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Talk Outline

●Paper Overview
●Introduction to serverless Computing
●Background / Research Challenges
●Summary of new technology, approach or benchmarks
●Architecture
●Author’s Evaluation and conclusion
●Critique: Strengths
●Critique: Weakness
●Critique: Evaluation
●Future Work
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Paper Overview

●Open Lambda - Open source serverless computing model
●Proposal - Building an RPC-aware storage engine that runs 
alongside serverless-computing platforms such as Google Cloud 
Functions, AWS Lambda.
●Facilitates work in research avenues of serverless computing

●Lambda Bench - benchmarking suitetorage
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Introduction

●Problem
○Noisy neighbor
○Security leaks
○Startup latency

●Solution:
○ Sharing  as much as possible
○ Isolation
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Introduction

●Evolution of sharing
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Introduction

●Lambda Model

○No Server Management for developers

○Auto-scaling & Elasticity

○High Availability

○Functions share the runtime environment

○Minimize startup latency
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Background/Related Work

●Programming Model in Lambda
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Background/Related Work

●Containers Vs Lambda (Response times)

●Median response time using AWS Lambda = 1.6s
●Median response time using Elastic Beanstalk = 20s
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Background/Related Work

●Advantages of Lambda
○Resource management is handled by cloud provider
○Automatically scales without any configuration
○Responds faster
○Pay-as-you-go
○Offers millisecond level billing granularity
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Lambda Workload

●Example client-to-server pattern
○Google gmail

●Trace RPC calls using chrome extension
●Long polling
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Design Implications

●RPCs shorter than 100ms

●AWS Lambda charges are 3.7x more

●Idle handlers dominate cost of application
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Research challenges

●Execution Engine
●Interpreted Languages
●Package Support
●Cookies and Sessions
●Databases
●Data Aggregators
●Load Balancers
●Cost Debugging
●Legacy Decomposition
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Execution Engine

●Sandbox for executing handlers
●Trade Offs happens
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Execution Engine

●High memory cost
●Memory is main bottleneck
●Prevents starting new nodes
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Interpreted Language

●Just-in-time compilers
●Trade offs
●Alternative

○Dynamic optimization
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Package Support

●Rapidly spin up
●Bundle third-party libraries
●Increase startup latency
●Alternative

○Package aware
○Eg: npm-Node.js, pip-Python
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Cookies and Sessions

●Short-lived and stateless
●Shared view of cookie state
●Maintains TCP connections
●Alternative

○Management of TCP connections
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Database

●Parallelism over data shares
●Lambda - Tree Structure
●Solution - Custom data store to coordinate with Lambdas
●Challenge - Different platforms for pre-processing

Data Aggregation

●Handler waiting for DB
●Change feed Batching
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Load Balancing

●Based on each RPC call/page
●Database operation performed by each lambda

Cost

Schedulers must consider
●Session Locality
●Code Locality
●Data locality
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Decompose web applications  into Lambda based services

Legacy System

Open Lambda

●OpenLambda is an Apache-licensed serverless computing 
project, written in Go and based on Linux containers. 
●There are several opportunities for tight integration: 

○Client RPC calls introduce consistency boundaries
○RPC schedulers aware of database replicas 
○Coordinating handler pausing with database change batches.

●Database will coordinate with handler workers via gRPC calls.
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Components

●worker: Lambda server that executes handlers 
●nginx: load balancer 
●lambda-generator: old script for generating Python Lambdas 
●node: container with worker, rethinkdb, and docker 
●util: scripts for starting/stopping local cluster 
●applications: OpenLambda applications 
●testing: initial unit test environment 
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Workflow
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Workflow
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Development
●Online Project :

http://www.open-lambda.org.

●Code - Open source –
https://github.com/open-lambda/open-lambda#architecture

●Slack Development Channel:
https://open-lambda.slack.com
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Authors Evaluation & Conclusion

●Detailed overview of serverless computation and how sharing 
between applications evolved
●Overview of research challenges with serverless computing 
platform
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Critiques: Strengths

●Base to new lambda
●Details on Limitations
● Lambda Efficiency

○Sharing runtime seems to be compromising
●Study on Load burst and steady Light Load
●Project is funded by NSF and donations from top companies
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Critiques: Weakness

●In paper, open lambda architecture is not being explained in 
detail 
●Related interactions are not possible 
●Complexity and usability of open lambda
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Identify GAPS

●Only RPC trigger events evaluated
●Dynamic profiling is not possible
●No benchmark tools
●Open lambda is not materialized
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FutureWork

●Reduced Memory Cost
●Supporting more runtime
●Coordination between lambdas to support data aggression
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