TCSS 562: SE for Cloud Computing [Spring 2018]
Institute of Technology, UW-Tacoma

TCSS 562:
SOFTWARE ENGINEERING ,
FOR CLOUD COMPUTING _I

Containerization

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

Credit: some content based on Salman A. Baset, [BM: WOC 2018 @ IC2E — Container Security

OBJECTIVES

=Term project questions
= AWS Educate

= Tutorial #2

= Midterm Wednesday 5/9

= Containerization
= Tutorial #3 - Containers, cgroups, isolation

TCSS562: i ing for Cloud C i ing 2018]
(e D e e e st i e | 102 |

FEEDBACK

TCSS562: Software Engineering for Cloud Computing [Spring 2018]
Bl H Inttute o Technology)Universitylof WasfingtonTaco mal

MOTIVATION FOR CONTAINERIZATION

= Containers provide “light-weight” alternative to full 0S
virtualization provided by a hypervisor

= Containers do not provide a full “machine”

= Instead use operating system constructs to provide “sand
boxes” for execution

= Linux cgroups, namespaces, etc.
= Containers can run on bare metal, or atop of VMs

C

‘ Container

C
°
n
!

=00

e

[Hypervisor engine]

Hardware

o
n

el
Host OS's bins/libs

e
Host OS 2

Containers engine

Host OS . Type 1 Hardware
Containers .
Hardvare Hypervisor/VM Typez
TCSS562: i ing for Cloud C i ing 2018]
‘ (T [Se e erTechacloky U e raity o fWashintonSTaco mal | L4 |

CONTAINER PERFORMANCE

- LU FACTORIZATION PERFORMANCE

Performance data from IC2E 2015:

oy A Performance Comparison

= Solve linear equations - matrix algebra | Hypervisors vs. Lightweight Virtualization:

s

KVM DOCKER LXC NATIVE osv

Fig.4. The value of Linpack results on each platform over 15 runs. This is
the particular case of N=1000.

TCS5562: Software Engineering for Cloud Computing [Spring 2018]

April 30, 2018 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

CONTAINER PERFORMANCE

- Y-CRUNCHER: PI CALCULATOR

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
| A Performance Comparison

1800
EKVM

1750 1 lapocker
1700 | |BLXC

- ENATIVE

T 1650

Z 1600

3 1550

Z 1500

z

£ 1450

1400
1350
1300
ik
TCSS562: i ing for Cloud C i ing 2018]
(T [nstute o Technoloky University/of Washinkton Siacomal | 108 |

5/1/2018

L9.1

TCSS 562: SE for Cloud Computing [Spring 2018]
Institute of Technology, UW-Tacoma

CONTAINER PERFORMANCE - BONNIE++

Performance data from IC2E 2015:
Hypervisors vs. Lightweight Virtualization:
250000 | A Per C i
@KVM EDOCKER ELXC BNATIVE |

30000

Block Output Black Input

Fig. 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB).
Results for sequential writes and sequential read are shown

April 30, 2018

TCS5562: Software Engineering for Cloud Computing [Spring 2018] 107
Institute of Technology, University of Washington - Tacoma

WHAT IS A CONTAINER?

According to NIST (National Institute of Standards Technology)

= Virtualization: the simulation of the software and/or hardware
upon which other software runs. (800-125)

= System Virtual Machine: A System Virtual Machine (VM) is a
software implementation of a complete system platform that
supports the execution of a complete operating system and
corresponding applications in a cloud. (800-180 draft)

= Operating System Virtualization (aka OS Container): Provide
multiple virtualized OSes above a single shared kernel (800-
190). E.g., Solaris Zone, FreeBSD Jails, LXC

= Applicatlion Virtuallzatlon (aka Application Containers): Same
shared kernel is exposed to multiple discrete instances (800-
180 draft). E.g., Docker (containerd), rkt

TCSS562: ineering for Cloud Computi ing 2018]
Institute of Technology, University of Washington - Tacoma

April 30, 2018 | 98

OPERATING SYSTEM CONTAINERS

= Virtual environments: share the host kernel

= Provide user space isolation

= Replacement for VMs: run multiple processes, services
= Mix different Linux distros on same host

