
5/15/2018

1

Pipsqueak: Lean 
Lambdas with Large 
Libraries
TCSS562: GROUP 1

JASON ECKSTEIN, TIMOTHY YANG

Outline

 Serverless (FaaS)

 Scheduling

 Load balancing

 Improve performance of serverless functions

 Evaluation of new technology

 Security concerns

 Strengths/weaknesses



5/15/2018

2

Serverless

 Motivation

 Scalability/elasticity

 Performance

 Reduce costs 

The Problem

 Lean Lambdas 

 Library dependencies 

 Solution: 

 Rewrite old packages 

 split functionality of large 
dependencies

 Caching



5/15/2018

3

Background

 OpenLambda

 Introduced in HotCloud ’16

 Co-located with USENIX Annual Technical Conference in Denver, Colorado

 load balancing for function scheduling is performed by NGINX

 Round Robin

 Least-connected

 IP-hash

 Startup 

 Download, install, import

 Interpreter cache is a collection of 
paused processes

 fork

Pipsqueak



5/15/2018

4

Related Work

 OpenWhisk

 Fission

 Olscheduler
 (Gustavo Totoy, Edwin F. Boza, and Cristina L. Abad. 2018. An Extensible Scheduler for the OpenLambda FaaS Platform. In 

Proceedings of Workshop on Hardware/Software Techniques for Minimizing Data Movement (MinMove’18).ACM, New York, 
NY, USA, 4 pages.)

Author’s Evaluation

 Key problems: 

 downloading libraries, installing dependencies, importing modules

 Strategies for optimization:

 Cache tree management, load balancing

 Solution to benchmarking:

 PipBench



5/15/2018

5

PipBench

 PipBench:

 A new tool for generating artificial packages and workloads that utilize 
those packages

 Emulates pulling packages from PyPI, however the actual repository is very 
large

 A file system image generation tool

 Goals: 

 Accurately reproduce file sizes and quantities

 This is configurable, but difficult

 Templates are used to emulate directory structures

Author’s Conclusions

 Rapid design, implementation, and deployment achieves an 
advantage over competitors

 Adequate separation of cached images is achieved using cgroups 
and namespaces

 Agile development methodology:

 to efficiently develop software, one must deliver minimal improvements 
frequently

 The microservice model:

 to deploy software rapidly, one must decompose applications into 
minimal, easily deployable services



5/15/2018

6

Strengths

 Image cache hierarchy:

 Uses existing Linux technologies, namespaces and cgroups, and forking 
processes

 Image cache policy:

 Tree cache, candidate selection and eviction, global scheduling

 Security:

 Package management must occur in a sandbox

 Handler h, will not run in any environment with package p, unless h 
depends on p

Weaknesses

 Performance evaluation:

 There is no study included that evaluates using their system with several 
test functions

 Single language used:

 What are the implications of applying this system to an environment with 
other scripting languages, compiled languages



5/15/2018

7

Evaluation

 The authors do a great job building this system on paper

 Analyzing python packages and dependencies

 Library dependencies across languages

 Considering operating system constraints and capabilities

Identify Gaps

 Security:

 There is no guarantee that a handler dependent on a package will be 
safe from malicious packages

 The authors report this problem is not unique to serverless computing, 
implying a problem with scripting languages importing packages

 Why not try to improve on this situation?

 Package signing, CRC checks, etc.

 This could be done offline much like Google’s web crawling or Amazon’s 
recommendation system



5/15/2018

8

Future Work

 Current technologies used: OpenLambda, Linux, Python

 Integrate support for other scripting languages: Ruby, Node.js, etc.

 Implications for running on other platforms such as AWS

 Build using IaaS to explore running on Linux, as well as Windows

 Add support for compiled languages such as C/C++

Questions
TCSS562: GROUP 1

JASON ECKSTEIN, TIMOTHY YANG


