
5/15/2018

1

Pipsqueak: Lean 
Lambdas with Large 
Libraries
TCSS562: GROUP 1

JASON ECKSTEIN, TIMOTHY YANG

Outline

 Serverless (FaaS)

 Scheduling

 Load balancing

 Improve performance of serverless functions

 Evaluation of new technology

 Security concerns

 Strengths/weaknesses



5/15/2018

2

Serverless

 Motivation

 Scalability/elasticity

 Performance

 Reduce costs 

The Problem

 Lean Lambdas 

 Library dependencies 

 Solution: 

 Rewrite old packages 

 split functionality of large 
dependencies

 Caching



5/15/2018

3

Background

 OpenLambda

 Introduced in HotCloud ’16

 Co-located with USENIX Annual Technical Conference in Denver, Colorado

 load balancing for function scheduling is performed by NGINX

 Round Robin

 Least-connected

 IP-hash

 Startup 

 Download, install, import

 Interpreter cache is a collection of 
paused processes

 fork

Pipsqueak



5/15/2018

4

Related Work

 OpenWhisk

 Fission

 Olscheduler
 (Gustavo Totoy, Edwin F. Boza, and Cristina L. Abad. 2018. An Extensible Scheduler for the OpenLambda FaaS Platform. In 

Proceedings of Workshop on Hardware/Software Techniques for Minimizing Data Movement (MinMove’18).ACM, New York, 
NY, USA, 4 pages.)

Author’s Evaluation

 Key problems: 

 downloading libraries, installing dependencies, importing modules

 Strategies for optimization:

 Cache tree management, load balancing

 Solution to benchmarking:

 PipBench



5/15/2018

5

PipBench

 PipBench:

 A new tool for generating artificial packages and workloads that utilize 
those packages

 Emulates pulling packages from PyPI, however the actual repository is very 
large

 A file system image generation tool

 Goals: 

 Accurately reproduce file sizes and quantities

 This is configurable, but difficult

 Templates are used to emulate directory structures

Author’s Conclusions

 Rapid design, implementation, and deployment achieves an 
advantage over competitors

 Adequate separation of cached images is achieved using cgroups 
and namespaces

 Agile development methodology:

 to efficiently develop software, one must deliver minimal improvements 
frequently

 The microservice model:

 to deploy software rapidly, one must decompose applications into 
minimal, easily deployable services



5/15/2018

6

Strengths

 Image cache hierarchy:

 Uses existing Linux technologies, namespaces and cgroups, and forking 
processes

 Image cache policy:

 Tree cache, candidate selection and eviction, global scheduling

 Security:

 Package management must occur in a sandbox

 Handler h, will not run in any environment with package p, unless h 
depends on p

Weaknesses

 Performance evaluation:

 There is no study included that evaluates using their system with several 
test functions

 Single language used:

 What are the implications of applying this system to an environment with 
other scripting languages, compiled languages



5/15/2018

7

Evaluation

 The authors do a great job building this system on paper

 Analyzing python packages and dependencies

 Library dependencies across languages

 Considering operating system constraints and capabilities

Identify Gaps

 Security:

 There is no guarantee that a handler dependent on a package will be 
safe from malicious packages

 The authors report this problem is not unique to serverless computing, 
implying a problem with scripting languages importing packages

 Why not try to improve on this situation?

 Package signing, CRC checks, etc.

 This could be done offline much like Google’s web crawling or Amazon’s 
recommendation system



5/15/2018

8

Future Work

 Current technologies used: OpenLambda, Linux, Python

 Integrate support for other scripting languages: Ruby, Node.js, etc.

 Implications for running on other platforms such as AWS

 Build using IaaS to explore running on Linux, as well as Windows

 Add support for compiled languages such as C/C++

Questions
TCSS562: GROUP 1

JASON ECKSTEIN, TIMOTHY YANG