Host 0S

= Examples: LXC,

Ubuntu Ubuntu Ubuntu Ubuntu RHEL Cent0S
OpenVZ, 14.04 14.04 14.04 7 66
A Container Container Container Container Container C
Linux Vserver,
BSD Jails,
i image
Solaris zones =
Ubuntu 14.04 image Ubuntu 14.04
Identical OS containers Different flavoured OS containers
* Credit: hitps://blog.risingstack
April 20, 2018 TCSS562: Software Engineering for Cloud Computing [Spring 2018] | oo ‘

Institute of Technology, University of Washington - Tacoma

APPLICATION CONTAINERS

= Designed to package and run a single service

= All containers share host kernel

= Subtle differences from operating system containers

= Examples: Docker, Rocket

= Docker: runs a single process on creation

= 0S containers: run many OS services, for an entire 0S

= Create application containers for each component of an app
= Supports a micro-services architecture

= DevOPS: developers can package their own components in
application containers

= Supports horizontal and vertical scaling

TCSS562: ineering for Cloud Computi ing 2018]
Institute of Technology, University of Washington - Tacoma

April 30, 2018 | 19.10

APPLICATION CONTAINERS - 2

= Container images are “layered”
= Base image: common for all components

= Add layers that are specific
for components, services references
as needed parent

= Layering promotes reuse Hmiage

= Reduces duplication of
data across images

TCSS562: Software Engineering for Cloud Computing [Spring 2018]
Bl Zi Institute of Technology)Universitylof Washington=Tacomal

Slides by Wes J. Lloyd

THREE-TIER ARCHITECTURE

Node.js
Postgres
Nginx

OS containers App containers

Meant to used as an OS - run multiple Meant to run for a single service
services + Layered filesystems

No layered filesystems by default Built on top of OS container technologies
Built on cgroups, namespaces, native Examples - Docker, Rocket

process resource isolation

Examples - LXC, OpenVZ, Linux VServer,

BSD Jails, Solaris Zones

TCSS562: ineering for Cloud Computi ing 2018]
Institute of Technology, University of Washington - Tacoma

April 30, 2018 | 1912

5/1/2018

L9.2

TCSS 562: SE for Cloud Computing [Spring 2018]
Institute of Technology, UW-Tacoma

CONTAINER ISOLATION

u|s the host isolated from application containers?

= Are application containers isolated from each

other?
Application
containers

Application
App | App containers
sin/is | sins/ins

Container
runtime

VM kernel

TC55562: Software Engineering for Cloud Computing [Spring 2018]

Institute of Technology, University of Washington - Tacoma o

April 30, 2018

LXC (LINUX CONTAINERS)

® QOperating system level virtualization

" Run multiple isolated Linux systems on a host
using a single Linux kernel

®Control groups(cgroups)
=Including in Linux kernels => 2.6.24

=Limit and prioritize sharing of CPU, memory,
block/network 1/0

ELinux namespaces
= Docker initially based on LXC

April 30, 2018 TCSS562: ineering for Cloud Computing [Spring 2018] | ot |

Institute of Technology, University of Washington - Tacoma

LINUX KERNEL NAMESPACES

= Partitions kernel resources

= Processes see only their set of resources

= Provides isolation

= Namespaces are hierarchical

= Parent processes can see down the hierarchy
= 7 namespaces in Linux (cgroups not shown)

= Each process can only see resources associated
with the namespace, and descendent namespaces

April 30, 2018 TC55562: Software Engineering for Cloud Computing [Spring 2018]

1015
Institute of Technology, University of Washington - Tacoma

NAMESPACES - 2

= Provides Isolatlon of 0S
entities for containers
= mnt: separate filesystems
= pld: independent PIDs; first process in container is PID 1
= jpc: prevents processes in different IPC
namespaces from being able to establish shared
memory. Enables processes in different containers
to reuse the same identifiers without conflict.
... provides expected VM like isolation...
= yser: user identification and privilege isolation
among separate containers
= net: network stack virtualization. Multiple loopbacks (lo)

= UTS (UNIX time sharlng): provides separate host and domain

CONTROL GROUPS (CGROUPS)

