Pipsqueak: Lean
_.ambdas with Large
Libraries

TCSS562: GROUP 1
JASON ECKSTEIN, TIMOTHY YANG

Outline

» Serverless (Faas)

» Scheduling

» Load balancing
» Improve performance of serverless functions
» Evaluation of new technology

» Security concerns

» Strengths/weaknesses

5/15/2018




5/15/2018

Serverless

» Motivation Deployment Bundles

» Scalability/elasticity ~ ==
» Performance Application J_ E1_
il Runtime

Operating System
Virtual Machine

» Reduce costs

0OS/Containers

Hardware

(a) VM Model (b) Lambda Model

The Problem

Deployment Bundles
» Lean Lambdas P
» Library dependencies

» Solution:
» Rewrite old packages

» split functionality of large
dependencies

Package
Cache

I requests 'ﬂ}

Runtime Runtime

0OS/Containers QOS/Containers
Hardware Hardware

» Caching

(a) No Support (b) Package Awareness




5/15/2018

Background

» OpenlLambda
» Infroduced in HotCloud '16
» Co-located with USENIX Annual Technical Conference in Denver, Colorado
» load balancing for function scheduling is performed by NGINX
» Round Robin
» Least-connected
» IP-hash

Pipsqueak

> STOFTUD Interpreter Cache OpenLambda
» Download, install, import @j@f’ | Exec Engine
s .

) . & .
» Interpreter cache is a collection of Active Handlers

paused processes /]

» fork




5/15/2018

Related Work

» OpenWhisk
» Fission
» Olscheduler

» (Gustavo Totoy, Edwin F. Boza, and Cristina L. Abad. 2018. An Extensible Scheduler for the OpenLambda Faas Platform. In
Proceedings of Workshop on Hardware/Software Techniques for Minimizing Data Movement (MinMove'18).ACM, New York,
NY, USA, 4 pages.)

Author's Evaluation

» Key problems:
» downloading libraries, installing dependencies, importing modules
» Strategies for optimization:

» Cache free management, load balancing

» Solution to benchmarking:
» PipBench




PipBench

» PipBench:

» A new tool for generating artificial packages and workloads that ufilize
those packages

» Emulates pulling packages from PyPl, however the actual repository is very
large

» A file system image generation tool

» Goals:
» Accurately reproduce file sizes and quantities
» Thisis configurable, but difficult

» Templates are used to emulate directory structures

Author's Conclusions

Rapid design, implementation, and deployment achieves an
advantage over competitors

Adequate separation of cached images is achieved using cgroups
and namespaces
Agile development methodology:

» to efficiently develop software, one must deliver minimal improvements
frequently

The microservice model:

» to deploy software rapidly, one must decompose applications info
minimal, easily deployable services

5/15/2018




5/15/2018

Strengths

» Image cache hierarchy:

» Uses existing Linux fechnologies, namespaces and cgroups, and forking
processes

» Image cache policy:

» Tree cache, candidate selection and eviction, global scheduling
» Security:

» Package management must occurin a sandbox

» Handler h, will not run in any environment with package p, unless h
depends on p

Weaknesses

» Performance evaluation:

» There is no study included that evaluates using their system with several
test functions

» Single language used:

» What are the implications of applying this system to an environment with
other scripting languages, compiled languages




5/15/2018

Evaluation

» The authors do a great job building this system on paper
» Analyzing python packages and dependencies
» Library dependencies across languages

» Considering operating system constraints and capabilities

ldentify Gaps

» Security:

» There is no guarantee that a handler dependent on a package will be
safe from malicious packages

» The authors report this problem is nof unique to serverless computing,
implying a problem with scripting languages importing packages
» Why not try to improve on this situation?
» Package signing, CRC checks, etc.

» This could be done offline much like Google's web crawling or Amazon's
recommendation system




5/15/2018

Future Work

» Current fechnologies used: OpenLambda, Linux, Python
» Integrate support for other scripfing languages: Ruby, Node.js, etc.
» Implications for running on other platforms such as AWS
» Build using laas to explore running on Linux, as well as Windows

» Add support for compiled languages such as C/C++

Questions

TCSS562: GROUP 1
JASON ECKSTEIN, TIMOTHY YANG




