Enabling scalable scientific workflow management in
the Cloud. Future Generation Computer Systems 46 (2015), 3–16.

[91] C. Zheng, B. Tovar, and D. Thain. 2017. Deploying High Throughput
Scientific Workflows on Container Schedulers with Makeflow and
Mesos. In 2017 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID). 130–139.

[92] Zhaomeng Zhu, Gongxuan Zhang, Miqing Li, and Xiaohui Liu. 2015.
Evolutionary multi-objective workflow scheduling in cloud. IEEE
Transactions on parallel and distributed Systems 27, 5 (2015), 1344–
1357.

59

Mashup: Making Serverless Computing Useful for HPC Workflows via Hybrid Execution PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Artifact Appendix
Abstract
Mashup executes HPC/scientific workflows in a hybrid exe-
cution environment consisting of a VM-based cluster and a
serverless platform. For every task in the Directed Acyclic
Graph (DAG) of a workflow, Mashup decides which execu-
tion environment (VM-based cluster versus serverless plat-
form) is suitable. Accordingly, it executes the tasks to reduce
execution time and expense incurred to the end user for
running the workflow. Our artifact packages the scripts and
data that can be used to reproduce all the results in the pa-
per. Additionally, it also contains the scripts to launch the
benchmarks and carry out the experiments on AWS Lambda
serverless and EC2 VM platforms. The artifact is available at
the following link:

https://zenodo.org/record/5733395
It includes the following:

• The workflows 1000Genome, Epigenomics, and
SRAsearch.

• Scripts to set up the workflows in AWS Lambda server-
less environment.

• Scripts to set up the workflows in AWS EC2 VM envi-
ronment.

• Scripts and data for hybrid execution of workflows
using 3 different types of VM families.

• Scripts and data for hybrid execution of workflows on
different VM cluster sizes ranging from 2 to 96.

• Scripts and data of profiling individual components of
the workflows.

Multiple runs are performed for each of the experiments.
Along with hybrid execution of HPC workflows, execution
results and scripts of only EC2 cluster execution and only
serverless Lambda execution are also provided.

Artifact check-list (meta-information)
• Algorithm: Algorithm: A hybrid serverless and VM cluster
execution algorithm for HPC workflows.

• Program: HPC workflows 1000Genome, Epigenomics, and
SRAsearch (included in the artifact).

• Data set: The data set required to set-up the individual tasks
of the workflows are included. Data generated through ex-
periments, containing I/O time, compute time, and execution
time of workflow components in serverless and VM-based
cluster are included in the artifact.

• Run-time environment: Python3.6 with boto3 and awscli.
AWS is invoked for spawning serverless functions and set-
ting up EC2 VMs from a Ubuntu 18.04.4 LTS server.

• Hardware: AWS Lambda serverless platform, AWS S3, and
AWS EC2 VMs of m5, r5, and r5b families (node count vary-
ing from 2 to 96).

• Metrics: Compute time, read time, write time of individual
components of a workflow, along with the total execution
time of the workflow and the expense of the end-user.

• Output: Execution time, compute time, I/O time, and cost.

• Experiments: Primarily of two different types – (1)Mashup
with PDC, where in the profiling phase, Mashup decides the
correct execution environment for each of the tasks of a
workflow. (2) Mashup without PDC where the tasks with a
large number of components are run on serverless and the
rest of the tasks execute on a VM-based cluster. Along with
these hybrid environments, experimental data of executing
all tasks in serverless and all tasks in a VM-based cluster are
also provided.

• Howmuch disk space required (approximately)?: 2 GB
• Publicly available?: Yes
• Archived (DOI)?: https://zenodo.org/record/5733395

Description
This artifact provides the framework of Mashup, which executes
HPC workflows in a hybrid serverless and serverful (VM-based
cluster) environment. As an input, Mashup requires a workflow
DAG, the binaries of the individual tasks of a workflow, and the
input data of the tasks. Mashup then sets up the tasks in both
serverless environment and a VM-based cluster. With the help of
Mashup’s PDC, it performs profiling of the tasks to determine the
most optimal execution environment. This task-level optimal choice
helps in the reduction of execution time of the entire workflow and
the cloud execution cost incurred by the end-user.

Methodology
Mashup is implemented in Python3.6 and is easily portable to use
with multiple cloud providers. As a dependency, it only requires the
command line interface (CLI) of the respective cloud provider to be
installed and configured with the user account credentials. Mashup
sets up a VM nodes according to the user’s chosen VM family and
number of nodes. Then, Mashup sets up the tasks of the workflow
in the cluster as well as in the cloud provider’s serverless platform.
It then configures a remote storage to be used for exchanging data
among multiple tasks running on different platforms and loads the
initial input data in it. The Placement Decision Controller (PDC) of
Mashup spawns the tasks of the workflow once on the serverless
platform and once on a VM-based cluster and decides the optimal
execution environment for each of the tasks. Then accordingly,
Mashup spawns the tasks of the workflow in the most optimal
execution environment, following the precedence pattern of the
workflow DAG. Mashup also takes certain steps like having redun-
dant remote storages and VMs which can control the execution of
the workflow, in the event of a failure of the master node.

Installation
To set up the workflows and the framework of Mashup, boto3 must
be installed and awscli should be configured with the user’s AWS
account credentials. This will allow the user to set up and directly
export the tasks of a workflow to the EC2 VMs and the serverless
deployment packets to AWS via the aws lambda create-function com-
mand. More details on installation is provided in the README.md
file in the artifact.

Evaluation and expected results
All results from Fig.6 – Fig.12 are expected to be reproduced from
the data in the artifact.

60

https://zenodo.org/record/5733395
https://zenodo.org/record/5733395

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Mashup: Design and Implementation
	4 Experimental Methodology
	5 Mashup: Evaluation and Analysis
	6 Related Works
	7 Conclusion
	Acknowledgments
	References