= Collection of Linux processes
= Group-level resource allocation: CPU, memory, disk I/0, network I/0
" Resource limlting
= Memory, disk cache
= Prloritizatlon
= CPU share
= Disk I/0 throughput
" Accounting
= Track resource utilization
= For resource management and/or billing purposes
= Control
= Pause/resume processes
= Checkpointing - Checkpoint/Restore in Userspace (CRIU)
= https://criu.org

April 30, 2018 TCS5562: Software Engineering for Cloud Computing [Spring 2018] 017

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

TCSS562: i ing for Cloud C i ing 2018]
(T [Se e erTechacloky U e raity o fWashintonSTaco mal | Lo16 |

= Control groups are hierarchical

= Groups inherent limits from parent groups

= Linux has multiple cgroup controllers (subsystems)
= |s /proc/cgroups

= “memory” controller limits memory use

= “cpuacct” controller accounts L’fﬁmmwm
for CPU usage o
puace
blkio
memory B
= cgroup filesystem: P\cas
reezer
= /sys/fs/cgroup xﬁf:‘iem 2
= Can browse resource utilization Lot
X l__Luge
of containers... pios it 98
April 30, 2018 TCSS562: ineering for Cloud C¢ i ing 2018] | 018 |

Institute of Technology, University of Washington - Tacoma

5/1/2018

L9.3

TCSS 562: SE for Cloud Computing [Spring 2018]
Institute of Technology, UW-Tacoma

2016 DOCKER SURVEY

= Docker application containers
= Leading containerization vehicle

80% <=

sy Do -
f)
oy
Cy 41%
wanl application
plan o usa Dockerta poriaohiy across
Tigrate worklands t cioud “rvianmenta
> docker

62: ineering for Cloud C i ing 2018]
Institute of Technology, University of Washington - Tacoma

April 30, 2018

DOCKER EXECUTION ENVIRONMENTS

= (1) Original default Docker execution enviornment: LXC
= (2) Docker v0.9: libcontainer introduced (~2014)

= (3) Now runc (2015) !

= Provides Docker access to Linux Docker
container APIs B | | |
i i libvirt Ixe systemd-
= Execution drivers concept: l l mTwn

= Enable docker to leverage many 0S
containers as the exec environment

= OpenVZ, system-nspawn, libvirt-Ixc,
libvirt-sandbox, gemu/kvm,

Linux

cgroups namespaces netlink

selinux netfier (8
capabilities —
BSD Jails, Solaris Zones, and chroot i

TCSS562: ineering for Cloud Computing [Spring 2018] | 020 |

G, e Institute of Technology, University of Washington - Tacoma

DOCKER

= Docker daemon “dockerd”
= Provides docker services to Linux

= Docker 1.11+ g

= Open Container Initiative
® June 2015: Industry standard
for container runtimes and g : N ﬁ
formats 4 E
= Ensure containers are portable i

among different execution
environments (engines) g

Docker Crenss Docker Contaiers

Docker Client-Server Architecture

= Credit: hitps://hack 55426

TCS5562: Software Engineering for Cloud Computing [Spring 2018]

Bl H Inttute o Technology)Universitylof WasfingtonTaco mal oz ‘

DOCKER - 2

R e T

Docker CLIUI

Runc and other OCI runtimes

Containerd Integration Architecture

= Docker CLI: interfaces with dockerd daemon

= Docker engine: dockerd daemon, interfaces with Containerd

= Containerd: simple daemon, interfaces with runc to manage
containers; CRUD interface for containers, images, volumes,
networks, builds; HTTP APl > Google RPC (gRPC) interface;

= runc: lightweight command-line tool for running containers;
Interfaces with Linux cgroups, namespaces; Runs an OCI
container

TCSS562: ineering for Cloud Computi ing 2018] o
Institute of Technology, University of Washington - Tacoma

April 30, 2018

DOCKER - 3

= Docker architecture:

tat d
= Other Docker tools:
= Docker Machine: o . ™
N e containerd-shin [| containerd-shim
automatically provision
sockernoseto - (HEEEED WD BEEEED
runC runC
docker hosts to
form a cluster

= Docker Swarm: Clusters multiple docker hosts together to
manage as a cluster.

