
5/23/2018

1

Serverless Computation with
OpenLambda

Raaghavi Sivaguru
Ramya Kumar
Sindhuja Chandran
Sujanasree Ratakonda

5/23/2018 TCSS562- Team 8 1

Talk Outline

●Paper Overview
●Introduction to serverless Computing
●Background / Research Challenges
●Summary of new technology, approach or benchmarks
●Architecture
●Author’s Evaluation and conclusion
●Critique: Strengths
●Critique: Weakness
●Critique: Evaluation
●Future Work

1 2

5/23/2018

2

Paper Overview

●Open Lambda - Open source serverless computing model
●Proposal - Building an RPC-aware storage engine that runs
alongside serverless-computing platforms such as Google Cloud
Functions, AWS Lambda.
●Facilitates work in research avenues of serverless computing

●Lambda Bench - benchmarking suitetorage

3

Introduction

●Problem
○Noisy neighbor
○Security leaks
○Startup latency

●Solution:
○ Sharing as much as possible
○ Isolation

4

5/23/2018

3

Introduction

●Evolution of sharing

5

Introduction

●Lambda Model

○No Server Management for developers

○Auto-scaling & Elasticity

○High Availability

○Functions share the runtime environment

○Minimize startup latency

6

5/23/2018

4

Background/Related Work

●Programming Model in Lambda

7

Background/Related Work

●Containers Vs Lambda (Response times)

●Median response time using AWS Lambda = 1.6s
●Median response time using Elastic Beanstalk = 20s

8

5/23/2018

5

Background/Related Work

●Advantages of Lambda
○Resource management is handled by cloud provider
○Automatically scales without any configuration
○Responds faster
○Pay-as-you-go
○Offers millisecond level billing granularity

9

Lambda Workload

●Example client-to-server pattern
○Google gmail

●Trace RPC calls using chrome extension
●Long polling

10

5/23/2018

6

Design Implications

●RPCs shorter than 100ms

●AWS Lambda charges are 3.7x more

●Idle handlers dominate cost of application

11

Research challenges

●Execution Engine
●Interpreted Languages
●Package Support
●Cookies and Sessions
●Databases
●Data Aggregators
●Load Balancers
●Cost Debugging
●Legacy Decomposition

12

5/23/2018

7

Execution Engine

●Sandbox for executing handlers
●Trade Offs happens

13

Execution Engine

●High memory cost
●Memory is main bottleneck
●Prevents starting new nodes

14

5/23/2018

8

Interpreted Language

●Just-in-time compilers
●Trade offs
●Alternative

○Dynamic optimization

15

Package Support

●Rapidly spin up
●Bundle third-party libraries
●Increase startup latency
●Alternative

○Package aware
○Eg: npm-Node.js, pip-Python

16

5/23/2018

9

Cookies and Sessions

●Short-lived and stateless
●Shared view of cookie state
●Maintains TCP connections
●Alternative

○Management of TCP connections

17

Database

●Parallelism over data shares
●Lambda - Tree Structure
●Solution - Custom data store to coordinate with Lambdas
●Challenge - Different platforms for pre-processing

Data Aggregation

●Handler waiting for DB
●Change feed Batching

18

5/23/2018

10

Load Balancing

●Based on each RPC call/page
●Database operation performed by each lambda

Cost

Schedulers must consider
●Session Locality
●Code Locality
●Data locality

19

Decompose web applications into Lambda based services

Legacy System

Open Lambda

●OpenLambda is an Apache-licensed serverless computing
project, written in Go and based on Linux containers.
●There are several opportunities for tight integration:

○Client RPC calls introduce consistency boundaries
○RPC schedulers aware of database replicas
○Coordinating handler pausing with database change batches.

●Database will coordinate with handler workers via gRPC calls.

20

5/23/2018

11

Components

●worker: Lambda server that executes handlers
●nginx: load balancer
●lambda-generator: old script for generating Python Lambdas
●node: container with worker, rethinkdb, and docker
●util: scripts for starting/stopping local cluster
●applications: OpenLambda applications
●testing: initial unit test environment

21

Workflow

22

5/23/2018

12

Workflow

23

Development
●Online Project :

http://www.open-lambda.org.

●Code - Open source –
https://github.com/open-lambda/open-lambda#architecture

●Slack Development Channel:
https://open-lambda.slack.com

24

5/23/2018

13

Authors Evaluation & Conclusion

●Detailed overview of serverless computation and how sharing
between applications evolved
●Overview of research challenges with serverless computing
platform

25

Critiques: Strengths

●Base to new lambda
●Details on Limitations
● Lambda Efficiency

○Sharing runtime seems to be compromising
●Study on Load burst and steady Light Load
●Project is funded by NSF and donations from top companies

26

5/23/2018

14

Critiques: Weakness

●In paper, open lambda architecture is not being explained in
detail
●Related interactions are not possible
●Complexity and usability of open lambda

27

Identify GAPS

●Only RPC trigger events evaluated
●Dynamic profiling is not possible
●No benchmark tools
●Open lambda is not materialized

28

5/23/2018

15

FutureWork

●Reduced Memory Cost
●Supporting more runtime
●Coordination between lambdas to support data aggression

29

References

●http://www.cs.cmu.edu/~coda/docdir/s11.pdf
●https://aws.amazon.com/lambda/
●https://leveros.readme.io/
●https://serverless.com/

Q&A

30

