
5/21/2018

1

Java Code Analysis and
Transformation into AWS
Lambda Functions
Group Member: Baojia Zhang, Kaixuan Gao, Yuxiao Guo, Ziyu Gao

Cloud Computing and Project Design

Various Programming Models to choose from:

● Traditional Monolithic Architecture?
● Microservice?
● Function-as-a-Service (FaaS) platform?
● …...

What if I want to switch to another model?

5/21/2018

2

Serverless Computing: FaaS

● Easy Deployment
● Pay-as-you-go
● Scalability: server capacity is automatically provisioned
● Stateless and Event-Processing System:

○ Suit for event-driven and flow-like processing patterns
● …...

Traditional Server Vs. Serverless
Architecture?

Traditional Server-side
Architecture

Serverless Architecture

Serverless Architecture, Mike Robert, https://martinfowler.com/articles/serverless.html

5/21/2018

3

Podilizer

● Java and AWS Lambda
● Transformation from monolithic Java code to AWS Lambda

units
● Let developer make policy choice at a late point in time
● Hide the actual mechanism to enact the policy

Approach

- Identified two research question
- Explained general decisions which must be taken by any

transformation tool related to the programming model, state
handling and the process design

- Presented both the design and the implementation of Podilizer

5/21/2018

4

Research Questions

- RQ1: Is it economically viable to run a Java application entirely
on FaaS?

- Comparison baseline: a) PaaS b) IaaS

- RQ2: Is it technically feasible to automate this process? If so,
what is the percentage, performance and which code is easier,
harder or impossible to convert?

Programming
→ Execution Model Mapping

First challenge:

- The code translation needs to take the paradigm shift into consideration
- Java is object-oriented language model
- FaaS is inherently bound to the functional programming paradigm which is stateless

computation with strict use of invocation parameters and return values without global
variables

5/21/2018

5

Programming
→ Execution Model Mapping

Second challenge:

- Mapping of Java class to appropriately packaged Java FaaS functions

- Empty methods, getters and setters, constructors and singletons
- Typical Java project conventions such as src folder and the absence thereof and

exceptions from the convention

Programming
→ Execution Model Mapping

Third challenge:

- The mapping needs to consider the grouping of method per functional unit

- To avoid excessive network calls
- To ensure that all dependency methods referenced from each method can be resolved

5/21/2018

6

State Handling

Two ways to handle the state of resulting decomposed functions

- Extending the method signature to pass in and out all attributed
- Using server-side state

Podilizer uses the first approach after weighting the advantages of extended method
signature (price, functional purity) against S3 (performance)

Critique: No details about how to measure these features

State Handling

- Stateful Java methods → Stateless function unit
- Making self-references explicit by enhancing the method signatures with it

- In Java, we use Class.method(params) to change the state of instances, the instance is self-
referenced implicitly with the keyword this

The translation process rewrites the method with Lambda-required signature and
generated code → initialises the invocation credentials and creates an input object to
save instance state → initialises the Lambda invoker with the input object → calls the
Class.handleRequest(input, output, context) → fetches the result from the output
object → renews the instance state using the result object

5/21/2018

7

FaaSification Pipeline

- A: static code parsing and analysis
- D: decomposition into functional units
- F: source-to-source translation of the functional units into FaaS units, adhering tyo

the calling conventions of the target platform
- C: compilation and dependency assembling of these units
- U: upload, deployment and configuration of these units
- V: systematic test and verification

Podilizer Design
- The pipeline thinking is reflected in the design of Podilizer

- Podilizer recursively scans directories for Java projects and processes each project and source
file until the code is available to be invoked as Lambda function

- The pipeline steps are incremental and the tool allows for continuations starting from each step
- This design makes it fault-tolerant and debug-friendly

5/21/2018

8

Podilizer Implementation

Trials and Findings

Figure: Testbed for performing experiments on Podilizer

5/21/2018

9

Experiment Setup

Each step has their unique check

The first three steps are performed internally
by Podilizer.

The three remaining ones are merely
automated by running executables out of which
one is provided by Podilizer

Performance Experiment

Podilizer is instrumented with millisecond-precision logging to reveal the duration of
each pipeline step. The performance, the quality of the transformation, can be
measured by the ratio of successful checks against all which are performed in each
step.

The economic aspect comparison should be calculated manually, for the absent of a
general performance estimation formula.

5/21/2018

10

Input property

In the paper, we set 6 types of applications.

1: Graphical window with buttons, User interface
2: Mathematical function
3: Calculation of shipping containers and boxes
4: Public transport information
5: Image processing
6: Specific language parsing and evaluation

Result

The result can be impacted by hardware, used software tools, the provide, and network
connection.

Hardware support:

We run the experiment on Dell Latitude E7450 notebook, Intel Core i7-5600 quad-core
processor clocked at 2.60GHz, connected to SWITCHlan, the Swiss university network, via
1000baseT Ethernet. The computer installed with Ubuntu Linux and OpenJDK 8.

5/21/2018

11

The performance and quality of The
FaaSification pipeline for P1

Performance of P2 to P6

5/21/2018

12

FaaSification pipeline quality for P2-P6

Performance analysis

The first 2 steps almost execute in less than a single Lambda billing period.

The compilation and upload always take much more longer time in comparison.

P5 failed due to a crash of the crash of the transformator itself.

The automated translation is feasible, with high code coverage for simple and heterogeneous
code projects. The failure are due to the dynamic classloading for plugins and the insufficient
handling of such constructs by the transformer.

5/21/2018

13

Execution performance of applications

Results

P1 fails due to being a graphical application. P5 requires an interactive command-line
interface and cannot run in a web environment or through function calls alone. P6 fails for
missing symbol files for the parser.

EC2 instance is always slower than Notebook local. Two layer of indirection through Xinetd
and a wrapper shell scripts do not often cause higher execution time.

The results gives an answer to RQ1: While the applications perform slower by about an
order of magnitude compared to typical IaaS or PaaS deployments, the economic feasibility
is still in range for services which are not permanently invoked.

5/21/2018

14

Comparison between Source code size
before and after

Conclusion

● Promising for future cloud application engineering
● Beneficial to programming education for simple OOP
● Code which is not prepared for individual function access will

originate problem
● Interface with JVM will also be a future difficulty

○ Through the classloader or the CLI, as well as data access
from different file paths

5/21/2018

15

Strength

● Innovation to decompose legacy application to FaaS
● Acceptable success rate for the existing experiment
● Multi-environment
● Multi kind of application

Weakness

About the experiment

● Lack of evidence to prove extended method signature is better
than S3.

● What kind of resource consumption superpositioning and
dependency can support parallel execution

5/21/2018

16

Weakness

About the result

● Runtime
● Code Size
● Application limitation
● Can only deal with the most simple application
● Only support lambda and Java

Evaluation

● Acceptable result and success rate
● Indeed create a tool to auto-deploy application to lambda
● Lack of evidence
● Need more experiment to be more convincing

5/21/2018

17

Future Work

● More Serverless Computing Platform
● More Language support
● Performance can be better
● Optimize attribute and method dependency
● Support more type of application