= Docker Compose: Config file (YAML) for multi-container
application; Describes how to deploy and configure multiple
containers

TCS5562: Software Engineering for Cloud Computing [Spring 2018]
Institute of Technology, University of Washington - Tacoma

April 30,2018 1923 ‘

CONTAINER ORCHESTRATION

FRAMEWORKS

= Framework(s) to deploy multiple containers
= Provide container clusters using cloud VMs
mSimilar to “private clusters”

" Reduce VM idle CPU time in public clouds

= Better leverage “sunk cost” resources

= Compact multiple apps onto shared public cloud
infrastructure

= Generate to cost savings
" Reduce vendor lock-in

TCSS562: ineering for Cloud Computi ing 2018]
Institute of Technology, University of Washington - Tacoma

April 30, 2018 | 1924

Slides by Wes J. Lloyd

5/1/2018

L9.4

TCSS 562: SE for Cloud Computing [Spring 2018] 5/1/2018
Institute of Technology, UW-Tacoma

CONTAINER ORCHESTRATION

KEY ORCHESTRATION FEATURES FRAMEWORKS - 2

= Management of container hosts = Docker swarm

® Launching set of containers = Apache mesos/marathon
= Rescheduling failed containers = Kubernetes

= Linking containers to support workflows

= Many public cloud provides moving to offer Kubernetes-as-
= Providing connectivity to clients outside the container cluster a-service

= Firewall: control network/port accessibility

= Dynamic scaling of containers: horizontal scaling
= Scale in/out, add/remove containers

= Load balancing over groups of containers

= Rolling upgrades of containers for application

= Amazon elastic container service (ECS)
= Apache aurora

TC55562: Software Engineering for Cloud Computing [Spring 2018]
Institute of Technology, University of Washington - Tacoma

April 30, 2018

o ‘ April 30, 2018 TCsS562: ineering for Cloud Computing [Spring 2018] | 026 |

Institute of Technology, University of Washington - Tacoma

DOCKER CLI

= Docker CLI 2> Docker Englner (dockerd) > contalnerd - runc

= Docker installation
= Docker file

= Docker run

= Docker ps

= Docker exec -it

= Docker stop

TUTORIAL #3

DOCKER, CGROUPS,
RESOURCE ISOLATION

TCSS562: Software Engineering for Cloud Computing [Spifilg 2018]
Institute of Technology, University of Washington - Tacomal

April 30,2018 April 30, 2018

TCSS562: ineering for Cloud Computi ing 2018] 028
Institute of Technology, University of Washington - Tacoma

attach Attach local standard input, output, and error streams to a running container
Build an image from a Dockerfile
Create a new image from a container's changes
Copy files/folders between a container and the local filesystem
Create a new contatner TUTORIAL 3
xisting stack
s or directories on a container's filesystem
Get real time ents from the er
Run a command in a running container
Export a container's filesystem as a tar archive
Show the history of an image .
Bt : = Linux performance benchmarks
Import the contents from a tarball to create a filesystem image
Display system-wide information
Return low-level information on Docker objects
Kill one or more running containers .
Load an image from a tar archive or STDIN . Stress ng
Log in to a Docker registry
Log out from a Docker registry = 100s of CPU, memory, disk, network stress tests
Fetch the logs of a container
Pause all processes within one or more containers
List port mappings or a specific mapping for the container
List containers
Pull an image or a repository from a registry = Sysbench
Push an image or a repository to a registry .
Rename a container = Used in tutorial for memory stress test
Restart one or more containers
Remove one or more containers
Remove one or more images
a command in a new container
e one or more images to a tar archive (streamed to STDOUT by default)
search the Docker Hub for images
Start one or more stopped containers
Display a live stream of container(s) resource usage statistics
Stop one or more running container:
Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE
Display the running processes of a container

Unpause all proc within one or more containers
Update configuration of one or more containers EIEDED TCSS562: ineering for Cloud Computi ing 2018] 1030
show the Docker version information Shue) Institute of Technology, University of Washington - Tacoma

Block until one or more containers stop, then print their exit codes

Slides by Wes J. Lloyd L9.5

TCSS 562: SE for Cloud Computing [Spring 2018] 5/1/2018
Institute of Technology, UW-Tacoma

QUESTIONS

TCS8562: Software

LI S Institute of Technology, University of Washin

Slides by Wes J. Lloyd L9.6

